Angles and Quasiconformal Mappings Between Manifolds

Jian-Feng Zhu ${ }^{\text {a }}$
${ }^{a}$ School of Mathematical Sciences, Huaqiao University, Quanzhou-362021, China

Abstract

In this paper we discuss the distortion of angles under quasiconformal deformation between manifolds. Moreover, we obtain some useful inequalities.

1. Introduction

First we introduce some basic concepts as follows.

1.1. Dilatations

Let D, D^{\prime} be subdomains of \mathbf{R}^{n} and $f: D \rightarrow D^{\prime}$ be a differentiable homeomorphism and denote its Jacobian by $J(x, f), x \in D$. If $x \in D$ and $J(x, f) \neq 0$, then the derivative of f at $x \in D$ is a bijective linear mapping $f^{\prime}(x): \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ and we denote

$$
\begin{equation*}
H_{I}\left(f^{\prime}(x)\right)=\frac{|J(x, f)|}{\lambda_{f}(x)^{n}}, \quad H_{O}\left(f^{\prime}(x)\right)=\frac{\Lambda_{f}(x)^{n}}{|J(x, f)|}, \quad H\left(f^{\prime}(x)\right)=\frac{\Lambda_{f}(x)}{\lambda_{f}(x)}, \tag{1}
\end{equation*}
$$

where

$$
\Lambda_{f}(x):=\max \left\{\left|f^{\prime}(x) h\right|:|h|=1\right\} \text { and } \lambda_{f}(x):=\min \left\{\left|f^{\prime}(x) h\right|:|h|=1\right\} .
$$

Sometimes instead of $\Lambda_{f}(x)$ we use notation $\left|f^{\prime}(x)\right|$, to denote the norm of the matrix $A=f^{\prime}(x)$. If $\lambda_{1}^{2} \leq \cdots \leq \lambda_{n}^{2}$ $\left(\lambda_{i}>0, i=1,2, \cdots, n\right)$ are eigenvalues of the symmetric matrix $A A^{t}$ where A^{t} is the adjoint of A, then we have the following well-known formulas

$$
\begin{equation*}
|J(x, f)|=\prod_{k=1}^{n} \lambda_{k}, \quad \Lambda_{f}(x)=\lambda_{n}, \quad \lambda_{f}(x)=\lambda_{1} \tag{2}
\end{equation*}
$$

By (1) and (2), we arrive at the following simple inequalities [6, 14.3]

$$
\begin{equation*}
H\left(f^{\prime}(x)\right) \leq \min \left\{H_{I}\left(f^{\prime}(x)\right), H_{O}\left(f^{\prime}(x)\right)\right\} \leq H\left(f^{\prime}(x)\right)^{n / 2} \tag{3}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
H\left(f^{\prime}(x)\right)^{n / 2} \leq \max \left\{H_{I}\left(f^{\prime}(x)\right), H_{O}\left(f^{\prime}(x)\right)\right\} \leq H\left(f^{\prime}(x)\right)^{n-1} \tag{4}
\end{equation*}
$$

\]

The quantities

$$
K_{I}(f)=\sup _{x \in D} H_{I}\left(f^{\prime}(x)\right), \quad K_{O}(f)=\sup _{x \in D} H_{O}\left(f^{\prime}(x)\right)
$$

are called the inner and outer dilatation of f, respectively. The maximal dilatation of f is

$$
K(f)=\max \left\{K_{I}(f), K_{O}(f)\right\}
$$

1.2. Quasiconformal Mappings Between Open Sets

In the literature, see e.g. [4], we can find various definitions of quasiconformality which are equivalent. The following analytic definition for quasiconformal mappings is from [6, Theorem 34.6]: a homeomorphism $f: D \rightarrow D^{\prime}$ is C-quasiconformal if and only if the following conditions are satisfied: (i) f is ACL; (ii) f is differentiable a.e.; (iii) $\Lambda_{f}(x)^{n} / C \leq|J(x, f)| \leq C \lambda_{f}(x)^{n}$ for a.e. $x \in D$. By [6, Theorem 34.4], if f satisfies the conditions (i), (ii) and $J(x, f) \neq 0$ a.e., then

$$
K_{I}(f)=\operatorname{ess} \sup _{x \in D} H_{I}\left(f^{\prime}(x)\right), \quad K_{O}(f)=\operatorname{ess} \sup _{x \in D} H_{O}\left(f^{\prime}(x)\right) .
$$

Hence (iii) can be written as $K(f) \leq C$ which by (4) is equivalent to

$$
\begin{equation*}
H\left(f^{\prime}(x)\right) \leq K \text { for a.e. } x \in D \tag{5}
\end{equation*}
$$

Here the constant $K \leq C^{2 / n}$. In this paper we say that a quasiconformal mapping $f: D \rightarrow D^{\prime}$ is K quasiconformal if K satisfies (5). For other definition of quasiconformal mappings we refer to [5],[7],[8].

