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Abstract. We study consistency and asymptotic normality of LS estimators in the EV (errors in variables)
regression model under weak dependent errors that involve a wide range of linear and nonlinear time
series. In our investigations we use a functional dependence measure of Wu [16]. Our results without
mixing conditions complete the known asymptotic results for independent and dependent data obtained
by Miao et al. [7]-[10].

1. Introduction

We consider the following simple linear errors in variables (EV) model:

ηi = θ + βxi + εi, ξi = xi + δi, 1 ≤ i ≤ n, (1)

where θ, β are unknown parameters, xi are nonrandom design points, (ε1, δ1), (ε2, δ2), . . . are random errors
and ηi, ξi, i = 1, 2, . . . , are observable random variables. From (1), we have

ηi = θ + βξi + νi, νi = εi − βδi, 1 ≤ i ≤ n.

Then, we get the least squares (LS) estimators of θ, β as

β̂n =

∑n
i=1

(
ξi − ξ̄n

) (
ηi − η̄n

)∑n
i=1

(
ξi − ξ̄n

)2 , (2)

θ̂n = η̄n − β̂nξ̄n, (3)

where ξ̄n = n−1 ∑n
i=1 ξi, η̄n = n−1 ∑n

i=1 ηi.

Model (1) was proposed by Deaton [1] to correct for the effects of sampling error and is more practical
than the ordinary regression model. In the case that the errors are sequences of independent random
variables, Liu and Chen [4] gave the consistency of the LS estimators for the linear EV regression model.
Miao et al. [7] and Miao and Young [8] gave the central limit theorem and the law of iterated logarithm
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for LS estimators in model (1). Miao et al. [9] obtained the consistency and asymptotic normality in model
(1) under some mild assumptions. Recently, several authors have been dealing with asymptotic properties
of LS estimators in simple linear EV regression when the errors are dependent. For example, Fan et al.
[2] established the strong consistency and asymptotic normality of LS estimators when the errors form a
stationary α-mixing sequence of random variables. Miao et al. [9] established similar results when the
errors are m-dependent, martingale differences, φ-mixing, ρ-mixing or α-mixing. Miao et al. [10] proved
the strong and weak consistency of LS estimators when the errors are martingale differences.
Basic Assumptions

Now, we present our assumptions of the dependence model of errors and the conditions for design (xi).
For a r.v. X, denote ‖X‖Q = E1/Q

|X|Q; moreover, Sn ∼ bn means that Sn/bn → 1 and Sn >> bn means that
Sn/bn →∞ as n→∞. We formulate the following assumptions.

(A1) Sn is a real sequence such that Sn ∼
∑n

i=1 (xi − x̄n)2 and

max
1≤i≤n

|xi − x̄n|
√

Sn
= O

(
n−γ

)
(4)

for some γ > 1/2 − 1/p,

Sn >> n2−2/p (5)

for some p > 2.

(A2) εi = 1 (ε̃i, ε̃i−1, . . .) for some measurable function 1, where (ε̃i)i∈Z is a sequence of zero mean i.i.d.
random variables such that for some Q > 1, E |ε1|

2Q < ∞ and
∞∑

i=1

∥∥∥εi − ε
′

i

∥∥∥
Q < ∞, (6)

where ε
′

i = 1
(
ε̃i, ε̃i−1, . . . , ε̃

′

0, ε̃−1, . . .
)
, and ε̃

′

0 is an independent copy of ε̃0.

(A3) δi = h (ε̌i, ε̌i−1, . . .) for some measurable function h, where (ε̌i)i∈Z is a sequence of zero mean i.i.d.
random variables such that for some Q > 1, E |δ1|

2Q < ∞ and
∞∑

i=1

∥∥∥δi − δ
′

i

∥∥∥
Q < ∞, (7)

where δ
′

i = h
(
ε̌i, ε̌i−1, . . . , ε̌

′

0, ε̌−1, . . .
)
, and ε̌

′

0 is an independent copy of ε̌0.

(A4) Sn is a real sequence satisfying

Sn ∼

n∑
i=1

(xi − x̄n)2 ,

Sn >> n2,

max
1≤i≤n

|xi − x̄n|
√

Sn
= o(1).

