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Abstract. The aim of this paper is to give some new identities and relations related to the some families
of special numbers such as the Bernoulli numbers, the Euler numbers, the Stirling numbers of the first and
second kinds, the central factorial numbers and also the numbers y1(n, k;λ) and y2(n, k;λ) which are given
Simsek [31]. Our method is related to the functional equations of the generating functions and the fermionic
and bosonic p-adic Volkenborn integral on Zp. Finally, we give remarks and comments on our results.

1. Introduction

Generating functions (1) and (2) gives us new families of combinatorial numbers, which were defined
by Simsek [31]-[32]. These numbers are generalized combinatorial numbers, which were considered in
many earlier investigations by (among others) Golombek [12] and Simsek [33].

Definition 1.1. (See, for details, Simsek [31]). The numbers y1(n, k;λ) and y2(n, k;λ) are defined by means of the
following generating functions, respectively

Fy1 (t, k;λ) =
1
k!

(
λet + 1

)k
=

∞∑
n=0

y1(n, k;λ)
tn

n!
, (1)

and

Fy2 (t, k;λ) =
1

(2k)!

(
λet + λ−1e−t + 2

)k
=

∞∑
n=0

y2(n, k;λ)
tn

n!
. (2)

where k ∈N0 =N ∪ {0} = {0, 1, 2, . . .} and λ ∈ C, denotes the set of complex numbers.
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Furthermore, 0n = 1 if n = 0, and, 0n = 0 if n ∈N.
In [31], by using (1) and (2), Simsek defined the numbers y1(n, k;λ) and y2(n, k;λ) as follows:

y1(n, k;λ) =
1
k!

k∑
j=0

(
k
j

)
jnλ j

and

y2(n, k;λ) =
1

(2k)!

k∑
j=0

(
k
j

)
2k− j

j∑
l=0

(
j
l

) (
2l − j

)n λ2l− j.

By using the above formulas, a few values of the numbers y1(n, k;λ) and y2(n, k;λ) are given as follows,
respectively:

y1(0, 0;λ) = 1, y1(0, 1;λ) = λ + 1, y1(0, 2;λ) =
1
2
λ2 + λ +

1
2
,

y1(1, 0;λ) = 0, y1(1, 1;λ) = λ, y1(1, 2;λ) = λ2 + λ,

y1(2, 0;λ) = 0, y1(2, 1;λ) = λ, y1(2, 2;λ) = 2λ2 + λ

and

y2(0, 0;λ) = 1, y2(0, 1;λ) =
1

2λ
+
λ
2

+
1
2
, y2(0, 2;λ) =

λ2 + 4λ
24

+
λ

24λ2 +
1
4
,

y2(1, 0;λ) = 0, y2(1, 1;λ) =
λ
2
−

1
2λ
, y2(1, 2;λ) =

λ2 + 2λ
12

−
2λ + 1

6λ2 ,

y2(2, 0;λ) = 0, y2(2, 1;λ) =
λ
2

+
1

2λ
, y2(2, 2;λ) =

λ2 + λ
6

+
λ + 1
6λ2 .

The generating function in (3) gives us with a generalization of the Stirling numbers S2(n, v) of the
second kind, which were considered in many earlier investigations by (among others) Srivastava [36], Luo
and Srivastava [22], Srivastava et al. [2] and Simsek ([30], [29]).

Luo and Srivastava [22, Definition 5] defined the λ-Stirling numbers S2(n, v;λ) of the second kind by
means of the following generating function:

FS(t, v;λ) =

(
λet
− 1

)v

v!
=

∞∑
n=0

S2(n, v;λ)
tn

n!
, (3)

where v ∈N0 and λ ∈ C. Substituting λ = 1 into (3), the λ-Stirling numbers S2(n, v;λ) reduce to the Stirling
numbers S2(n, v) of the second kind defined. That is

S2(n, v) = S2(n, v; 1)

(cf. [1]-[43]; and the references cited therein).
By using (3), one easily compute the following values for the λ-Stirling numbers S2(n, v;λ):

S2(0, 0;λ) = 1,S2(1, 0;λ) = 0,S2(1, 1;λ) = λ,S2(2, 0;λ) = 0,S2(2, 1;λ) = λ

and

S2(0, v;λ) =
(λ − 1)v

v!