It is important to notice that f is K-quasiconformal if and only if f^{-1} is K-quasiconformal and that the composition of K_{1} and K_{2} quasiconformal mappings is $K_{1} K_{2}$-quasiconformal. (It is well-known that this also holds for K - quasiconformality in Väisälä's sense, see [6, Corollary 13.3, Corollary 13.4]).

1.3. Quasiconformal Mappings Between Manifolds

Let M and N be connected separable, orientable n-dimensional ($n \geq 2$) differentiable manifolds of class C^{1} The tangent bundle of M is denoted by $T M$. The derivative of a differentiable mapping $f: M \rightarrow N$ is a fibre mapping $D f: T M \rightarrow T N$. If we repeat the approach from the previous subsection to the linear mapping $A(p)=D f(p)$, we arrive to the notation of K - quasiconformality of f at $p \in M$.

1.4. Angles Between Two Vectors

Let $a, b \in \mathbf{R}^{n}$ be two vectors and $\langle a \mid b\rangle$ denotes the standard inner product of vectors. If θ is the angle of these two vectors, then we have

$$
\cos (\theta)=\frac{\langle a \mid b\rangle}{|a| \cdot|b|}
$$

2. The Main Results

It is well-known that smooth conformal mappings preserves the angles between the curves. What is less-known is that to what extend the angles change under quasiconformal mappings. Two classical papers by Agard and Ghering [2] and by Agard [1], bring much light on this topic for two and three dimensional case. The main result of the paper is the following theorem.

Theorem 2.1. Let f be a K-quasiconformal mapping between two orientable n-dimensional ($n \geq 2$) differentiable manifolds of class C^{1} and let γ_{1} and γ_{2} be two smooth curves making the angle sin their intersection point $p \in M$, where the Jacobian of f does not vanish. Then the angle t between $\delta_{1}=f\left(\gamma_{1}\right)$ and $\delta_{2}=f\left(\gamma_{2}\right)$ in $q=f(p)$ satisfies the following inequality

$$
\begin{equation*}
|\cos t| \leq \frac{H+\cos s}{1+H \cos s} \tag{6}
\end{equation*}
$$

where $H=\left(K^{2}-1\right) /\left(K^{2}+1\right)$. Moreover if $B=D f(p)^{*} D f(p)$ and $t=t(s)$ is the infinum of all angles between curves γ_{1} and γ_{2} passing throughout p and making the angle s, then there are vectors h and k such that $|h|=|k|$ and $\langle B h, h\rangle=\langle B k, k\rangle=1$ so that

$$
\cos t=\langle B h, k\rangle=\frac{K_{i, j}+\cos s}{1+K_{i, j}^{2} \cos s}
$$

where

$$
K_{i, j}=\frac{\lambda_{i}^{2}-\lambda_{j}^{2}}{\lambda_{i}^{2}+\lambda_{j}}
$$

and $\lambda_{i}^{2}, i=1, \ldots, n$ are eigenvalues of B.

Remark 2.2. Under the condition of the Theorem 2.1, for two-dimensional planar domains case Agard and Ghering in [2, Theorem 1], proved that

$$
\begin{equation*}
t \geq \frac{s}{K} \tag{7}
\end{equation*}
$$

Let us show that (6) implies (7). It is enough to show that for $s \in[0, \pi / 2]$,

$$
\Phi(s):=\arccos \frac{H+\cos s}{1+H \cos s}-\frac{s}{K} \geq 0
$$

where $H=\left(K^{2}-1\right) /\left(K^{2}+1\right)$. By differentiating Φ, we obtain

$$
\Phi^{\prime}(s)=\frac{2 K}{1+K^{2}+\left(-1+K^{2}\right) \cos s} .
$$

Thus $\Phi^{\prime}(s) \geq 0$, which implies that $\Phi(s) \geq \Phi(0)=0$. Further in [1], Agard proved for three-dimensional case the inequality

$$
\begin{equation*}
\tan \frac{s}{2} \geq \frac{1}{K} \tan \frac{t}{2} \tag{8}
\end{equation*}
$$

It can be shown that (6) is equivalent with (8), but the proof given in [1] is applied only on the three-dimensional case, and the present proof is different and hold for an Euclidean space of arbitrary dimension and for manifolds as well.