(A5) Let εi = 1 (ε̃i, ε̃i−1, . . .) for some measurable function 1, where (ε̃i)i∈Z is a sequence of zero mean i.i.d.
random variables and δi = h (ε̌i, ε̌i−1, . . .) for some measurable function h, where (ε̌i)i∈Z is a sequence
of zero mean i.i.d. random variables such that

∞∑
i=1

i
∥∥∥εi − ε

′

i

∥∥∥
2
< ∞, (8)



K. Furmańczyk / Filomat 31:15 (2017), 4845–4856 4847

∞∑
i=1

i
∥∥∥δi − δ

′

i

∥∥∥
2
< ∞, (9)

ε
′

i = 1
(
ε̃i, ε̃i−1, . . . , ε̃

′

0, ε̃−1, . . .
)
, and ε̃

′

0 is an independent copy of ε̃0 and δ
′

i = h
(
ε̌i, ε̌i−1, . . . , ε̌

′

0, ε̌−1, . . .
)
,

and ε̌
′

0 is an independent copy of ε̌0. Additionally we assume that (ε̃i)i∈Z and (ε̌i)i∈Z are independent.

Our new contributions to EV regression theory are the strong consistency and asymptotic normality
for LS estimators in (1), when the errors satisfy weak dependence assumptions (A2)-(A3) that involve
linear and nonlinear time series. This is a new concept of dependence measure which is an alternative to
mixing models and can be found in Wu [10]. The proposed dependence model involves the computation
of moments and it is easy verifiable. Generally, this model might to be less restrictive than strong mixing
conditions and martingale differences assumptions that are hard to be verified. The main concept of this
model is based on projective criterion which is presented in [11]. The processes with geometric moment
contraction (bilinear process and nonlinear moving average-see Examples 2.1, 2.3 in Shao [12]) are closed
connected in our dependence model. Some related ideas of this dependence model we can found in [6],
[13], [15]. For further information and examples one can see in [14], [16].

In particular, using this approach, we consider linear EV regression models when the errors are a
GARCH process (Example 1), iterated random functions (Example 2) and a linear process (Example 3). Our
results on the strong consistency of β̂n and θ̂n (Theorems 2.1-2.2) under weak dependence assumptions are
very similar to the results of Miao et al. [10] when the errors (εi) and (δi) are martingale differences:

√
Sn

n
1
p

(
β̂n − β

)
→

a.s. 0 (10)

for some p > 2 and

lim
n→∞

Sn

n2−2/p = ∞,

and

n1−α
(
θ̂n − θ

)
→

a.s. 0 (11)

for some α ∈ (1/2, 1]. For a general weak dependence model (A2)-(A3) for the errors (εi) and (δi), we obtain
(10)-(11) under the following additional assumption:

max
1≤i≤n

|xi − x̄n|
√

Sn
= O

(
n−γ

)
for some γ > 0. We obtain the asymptotic normality of β̂n (Theorem 2.3) under the same assumptions on
the normalizing sequence Sn (see (A4)) as in Miao et al. [9] (in Theorem 2.5) for independent errors. We
generalise Miao’s result to dependent errors (A2)-(A3). More concrete, we assume that the errors (εi) and
(δi) separately satisfy weak dependence assumptions but they are independent of each other as a random
sequences (see (A5)). In particular, our result covers a wide range of dependent errors given in Examples
1-3. In our proof of asymptotic normality of θ̂n (Theorem 2.4) our conditions of design (xn): (A4) and

√
n |x̄n|
√

Sn
→ 0

are the same as the conditions in Miao et al. [9] (in Theorem 2.6) in the case of independent errors. Below
we present the discussion with more details of the assumptions (A1)-(A5).
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Discussion of the conditions (A1)-(A5)

Now, we present a few examples when the errors (εi) and (δi) satisfy the weak dependence conditions
(A2)-(A3) or (A5) (especially (6)-(7) or (8)-(9)). Next, we give some remarks of the design (xi). Let (ε̃k)k∈Z be
a zero mean i.i.d. sequence.