(cf. [36], [22, Definition 5]).
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Remark 1.2. Replacing λ by −λ in (1), then the numbers y1(n, k;λ) reduces to the λ-Stirling numbers S2(n, v;λ).

Fundamental properties of the numbers y1(n, k;λ) are investigated by Simsek ([31], [32], [33]). The
numbers y1(n, k;λ) are related to the following combinatorial sum, which was given by Golombek [12]:

y1(n, k; 1) =

k∑
j=0

(
k
j

)
jn =

dn

dtn

(
et + 1

)k
|t=0 , (4)

where n = 1, 2, . . .(cf. see, also [31], [33]). In [31], Simsek gave a conjecture with two open questions
associated with the numbers y1(n, k; 1).

Srivastava [35] gave not only many useful formulas and identities related to the Bernoulli and Euler
polynomials with their generating functions, but also gave finite sums involving the Bernoulli and Euler
polynomials with their interpolation functions.

The Bernoulli numbers (or the Bernoulli numbers of the first kind) Bn are defined by means of the
following generating functions:

t
et − 1

=

∞∑
n=0

Bn
tn

n!
,

where |t| < 2π (cf. [2]-[43]; see also the references cited in each of these earlier works).
By using the above generating functions, few values of the Bernoulli numbers of the first kind are given

as follows:

B0 = 1,B1 = −
1
2
,B2 =

1
6
,B4 = −

1
30
,B6 =

1
42

and for n > 1,

B2n+1 = 0.

Computation of the Bernoulli and Euler numbers of higher order (k or −k) were considered in many
earlier investigations by (among others) Srivastava and Luo [22], Srivastava et al. [36]-[42], Ozden and
Simsek [23].

The first kind Apostol-Euler polynomials of order k are defined by means of the following generating
function:

FP1(t, x; k, λ) =
( 2
λet + 1

)k

etx =

∞∑
n=0

E(k)
n (x, λ)

tn

n!
, (5)

(|t| < π when λ = 1 and |t| < |ln (−λ)|when λ , 1), λ ∈ C, k ∈N.
Substituting x = 0 into (5), we have the first kind Apostol-Euler numbers of higher order k:

E(k)
n (λ) = E(k)

n (0, λ)

Setting k = λ = 1 into (5), one has the first kind Euler numbers

En = E(1)
n (1)

(cf. [2]-[43]; see also the references cited in each of these earlier works).
A few values of the Euler numbers of the first kind are given as follows:

E0 = 1,E1 = −
1
2
,E3 =

1
4
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and for n > 0,

E2n = 0.

The Euler numbers of the second kind are defined by means of the following generating functions:

2
et + e−t =

∞∑
n=0

E∗n
tn

n!

(cf. [2]-[43]; see also the references cited in each of these earlier works). From this generating function, One
can easily compute the following few values for the numbers E∗n:

E∗0 = 1,E∗2 = −1,E∗4 = 5,E∗6 − 61

and for n ≥ 0,

E∗2n+1 = 0.

One can also easily see that

E∗n = 2nEn

(1
2

)
(cf. [25], [32], [40], [41], [42]; and the references cited therein).

The Euler numbers of the second kind of negative order. E∗(−k)
n are defined by means of the following

generating function:

FE2(t, k) =
( 2

et + e−t

)−k

=

∞∑
n=0

E∗(−k)
n

tn

n!
, (6)

where |t| < π
2 (cf. [3]-[43]; and the references cited therein).

In [29], Simsek defined the λ-array polynomials Sn
v(x;λ) by means of the following generating function:

FA(t, x, v;λ) =

(
λet
− 1

)v

v!
etx =

∞∑
n=0

Sn
v(x;λ)

tn

n!
, (7)

where v ∈N0 and λ ∈ C (cf. see also, [2], [5], [4], [29], [30]; and the references cited therein).
The Bernoulli polynomials of the second kind are defined by means of the following generating function:

Fb2(t, x) =
t

log(1 + t)
(1 + t)x =

∞∑
n=0

bn(x)
tn

n!
(8)

(cf. [25, pp. 113-117]; and the references cited therein).
The Bernoulli numbers of the second kind bn(0) are defined by means of the following generating

function:

Fb2(t) =
t

log(1 + t)
=

∞∑
n=0

bn(0)
tn

n!