Proof. Fix $p \in M$ and let $q=f(p) \in N$. Let $\gamma_{i}:[-1,1] \rightarrow M, i=1,2$, and $\gamma_{i}(0)=p$ and assume that their angle is s, then the curves δ_{1}, δ_{2} have the intersection point q and make the angle t at it. We should prove that

$$
-\frac{H+\cos s}{1+H \cos s} \leq \cos t \leq \frac{H+\cos s}{1+H \cos s}
$$

Let $A=D f(p), B=A^{*} A, h=\gamma_{1}^{\prime}(0), k=\gamma_{2}^{\prime}(0)$. Since $T M_{p} \cong \mathbf{R}^{n} \cong T N_{q}$, we will identify both $T M_{p}$ and $T N_{q}$ by
\mathbf{R}^{n}. Let $\langle a \mid b\rangle$ denotes the standard inner product of vectors. Then

$$
\begin{aligned}
\cos t & =\frac{\left\langle\delta_{1}^{\prime}(0) \mid \delta_{2}^{\prime}(0)\right\rangle}{\left|\delta_{1}^{\prime}(0)\right| \cdot\left|\delta_{2}^{\prime}(0)\right|} \\
& =\frac{\left\langle D f(p) \gamma_{1}^{\prime}(0) \mid D f(p) \gamma_{2}^{\prime}(0)\right\rangle}{\left|D f(p) \gamma_{1}^{\prime}(0)\right| \cdot\left|D f(p) \gamma_{2}^{\prime}(0)\right|} \\
& =\frac{\left\langle A \gamma_{1}^{\prime}(0) \mid A \gamma_{2}^{\prime}(0)\right\rangle}{\left|A \gamma_{1}^{\prime}(0)\right| \cdot\left|A \gamma_{2}^{\prime}(0)\right|} \\
& =\frac{\langle B h \mid k\rangle}{\sqrt{\langle B h \mid h\rangle} \sqrt{\langle B k \mid k\rangle}} .
\end{aligned}
$$

Here

$$
h^{\prime}=\frac{h}{\sqrt{\langle B h \mid h\rangle}}
$$

and

$$
k^{\prime}=\frac{k}{\sqrt{\langle B k \mid k\rangle}} .
$$

We see that

$$
\left\langle B h^{\prime} \mid h^{\prime}\right\rangle=\left\langle B \frac{h}{\sqrt{\langle B h \mid h\rangle}}, \frac{h}{\sqrt{\langle B k \mid k\rangle}}\right\rangle=1
$$

and

$$
\left\langle B k^{\prime} \mid k^{\prime}\right\rangle=\left\langle B \frac{k}{\sqrt{\langle B k \mid k\rangle}}, \frac{k}{\sqrt{\langle B k \mid k\rangle}}\right\rangle=1 \text {. }
$$

Thus we solve the extremal problem

- $\langle B h \mid k\rangle \rightarrow$ Ext
under the conditions

1. $\langle B h \mid h\rangle=1$,
2. $\langle B k \mid k\rangle=1$ and
3. $\langle h \mid k\rangle-\cos s|h| \cdot|k|=0$.

We consider the set

$$
\mathcal{K}=\left\{(h, k) \in \mathbf{R}^{n} \times \mathbf{R}^{n}:\langle B h \mid h\rangle=1,\langle B k \mid k\rangle=1,\langle h \mid k\rangle-\cos s|h| \cdot|k|=0\right\},
$$

which is compact, because $\operatorname{det} B \neq 0$. Then there exists $\left(h_{0}, k_{0}\right) \in \mathcal{K}$ such that

$$
\left\langle B h_{0} \mid k_{0}\right\rangle=\max _{(h, k) \in \mathcal{K}}\langle B h \mid k\rangle .
$$

Thus it is necessary and sufficient to find the maximum of the function $\langle B h \mid k\rangle$ in \mathcal{K}. The Lagrangian is

$$
\mathcal{L}=\langle B h \mid k\rangle+\mu\langle B h \mid h\rangle+v\langle B k \mid k\rangle+\eta(\langle h \mid k\rangle-\cos s|h| \cdot|k|) .
$$