Example 1. Let (εi)k∈Z be a GARCH(p,q) sequence given by the relations

εk = ε̃kLk,

and

L2
k = µ + α1L2

k−1 + . . . + αpL2
k−p + β1ε

2
k−1 + . . . + βqε

2
k−q,

where µ, α1, . . . , αp, β1, . . . , βq ∈ R are parameters. If

max(p,q)∑
i=1

∥∥∥αi + βiε
2
i

∥∥∥
2
< 1,

then (see Jirak [3], p. 6)∥∥∥εi − ε
′

i

∥∥∥
Q = O

(
ρi

)
(12)

for some 0 < ρ < 1. Hence (6) holds. Similarly we can obtain (8).
Example 2. Let (εi)k∈Z be defined by the recursion

εk = f (εk−1, ε̃k)

for some measurable function f . If

E sup
x,y

∣∣∣ f (x, ε̃k) − f (y, ε̃k)
∣∣∣∣∣∣x − y

∣∣∣ < 1

and ∥∥∥ f (x0, ε̃k)
∥∥∥

Q < ∞

for some x0 (see Jirak [3], p. 6), then we have (12) and (6), (8).
Example 3. Let (εi)k∈Z be a linear process

εk =

∞∑
r=0

brε̃k−r,

where the coefficients (br)
∞

r=0 are such that

∞∑
r=0

|br| < ∞.

Then it is easy to see that∥∥∥εi − ε
′

i

∥∥∥
Q = |bi|

∥∥∥ε̃0 − ε̃
′

0

∥∥∥
Q .
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Hence, if E |ε̃0|
Q < ∞, then (8) holds. If we additionally assume that

∞∑
i=1

i |bi| < ∞,

then (9) holds.
Remark 1. For nonrandom design xi = i

nα̃ for 0 < α̃ < 1/2 by simple calculation we have x̄n = n+1
2nα̃ ,∑n

i=1 x2
i =

n(n+1)(2n+1)
6n2α̃ . Therefore

∑n
i=1 (xi − x̄n)2 =

n(n2
−1)

12n2α̃ and Sn ∼
n(n2
−1)

12n2α̃ .
Observe that

Sn

n2−2/p ∼
n(n2

− 1)
12n2α̃+2−2/p →∞

and

Sn

n2 ∼
n(n2

− 1)
12n2α̃+2 →∞

for 0 < α̃ < 1/2. Similarly

max
1≤i≤n

|xi − x̄n|
√

Sn
= O

max
1≤i≤n

|i − n − 1|√
n(n2 − 1)

 = O
(
n−1/2

)
and condition (4) in (A1) holds for γ = 1/2. Hence conditions (A1), (A4) are satisfied.

Remark 2. The strong consistency of β̂n and θ̂n (Theorems 2.1, 2.2) we obtain when Sn >> n2−2/p for
some p > 2. If Sn >> n2, then we obtain asymptotic normality of β̂n and θ̂n (Theorems 2.3, 2.4).

Remark 3. Condition (16) in Theorem 2.2 is satisfied for nonrandom design xi = i
nα̃ for α̃ > 0.

Remark 4. Independence of random sequences (ε̃i)i∈Z and (ε̌i)i∈Zin condition (A5) means that the
regression errors (εi) and (δi) are independent.

The rest of the paper is organized as follows. In Section 2 we state and prove our results on strong
consistency of β̂n and θ̂n (Theorems 2.1, 2.2), and asymptotic normality (Theorems 2.3, 2.4). Some auxiliary
lemmas and their proofs are given in the Appendix.

2. Main Results

In this Section we show our main results: strong consistency and asymptotic normality of estimators β̂n

and θ̂n.

2.1. Strong consistency

Theorem 2.1. Let (A1) and (A2)-(A3) for Q > p for some p > 2 be satisfied. Then

√
Sn

n
1
p

(
β̂n − β

)
→

a.s. 0. (13)

Proof. By simple calculation from (2), we have

β̂n − β = I + II + III, (14)
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where

I =

∑n
i=1

(
δi − δ̄n

)
εi∑n

i=1
(
ξi − ξ̄n

)2 ,

II =

∑n
i=1 (xi − x̄n)

(
εi − βδi

)∑n
i=1

(
ξi − ξ̄n

)2 ,

III = −
β
∑n

i=1
(
δi − δ̄n

)∑n
i=1

(
ξi − ξ̄n

)2 .

Let us observe that
√

Sn

n
1
p

I =
Sn∑n

i=1
(
ξi − ξ̄n

)2

1
√

Snn
1
p

n∑
i=1

(
δi − δ̄n

)
εi.