(cf. [25], [19], and the references cited therein). These numbers are computed by the following formula:

n−1∑
k=0

(−1)k
(

n
k

)
bk(0) = n!δn,1,
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where δn,1 denotes the Kronecker delta (cf. [25, p. 116]).
The Bernoulli polynomials of the second kind are also defined by the following integral representation:

bn(x) =

∫ x+1

x
(u)ndu.

Substituting x = 0 into the above equation, one has integral representation of the Bernoulli numbers of the
second kind:

bn(0) =

∫ 1

0
(u)ndu.

The Bernoulli numbers of the second kind are also so-called the Cauchy numbers (cf. [19], [24], [25]; and the
references cited therein).

By using the above formula for the Bernoulli numbers of the second kind, few of these numbers are
computed as follows:

b0(0) = 1, b1(0) =
1
2
, b2(0) = −

1
12
, b3(0) =

1
24
, b4(0) = −

19
720

.

1.1. p-adic q-integral
In order to give our new identities, we also need the p-adic q-integral, which defined by Kim [17]. Here

p is a fixed prime. The q-Haar distribution on Zp is given by

µq(x + pNZp) =
qx[

pN]
q
,

where q ∈ Cp with | 1 − q |p< 1 (cf. [17], [27]). Let Zp be a set of p-adic integers. Let K be a field with a
complete valuation and C1(Zp → K) be a set of continuous derivative functions. That is C1(Zp → K) is
contained in the following set{

f : X→ K : f (x) is differentiable and
d

dx
f (x) is continuous

}
.

Let UD
(
Zp

)
be the set of uniformly differentiable functions on Zp. The p-adic q-integral of the function

f ∈ UD
(
Zp

)
is defined by Kim [17] as follows:

∫
Zp

f (x)dµq(x) = lim
N→∞

1
[pN]q

pN
−1∑

x=0

f (x)qx,

where

[x] =
[
x : q

]
=

{ 1−qx

1−q , q , 1
x, q = 1

Observe that

lim
q→1

[x] = x.

The bosonic p-adic Volkenborn integral is given by∫
Zp

f (x) dµ1 (x) = lim
N→∞

1
pN

pN
−1∑

x=0

f (x) , (9)
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where

µ1

(
x + pNZp

)
=

1
pN

(cf. [26], [17]; see also the references cited in each of these earlier works).
Witt formula for the Bernoulli numbers Bn is given by∫
Zp

xndµ1 (x) = Bn (10)

(cf. [17], [18], [26]; see also the references cited in each of these earlier works).
The fermionic p-adic integral on Zp is given by

∫
Zp

f (x) dµ−1 (x) = lim
N→∞

pN
−1∑

x=0

(−1)x f (x) (11)

where p , 2 and

µ1

(
x + pNZp

)
=

(−1)x

pN

(cf. [18]). By using (11), Witt formula for the Euler numbers En is given by∫
Zp

xndµ−1 (x) = En, (12)

(cf. [18], [13]; see also the references cited in each of these earlier works).

Theorem 1.3.∫
Zp

(
x
j

)
dµ1 (x) =

(−1) j

j + 1
. (13)

Theorem 1.3 was proved by Schikhof [26].

Theorem 1.4.∫
Zp

(
x
j

)
dµ−1 (x) =

(−1) j

2 j . (14)

Theorem 1.4 was proved by Kim et al [15].
We summarize our results as follows.
In the next section, by using p-adic Volkenborn integral and generating functions and functional equation

techniques, we derive some identities and relations including the numbers y1(n, k;λ), y2(n, k;λ), the Stirling
numbers, the Bernoulli numbers, the Euler numbers and the λ-array polynomials.
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2. Identities

In this section we give some relationships between the numbers y1(n, k;λ), y2(n, k;λ), the λ-Stirling
numbers, the central factorial numbers, the array polynomials and the Euler numbers. In order to give our
results, we are able to give functional equations and using these equations, we obtain our results.

Theorem 2.1.

k∑
l=0

S2(n, l;λ) + (−1)k−l+1y1(n, l;λ)
(k − l)!

= 0.

Proof. We set

1(t, k;λ) = λketk.

Combining the above equation with (3) and (1), respectively, we get

1(t, k;λ) = k!
k∑

j=0

1
(k − j)!