Then by differentiating \mathcal{L} w.r.t. h and k, we obtain that the stationary points on the intersections of Descartes product of ellipsoids $\langle B h \mid h\rangle=1,\langle B k \mid k\rangle=1$ and the set $\langle h \mid k\rangle-\cos s|h| \cdot|k|=0$ satisfy the equations

$$
\begin{equation*}
\mathcal{L}_{h}=B k+2 \mu B h+\eta\left(k-\cos (s) h \frac{|k|}{|h|}\right)=0, \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{L}_{k}=B h+2 v B k+\eta\left(h-\cos (s) k \frac{|h|}{|k|}\right)=0 \tag{10}
\end{equation*}
$$

where μ, v and η are some real constants. Then

$$
\begin{equation*}
\langle B k \mid h\rangle+2 \mu\langle B h \mid h\rangle=0, \quad\langle B h \mid k\rangle+2 v\langle B k \mid k\rangle=0, \tag{11}
\end{equation*}
$$

implying that $\mu=v$ and

$$
\begin{equation*}
\langle B h \mid k\rangle=-2 \mu \tag{12}
\end{equation*}
$$

and

$$
\eta\left(\langle k, k\rangle-\cos (s)\langle k, h\rangle \frac{|k|}{|h|}\right)=\eta\left(\langle h, h\rangle-\cos (s)\langle k, h\rangle \frac{|h|}{|k|}\right) .
$$

The last implies that

$$
\eta\left(|k|^{2}-|h|^{2}-\cos (s)\langle k, h\rangle \frac{|k|^{2}-|h|^{2}}{|k| \cdot|h|}\right)=0 .
$$

Thus

$$
\eta\left(|k|^{2}-|h|^{2}\right) \sin ^{2}(s)=0
$$

This implies that $|h|=|k|$, or $s=0$ or $\eta=0$. Since the cases $s=0$ and $\eta=0$ are trivial we consider only the case $|h|=|k|$. Let

$$
P=\left(\begin{array}{cc}
2 \mu & 1 \\
1 & 2 \mu
\end{array}\right)
$$

Then the system (9) and (10) can be written as

$$
P B\binom{h}{k}=\left(\begin{array}{cc}
\eta \cos (s) \frac{|k|}{|h|} & -\eta \\
-\eta & \eta \cos (s) \frac{|h|}{|k|}
\end{array}\right)\binom{h}{k}
$$

or

$$
\begin{equation*}
B\binom{h}{k}=Q\binom{h}{k} \tag{13}
\end{equation*}
$$

where

$$
Q=P^{-1} \cdot\left(\begin{array}{cc}
\eta \cos (s) \frac{|k|}{|h|} & -\eta \\
-\eta & \eta \cos (s) \frac{|h|}{|k|}
\end{array}\right) .
$$

So we need to consider the matrix Q and determine its eigenvectors and eigenvalues. First we have that

$$
Q=\left(\begin{array}{cc}
\frac{2 \mu}{4 \mu^{2}-1} & \frac{1}{1-4 \mu^{2}} \\
\frac{1}{1-4 \mu^{2}} & \frac{2 \mu}{4 \mu^{2}-1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\eta \cos (s) \frac{|k|}{|h|} & -\eta \\
-\eta & \eta \cos (s) \frac{| | \mid}{|k|}
\end{array}\right)
$$

i.e.

$$
Q=\left(\begin{array}{ll}
\frac{\eta(|h|+2|k| \mu \cos (s))}{|h|\left(-1+4 \mu^{2}\right)} & \frac{\eta(2|h| \mu+|k| \cos (s))}{|h|-4|h| \mu^{2}} \\
\frac{\eta(2|h| \mu+|k| \cos (s))}{|h|-4|h| \mu^{2}} & \frac{\eta(|h|+2|k| \mu \cos (s))}{|h|\left(-1+4 \mu^{2}\right)}
\end{array}\right) .
$$

Then

$$
\operatorname{det}(Q-\lambda I)=\frac{\eta^{2}\left(-|h|^{2}+|k|^{2} \cos ^{2} s\right)}{|h|^{2}\left(-1+4 \mu^{2}\right)}+\frac{2 \eta(|h|+2|k| \mu \cos s) \lambda}{|h|-4|h| \mu^{2}}+\lambda^{2}
$$

In view of the fact that $|h|=|k|$ we have

$$
\operatorname{det}(Q-\lambda I)=0
$$

if and only if

$$
\lambda=\frac{\eta(-1+\cos (s))}{1+2 \mu} \text { or } \lambda=\frac{\eta(1+\cos (s))}{-1+2 \mu}
$$