Since from Lemma 3.1, Sn∑n
i=1(ξi−ξ̄n)2 →

a.s. 1, in order to prove
√

Sn

n
1
p

I→a.s. 0 it is enough to show

1
√

Snn
1
p

n∑
i=1

(
δi − δ̄n

)
εi →

a.s. 0. (15)

Observe that

1
√

Snn
1
p

∣∣∣∣∣∣∣
n∑

i=1

(
δi − δ̄n

)
εi

∣∣∣∣∣∣∣ ≤ 1

2
√

Snn
1
p

n∑
i=1

((
δi − δ̄n

)2
+ (εi − ε̄n)2

)
and

1
√

Snn
1
p

n∑
i=1

(
δi − δ̄n

)2
≤

1
√

Snn
1
p

n∑
i=1

δ2
i ,

1
√

Snn
1
p

n∑
i=1

(εi − ε̄n)2
≤

1
√

Snn
1
p

n∑
i=1

ε2
i .

Therefore from (5) and the Ergodic Theorem for
(
ε2

i

)
,
(
δ2

i

)
, we have 1

√
Snn

1
p

∑n
i=1 δ

2
i →

a.s. 0 and
1

√
Snn

1
p

∑n
i=1 ε

2
i →

a.s. 0. Hence, we obtain (15), which yields

√
Sn

n
1
p

I→a.s. 0.

Similarly, it follows that
√

Sn

n
1
p

III→a.s. 0. Let us write

√
Sn

n
1
p

II = −β
Sn∑n

i=1
(
ξi − ξ̄n

)2

1
√

Snn
1
p

n∑
i=1

(xi − x̄n)
(
εi − βδi

)
.

From Lemma 3.1, we have Sn∑n
i=1(ξi−ξ̄n)2 →

a.s. 1 and setting ωi,n = xi−x̄n
√

Sn
in Lemma 3.2, we deduce that

max
1≤i≤n

∣∣∣ωi,n

∣∣∣ = O
(
n−γ

)
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for γ > 1/2 − 1/p,

n∑
i=1

ω2
i,n = O (1)

and consequently

1
√

Snn
1
p

n∑
i=1

(xi − x̄n)
(
εi − βδi

)
→

a.s. 0.

Therefore we get
√

Sn

n
1
p

II→a.s. 0 and taking account into (14) the proof of (13) is finished.

Theorem 2.2. Suppose (A1), (A2)-(A3) hold for Q > 1/(α − 1
2 ) and suppose that

n1−α+1/p

√
Sn
|x̄n| = O (1) (16)

for some α ∈ (1/2 + 1/p, 1] and p > 2. Then

n1−α
(
θ̂n − θ

)
→

a.s. 0.

Proof. Let Sk =
∑k

i=1 εi. First, observe that from Theorem 1 (iii) ([16]) for Q > 2, we have∥∥∥∥∥max
k≤n

Sk

∥∥∥∥∥
Q
≤ CQn1/2Θ0,Q,

where CQ is a constant dependent on Q, Θ0,Q =
∑
∞

i=0 ‖P0εi‖Q and P0εi = E
(
εi|F

ε
0

)
− E

(
εi|F

ε
−1

)
with the

σ-field F ε
i = σ (ε̃i, ε̃i−1, . . .). Since ‖P0εi‖Q ≤

∥∥∥εi − ε
′

i

∥∥∥
Q, then from (A2) we obtain∥∥∥∥∥∥∥

n∑
i=1

εi

∥∥∥∥∥∥∥
Q

≤ C
′

Qn1/2 (17)

for some constant C′Q. From Markov’s inequality and (17) for Q > 1/(α − 1
2 ), we have, for any r > 0,

P


∣∣∣∣∣∣∣

n∑
i=1

εi

∣∣∣∣∣∣∣ ≥ rnα
 ≤ E

∣∣∣∑n
i=1 εi

∣∣∣Q
rQnQα ≤ Cn−Q(α− 1

2 ).

Since
∑
∞

n=1 n−Q(α− 1
2 ) < ∞, we obtain n1−αε̄n →

a.s. 0. Similarly n1−αδ̄n →
a.s. 0. Hence, the proof is the same as

in Miao et al. ([10] proof of Theorem 3.2).