FS(t, j;λ) (15)

and

1(t, k;λ) = k!
k∑

j=0

(−1)k− j

(k − j)!
Fy1 (t, j;λ). (16)

Therefore

∞∑
n=0

k∑
l=0

S2(n, l;λ)
(k − l)!

tn

n!
=

∞∑
n=0

k∑
l=0

(−1)k−ly1(n, l;λ)
(k − l)!

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at the desired result.

Theorem 2.2.

λ2k (2k)n =

k∑
j=0

(−1)k− j
(

k
j

)2 (
j!
)2

n∑
l=0

(
n
l

)
S2(l, j;λ)y1(n − l, j;λ).

Proof. Multiplying both sides of the equations (15) and (16), we get the following functional equation:

λ2ke2tk =

k∑
j=0

(−1)k− j
(

k
j

)2 (
j!
)2 Fy1 (t, j;λ)FS(t, j;λ).

Combining the above equation with (3) and (1), we obtain

λ2k
∞∑

n=0

(2k)n tn

n!
=

∞∑
n=0

 k∑
j=0

(−1)k− j
(

k
j

)2 (
j!
)2

n∑
l=0

(
n
l

)
S2(l, j;λ)y1(n − l, j;λ)

 tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at the desired result.

Theorem 2.3.
n∑

m=0

(−1)mS1(n,m)Bm = n!
n∑

m=0

m!S2(n,m)bm(0).
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Proof. We set

h(t, λ) = eλt =

∞∑
n=0

λn tn

n!

and

h(t, λ) =

∞∑
m=0

(
λ
m

)
m!

∞∑
n=0

S2(n,m)
tn

n!
,

where(
λ
m

)
=
λ(λ − 1) · · · (λ −m + 1)

m!
=

(λ)m

m!
.

Combining the above equations, since for m > n, S2(n,m) = 0, we get

λn =

n∑
m=0

(
λ
m

)
m!S2(n,m) (17)

(cf. [1], [6], [8]). By applying the Riemann integral the above equation from 0 to 1 with respect to λ, we have

1
n + 1

=

n∑
m=0

m!S2(n,m)bl(0). (18)

In ([1], [6], [8], [11], [41], [42]), we see that

n!
(
λ
n

)
=

n∑
m=0

(−1)n−mS1(n,m)λm. (19)

By applying p-adic bosonic integral to the above equation with (13), we get

n!(−1)n

n + 1
=

n∑
m=0

(−1)n−mS1(n,m)Bm. (20)

Combining (18) with (20), we obtain
n∑

m=0

(−1)mS1(n,m)Bm = n!
n∑

m=0

m!S2(n,m)bl(0).

Thus, the proof of the theorem is completed.

We are ready to express the following comments on the λ-Bernoulli numbers and polynomials and the
λ-Euler numbers and polynomials, which have been studied in different sets. That is, on the set of complex
numbers, we assume that λ ∈ C and on set of p-adic numbers or p-adic integrals, we assume that λ ∈ Zp.

By applying the fermionic p-adic integral on Zp to equation (14) and equation (17) with respect to λ,
respectively and using (13), obtain

En =

n∑
m=0

(−1)m m!
2m S2(n,m) (21)

(cf. [14], [16]) and

n!
(−1)n

2n =

n∑
m=0

(−1)n−mS1(n,m)Em. (22)

Substituting (21) into (22), we get a relationship between the Stirling numbers of the first and the second
kind by the following theorem:
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Theorem 2.4.

n∑
m=0

m∑
j=0

(−1) j−m2n− jS1(n,m)S2(m, j) j! = n!. (23)

Remark 2.5. By using proof method that of (23), one may be prove inverses relations for the Stirling numbers of the
first and second kinds:

m∑
j=0

S1(m, j)S2( j, k) = δmk

or

m∑
j=0

S2(m, j)S1( j, k) = δnk,

where δnk is the Kronecker delta (cf. [1], [6], [8], [11], [41], [42]; and the references cited therein).

Theorem 2.6.

y1(n, k, λ) =
λ

1
2

k!

n∑
m=0

k∑
j=0

(−1)k− j
(

k
j

) (
n
m

)
j!kn−m2n+k− j−my2

(
m, j, λ

1
2

)
.

Proof. We set the following functional equation:

k!Fy1 (t, k, λ) = λ
k
2 e

t
2

k∑
j=0

(
k
j

)
(−2)k− j j!Fy2

(
t, k, λ

1
2

)
.