Thus in view of (13) we have

$$
\frac{\eta(-1+\cos (s))}{1+2 \mu}=\lambda_{i}^{2}, \text { and } \frac{\eta(1+\cos (s))}{-1+2 \mu}=\lambda_{j}^{2}
$$

where λ_{i}^{2} and λ_{j}^{2} are eigenvalues of the positive operator B.
Then

$$
\mu=-\frac{\lambda_{i}^{2}-\lambda_{j}^{2}+\lambda_{i}^{2} \cos (s)+\lambda_{j}^{2} \cos (s)}{2\left(\lambda_{i}^{2}+\lambda_{j}^{2}+\lambda_{i}^{2} \cos (s)-\lambda_{j}^{2} \cos (s)\right)}
$$

and

$$
\eta=-\frac{\left(2 \lambda_{i}^{2} \lambda_{j}^{2}\right)}{\lambda_{i}^{2}+\lambda_{j}^{2}+\lambda_{i}^{2} \cos (s)-\lambda_{j}^{2} \cos (s)}
$$

Inserting μ in (12), we obtain that

$$
\begin{equation*}
\langle B h \mid k\rangle=\frac{\lambda_{i}^{2}-\lambda_{j}^{2}+\lambda_{i}^{2} \cos (s)+\lambda_{j}^{2} \cos (s)}{\left(\lambda_{i}^{2}+\lambda_{j}^{2}+\lambda_{i}^{2} \cos (s)-\lambda_{j}^{2} \cos (s)\right)} . \tag{14}
\end{equation*}
$$

So

$$
\begin{equation*}
\langle B h \mid k\rangle=\frac{K_{i, j}+\cos (s)}{1+K_{i, j} \cos (s)}, \tag{15}
\end{equation*}
$$

where

$$
K_{i, j}=\frac{1-\frac{\lambda_{j}^{2}}{\lambda_{i}^{2}}}{1+\frac{\lambda_{j}^{2}}{\lambda_{i}^{2}}} .
$$

This finishes the proof
Now we infer the following.
Theorem 2.3. Let $0<\lambda_{1} \leq \cdots \leq \lambda_{n}$ and $a_{i}, b_{i}, i=1, \ldots, n$ be real numbers such that

$$
\sum_{i=1}^{n} a_{i} b_{i}=\cos (s) \sqrt{\sum_{i=1}^{n} a_{i}^{2}} \sqrt{\sum_{i=1}^{n} b_{i}^{2}}
$$

Then

$$
\sum_{i=1}^{n} \lambda_{i} a_{i} b_{i} \leq \frac{H+\cos (s)}{1+H \cos (s)} \sqrt{\sum_{i=1}^{n} \lambda_{i} a_{i}^{2}} \sqrt{\sum_{i=1}^{n} \lambda_{i} b_{i}^{2}}
$$

where $H=\left(\lambda_{n}-\lambda_{1}\right) /\left(\lambda_{n}+\lambda_{1}\right)$

Proof. Let $B=\left(b_{i, j}\right)$ be a $n \times n$ diagonal matrix satisfies $b_{i, i}=\lambda_{i}$ for $i=1,2, \cdots, n$, where $0<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ are given by Theorem 2.3, and $b_{i, j}=0$ for every $i \neq j$. Let $a=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ and $b=\left(b_{1}, b_{2}, \cdots, b_{n}\right)$ be two vectors in \mathbf{R}^{n}. If we set

$$
h=\frac{a}{\sqrt{\langle B a \mid a\rangle}}
$$

and

$$
k=\frac{b}{\sqrt{\langle B b \mid b\rangle}}
$$

then we have

$$
\langle B h \mid h\rangle=1=\langle B k \mid k\rangle .
$$

Since

$$
\langle B a \mid b\rangle=\sum_{i=1}^{n} \lambda_{i} a_{i} b_{i}
$$

we see that it is enough to find the maximum of $\langle B a \mid b\rangle$. According to the proof of Theorem 2.1 we see that

$$
\max \langle B h \mid k\rangle=\frac{K_{i, j}+\cos (s)}{1+K_{i, j} \cos (s)}
$$

where $\cos (s)=\frac{\langle a \mid b\rangle}{|a||b|}$,

$$
K_{i, j}=\frac{1-\frac{\lambda_{j}}{\lambda_{i}}}{1+\frac{\lambda_{j}}{\lambda_{i}}},
$$

and λ_{i}, λ_{j} are eigenvalues of the matrix B (c.f. (15), here we use $\lambda_{i}>0$ instead of λ_{i}^{2}).
It is easy to see that the function $\varphi_{1}(t):=\frac{1-t}{1+t}$ is a decreasing function for $t>0$. Therefore we have

$$
K_{i, j} \leq \frac{1-\frac{\lambda_{1}}{\lambda_{n}}}{1+\frac{\lambda_{1}}{\lambda_{n}}}:=H
$$