2.2. Asymptotic normality

Note that wi,n := xi−x̄n
√

Sn
and νi := εi − δiβ, εi = 1 (ε̃i, ε̃i−1, . . .), δi = h (ε̌i, ε̌i−1, . . .) for some measurable

functions 1, h and a mean zero i.i.d. random sequences (ε̃i)i∈Z, (ε̌i)i∈Z. Additionally we assume that the
sequences (ε̃i)i∈Z, (ε̌i)i∈Z are independent. Let Dε

k =
∑
∞

i=k wi,nPkεi, where Pkεi = E
(
εi|F

ε
k

)
− E

(
εi|F

ε
k−1

)
with

the σ-field F ε
i = σ (ε̃i, ε̃i−1, . . .), Dδ

k =
∑
∞

i=k wi,nPkδi, where Pkδi = E
(
δi|F

δ
k

)
− E

(
δi|F

δ
k−1

)
with the σ-field

F
δ

i = σ (ε̌i, ε̌i−1, . . .).
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Theorem 2.3. Under (A4)-(A5), we have√
Sn

(
β̂n − β

)
→

d N
(
0, σ2

w

)
,

where σ2
w = limn→∞ Var

(∑n
i=1

(
Dε

i + βDδ
i

))
< ∞.

Proof. Observe that√
Sn

(
β̂n − β

)
=

√
Sn (I + II + III) ,

where

I =

∑n
i=1

(
δi − δ̄n

)
εi∑n

i=1
(
ξi − ξ̄n

)2 ,

II =

∑n
i=1 (xi − x̄n) νi∑n
i=1

(
ξi − ξ̄n

)2 ,

III = −
β
∑n

i=1
(
δi − δ̄n

)∑n
i=1

(
ξi − ξ̄n

)2 ,

with νi = εi − βδi. From (A4), it follows that Sn/
∑n

i=1
(
ξi − ξ̄n

)2
→

a.s. 1 (see Lemma 3.1), which yields

√
SnI ∼a.s.

∑n
i=1

(
δi − δ̄n

)
εi

√
Sn

.

Since ∣∣∣∑n
i=1

(
δi − δ̄n

)
εi

∣∣∣
√

Sn
≤

1
√

Sn

 n∑
i=1

δ2
i + ε2

i


and similarly∣∣∣∑n

i=1
(
δi − δ̄n

)∣∣∣
√

Sn
≤

1
√

Sn

 n∑
i=1

δ2
i

 .

By the Ergodic Theorem for (δ2
i ), (ε2

i ), we have 1
n
∑n

i=1

(
δ2

i + ε2
i

)
→

a.s. E(δ2
1 + ε2

1) and 1
n
∑n

i=1 δ
2
i →

a.s E(δ2
1).

Hence,∣∣∣∑n
i=1

(
δi − δ̄n

)
εi

∣∣∣
√

Sn
= O

(
n
√

Sn

)
and ∣∣∣∑n

i=1
(
δi − δ̄n

)∣∣∣
√

Sn
= O

(
n
√

Sn

)
.

Therefore by (A4), we have
√

Sn (I + III) →a.s. 0. Now, we will show
√

SnII →d N(0, σ2
w). Under our

assumptions, it is sufficient to prove

n∑
i=1

wi,nνi →
d N(0, σ2

w). (18)
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Since (εi) and (δi) are independent, then if we show that
n∑

i=1

wi,nεi →
d N(0, σ2

1) (19)

and
n∑

i=1

wi,nδi →
d N(0, σ2

2), (20)

where σ2
1 := limn→∞ Var

(∑n
i=1 Dε

i

)
< ∞, σ2

2 := limn→∞ Var
(∑n

i=1 Dδ
i

)
< ∞, then we will get (18).

Now, we will prove (19). Adopting the reasoning in Wu [16] we have the decomposition
n∑

i=1

wi,nεi = Mε
n + Rεn, (21)

where Mε
n =

∑n
i=1 Dε

i and Rεn =
∑n

i=1 wi,nεi −Mε
n. Observe that

(
Dε

i

)
are martingale differences with respect

to
(
F
ε

i

)
, and from (A4) the weights wi,n satisfy conditions

∑n
i=1 w2

i,n = O (1) and max1≤i≤n

∣∣∣wi,n

∣∣∣ = o(1). Let
Di =

∑
∞

j=iPiε j. Moreover,

Emax
1≤i≤n

∣∣∣Dε
i

∣∣∣ ≤ max
1≤i≤n

∣∣∣wi,n

∣∣∣Emax
1≤i≤n

|Di|

≤ max
1≤i≤n

∣∣∣wi,n

∣∣∣ n∑
i=1

E |Di|

≤ max
1≤i≤n

∣∣∣wi,n

∣∣∣ n∑
i=1

∥∥∥∥∥∥∥∥
∞∑
j=i

Piν j

∥∥∥∥∥∥∥∥
2

≤ max
1≤i≤n

∣∣∣wi,n

∣∣∣ n∑
i=1

∞∑
j=i

∥∥∥Piν j

∥∥∥
2

.