Combining (1) and (2) with the above functional equation, we get

k!
∞∑

n=0

y1(n, k;λ)
tn

n!
= λ

k
2

k∑
j=0

(
k
j

)
(−2)k− j j!

∞∑
n=0

y2( j, k;λ
1
2 )

tn

n!

∞∑
n=0

1
2n

tn

n!
.

By using the Cauchy product of the above series on the right-hand side, we obtain

∞∑
n=0

y1(n, k;λ)
tn

n!
=
λ

1
2

k!

∞∑
n=0

n∑
m=0

k∑
j=0

(−1)k− j
(

k
j

) (
n
m

)
j!kn−m2n+k− j−my2

(
m, j, λ

1
2

) tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at the desired result.

A computation formula for the first kind Apostol-Euler numbers of higher order with aid of the numbers
y1(n, k;λ) is given by

E(−k)
n (λ) =

k!
2k

y1(n, k;λ)

(cf. [31]). The first kind Apostol-Euler numbers of higher order have been also computed by Srivastava
[36], Lou and Srivastava [22] and Ozden and Simsek [23]. Therefore, the following convolution formula
gives us another computation for the first kind Apostol-Euler numbers of higher order and the numbers
y1(n, k;λ).
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Theorem 2.7.

E(v−d)
n (λ) =

d!
2d

n∑
m=0

(
n
m

)
y1(m, d;λ)E(v)

n−m(λ)

Proof. We set the following functional equation

1
2v−d

FP1(t, 0; v − d, λ) =
d!
2d

FP1(t, 0; v, λ)Fy1 (t, d, λ).

Substituting (1) and (5) into the above equation, we obtain

1
2v−d

∞∑
n=0

E(v−d)
n (λ)

tn

n!
=

d!
2d

∞∑
n=0

E(v)
n (λ)

tn

n!

∞∑
n=0

y1(n, d;λ)
tn

n!
.

By using the Cauchy product of the above series on the right-hand side, we obtain

1
2v−d

∞∑
n=0

E(v−d)
n (λ)

tn

n!
=

d!
2d

∞∑
n=0

n∑
m=0

(
n
m

)
y1(m, d;λ)E(v)

n−m(λ)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at the desired result.

Theorem 2.8.

y1(m, d − v;λ) =
v!
2v

(
d
v

) n∑
m=0

(
n
m

)
y1(m, d;λ)E(v)

n−m(λ).

Proof. We set the following functional equation

(d − v)!Fy1 (t, d − v, λ) =
d!
2v FP1(t, 0; v, λ)Fy1 (t, d, λ).

By combining (1) and (5) with the above equation, we get

(d − v)!
∞∑

n=0

y1(n, d − v;λ)
tn

n!
=

d!
2v

∞∑
n=0

E(v)
n (λ)

tn

n!

∞∑
n=0

y1(n, d;λ)
tn

n!
.

Therefore

(d − v)!
∞∑

n=0

y1(n, d − v;λ)
tn

n!
=

d!
2v

∞∑
n=0

n∑
m=0

(
n
m

)
y1(m, d;λ)E(v)

n−m(λ)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at the desired result.

Theorem 2.9.

y2 (n, k;−λ) =
(−1)k λ−k (2k)!

4n

n∑
m=0

(
n
m

)
Sm

2k

(
−2k, λ

1
2

)
y1

(
n −m, 2k;λ

1
2

)
.

Proof. We set the following functional equation:

Fy2 (t, k;−λ) = (−1)kλ−k(2k)!FA

( t
2
,−2k, 2k;λ

1
2

)
Fy2

( t
2
, 2k;λ

1
2

)
.
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By combining (7), (1) and (5) with the above equation, we obtain

∞∑
n=0

y2 (n, k;−λ)
tn

n!
= (−1)k λ−k (2k)!

∞∑
n=0

1
2n Sn

2k

(
−2k, λ

1
2

) tn

n!

∞∑
n=0

1
2n y1

(
n, 2k;λ

1
2

) tn

n!
.

By using the Cauchy product of the above series on the right-hand side, we obtain

∞∑
n=0

y2 (n, k;−λ)
tn

n!
=

(−1)k λ−k (2k)!
4n

∞∑
n=0

n∑
m=0

(
n
m

)
Sm

2k

(
−2k, λ

1
2

)
y1

(
n −m, 2k;λ

1
2

) tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at the desired result.
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