Observe that for j ≥ i,∥∥∥Piε j

∥∥∥
2
≤

∥∥∥∥ε j − ε
′

j

∥∥∥∥
2

. (22)

Indeed from stationarity∥∥∥Piε j

∥∥∥
2

=
∥∥∥P0ε j−i

∥∥∥
2

and

E
(
ε j−i|F

ε
−1

)
= E

(
ε
′

j−i|F
ε

0

)
.

Applying Jensen inequality, we have∥∥∥P0ε j−i

∥∥∥
2

=
∥∥∥∥E (

ε j−i|F
ε

0

)
− E

(
ε
′

j−i|F
ε

0

)∥∥∥∥
2
≤

∥∥∥∥ε j−i − ε
′

j−i

∥∥∥∥
2

.

From stationarity, we have
∥∥∥∥ε j−i − ε

′

j−i

∥∥∥∥
2

=
∥∥∥∥ε j − ε

′

j

∥∥∥∥
2
. Hence we obtain (22) and

Emax
1≤i≤n

∣∣∣Dε
i

∣∣∣ ≤ max
1≤i≤n

∣∣∣wi,n

∣∣∣ n∑
i=1

∞∑
j=i

∥∥∥∥ε j − ε
′

j

∥∥∥∥
2

≤ max
1≤i≤n

∣∣∣wi,n

∣∣∣ ∞∑
i=1

i
∥∥∥εi − ε

′

i

∥∥∥
2

.
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Therefore (8) and max1≤i≤n

∣∣∣wi,n

∣∣∣ → 0 imply Emax1≤i≤n

∣∣∣Dε
i

∣∣∣ → 0, and by the Central Limit Theorem for
martingale differences, we have Mε

n →
d N(0, σ2

1). Reasoning as in Wu ([16] proof of Theorem 1 (i)) we obtain

∥∥∥Rεn
∥∥∥

2
≤ C

√√√ n∑
j=1

w2
j,nΘ2

j,2, (23)

where Θ j,2 =
∑
∞

i= j ‖P0εi‖2. Since ‖P0εi‖2 ≤
∥∥∥εi − ε

′

i

∥∥∥
2
, from (23) we have

∥∥∥Rεn
∥∥∥

2
≤ C max

1≤i≤n

∣∣∣wi,n

∣∣∣
√√√√√ n∑

j=1

 ∞∑
i= j

∥∥∥εi − ε
′

i

∥∥∥
2


2

≤ C max
1≤i≤n

∣∣∣wi,n

∣∣∣ ∞∑
i=1

i
∥∥∥εi − ε

′

i

∥∥∥
2

. (24)

Finally, (8) and max1≤i≤n

∣∣∣wi,n

∣∣∣ = o(1) imply
∥∥∥Rεn

∥∥∥
2
→ 0, which completes the proof of (19). Similarly, we have

the decomposition

n∑
i=1

wi,nδi = Mδ
n + Rδn, (25)

where Mδ
n =

∑n
i=1 Dδ

i and Rδn =
∑n

i=1 wi,nδi −Mδ
n and we can obtain (20).

Theorem 2.4. Under (A4)-(A5) and
√

n |x̄n|
√

Sn
→ 0, (26)

we have
√

n
(
θ̂n − θ

)
→

d N
(
0, σ2

)
,

where σ2 =
∥∥∥Dε

1 + βDδ
1

∥∥∥2

2
.

Proof. We have the decomposition

√
n
(
θ̂n − θ

)
=
√

nx̄n

(
β − β̂n

)
+
√

nδ̄n

(
β − β̂n

)
+
√

n
(
ε̄n − δ̄nβ

)
=
√

n
(
β − β̂n

) (
x̄n + δ̄n

)
+
√

n
(
ε̄n − δ̄nβ

)
.

Observe that

√
n
(
β̂n − β

) (
x̄n + δ̄n

)
=

√
n
√

Sn

√
Sn

(
β̂n − β

) (
x̄n + δ̄n

)
and from the assumption (26) and the asymptotic normality of β̂n (see Theorem 2.3), we have
√

Sn

(
β̂n − β

)
= OP(1) and

√
n
√

Sn

(
x̄n + δ̄n

)
→
P 0. Hence

√
n
(
β̂n − β

) (
x̄n + δ̄n

)
→
P 0.

Since limn→∞ Var
(

1
n
∑n

i=1

(
Dε

i + βDδ
i

))
=

∥∥∥Dε
1 + βDδ

1

∥∥∥2

2
, reasoning as in the proof of Theorem 2.3 setting

wi,n = 1
√

n
we obtain

√
nν̄n →

d N
(
0, σ2

)
for σ2 =

∥∥∥Dε
1 + βDδ

1

∥∥∥2

2
, which completes the proof.
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3. Appendix

In this section, we establish some auxiliary lemmas for the proofs of our main results.

Lemma 3.1. Under (5), we have

Sn/
n∑

i=1

(
ξi − ξ̄n

)2
→

a.s. 1 (27)

as n→∞.

Proof. Observe that (for details see Miao et al. [10], (23))∣∣∣∣∣∣∣ 1
Sn

n∑
i=1

(
ξi − ξ̄n

)2
− 1

∣∣∣∣∣∣∣ ≤ 2

√√
1
Sn

n∑
i=1

(
δi − δ̄n

)2
+

1
Sn

n∑
i=1

(
δi − δ̄n

)2 (28)

and

1
√

Snn1/p

n∑
i=1

(
δi − δ̄n

)2
≤

1
√

Snn1/p

n∑
i=1

δ2
i . (29)

From (5) and the Ergodic Theorem for
(
δ2

i

)
, we have 1

√
Snn1/p

∑n
i=1 δ

2
i →

a.s. 0, then from (5), (29) we have
n1/p
√

Sn
≤

n1−1/p
√

Sn
and n1/p

√
Sn
→ 0. Therefore, we have

1
Sn

n∑
i=1

(
δi − δ̄n

)2
=

n1/p

√
Sn

1
√

Snn1/p

n∑
i=1

(
δi − δ̄n

)2
→

a.s. 0.

Hence from (28), we obtain (27).

Lemma 3.2. Let assumptions (A2)-(A3) be satisfied for Q > p for some p > 2,
(
ωi,n

)n
i=1 be a sequence of real weights

such that max1≤i≤n

∣∣∣ωi,n

∣∣∣ = O (n−γ) for some γ > 1/2 − 1/p and
∑n

i=1 ω
2
i,n = O (1). Moreover we assume that (6)-(9)

hold. Then

1

n
1
p

n∑
i=1

ωi,nεi →
a.s. 0 (30)

and

1

n
1
p

n∑
i=1

ωi,nδi →
a.s. 0. (31)

Proof. From decompositions (21), (25), we have

1

n
1
p

n∑
i=1

ωi,nεi =
1

n
1
p

n∑
i=1

Dε
i +

1

n
1
p

Rεn (32)

and

1

n
1
p

n∑
i=1

ωi,nδi =
1

n
1
p

n∑
i=1

Dδ
i +

1

n
1
p

Rδn. (33)
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Since
∑n

i=1 Dε
i and

∑n
i=1 Dδ

i are the sums of the weighted maringale differences, then from Lemma 2.4 in [10],
we get

1

n
1
p

n∑
i=1

Dε
i →

a.s. 0 and
1

n
1
p

n∑
i=1

Dδ
i →

a.s. 0.

Using Markov’s inequality for any r > 0 we get

P
(∣∣∣Rεn∣∣∣ ≥ rn

1
p
)
≤
E

(
Rεn

)2

r2n
2
p

.

By (8) and (24) we have E
(
Rεn

)2 = O
(
(max1≤i≤n |ωi|)

2
)

= O
(
n−2γ

)
. Therefore

P
(∣∣∣Rεn∣∣∣ ≥ rn

1
p
)

= O

(
1

n
2
p +2γ

)
.

Since γ > 1/2 − 1/p, then 2
p + 2γ > 1 and

∑
∞

n=1
1

n
2
p +2γ

< ∞, which implies 1

n
1
p

Rεn →a.s. 0 as n → ∞. By similar

arguments we have 1

n
1
p

Rδn →a.s. 0 as n→∞. Hence, from (32)-(33) we obtain (30)-(31).
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