The function $\varphi_{2}(t):=\frac{t+\cos (s)}{1+t \cos (s)}$ is an increasing function of $t>0$. Hence we have

$$
\langle B h \mid k\rangle \leq \frac{H+\cos (s)}{1+H \cos (s)}
$$

By the assumption we know that

$$
\langle B a \mid b\rangle=\langle B h \mid k\rangle \cdot\langle B a \mid a\rangle \cdot\langle B b \mid b\rangle .
$$

This shows that

$$
\langle B a \mid b\rangle \leq \frac{H+\cos (s)}{1+H \cos (s)}\langle B a \mid a\rangle \cdot\langle B b \mid b\rangle
$$

which implies that

$$
\sum_{i=1}^{n} \lambda_{i} a_{i} b_{i} \leq \frac{H+\cos (s)}{1+H \cos (s)} \sqrt{\sum_{i=1}^{n} \lambda_{i} a_{i}^{2}} \sqrt{\sum_{i=1}^{n} \lambda_{i} b_{i}^{2}}
$$

The proof is completed.
Corollary 2.4. Let $0<\lambda_{1} \leq \cdots \leq \lambda_{n}$ and a_{i} and b_{i} be real numbers such that

$$
\sum_{i=1}^{n} a_{i} b_{i}=0
$$

Then

$$
\sum_{i=1}^{n} \lambda_{i} a_{i} b_{i} \leq \frac{K-1}{K+1} \sqrt{\sum_{i=1}^{n} \lambda_{i} a_{i}^{2}} \sqrt{\sum_{i=1}^{n} \lambda_{i} b_{i}^{2}}
$$

where $K=\lambda_{n} / \lambda_{1}$.
Proof. This is a special case of Theorem 2.3 with $\cos (s)=0$.
Remark 2.5. Let us explore the equality statement of Corollary 2.4 for the case $n=2$. Assume that $a=\left(a_{1}, a_{2}\right)$ and $b=\left(b_{1}, b_{2}\right)$. Let $a_{2}=b_{2}=\xi, a_{1}=t, \lambda_{1}<\lambda_{2}$. Then the equality of the above Corollary 2.4 shows that

$$
\lambda_{1} a_{1} b_{1}+\lambda_{2} a_{2} b_{2}=\frac{\frac{\lambda_{2}}{\lambda_{1}}-1}{\frac{\lambda_{2}}{\lambda_{1}}+1} \sqrt{\lambda_{1} a_{1}^{2}+\lambda_{2} a_{2}^{2}} \sqrt{\lambda_{1} b_{1}^{2}+\lambda_{2} b_{2}^{2}}
$$

Using $\sum_{i=1}^{2} a_{i} b_{i}=0$, we have

$$
\xi^{2}\left(\lambda_{2}+\lambda_{1}\right)=\sqrt{\left(\lambda_{1} t^{2}+\lambda_{2} \xi^{2}\right)\left(\lambda_{1} \frac{\xi^{4}}{t^{2}}+\lambda_{2} \xi^{2}\right)}
$$

Take squared from the both side and Simply the equality we obtain

$$
\lambda_{1} \lambda_{2} \xi^{2} t^{4}-2 \lambda_{1} \lambda_{2} \xi^{4} t^{2}+\lambda_{1} \lambda_{2} \xi^{6}=0
$$

which implies that $\left(t^{2}-\xi^{2}\right)=0$. Therefore $t= \pm \xi$.

References

[1] S. B. Agard, Angles and quasiconformal mappings in space, J. Analyse Math. 22 (1969), 177-200.
[2] S. B. Agard, Gehring, F. W. Angles and quasiconformal mappings, Proc. London Math. Soc. (3) 14a (1965), 1-21.
[3] L. V. Ahlfors, Lectures on quasiconformal mappings, Manuscript prepared with the assistance of Clifford J. Earle, Jr. Van Nostrand Mathematical Studies, No. 10, D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London, 1966.
[4] P. Caraman, n-dimensional quasiconformal (QCf) mappings, Revised, enlarged and translated from the Romanian by the author. Editura Academiei Române, Bucharest; Abacus Press, Tunbridge Wells; Haessner Publishing, Inc., Newfoundland, N. J., (1974).
[5] S. Rickman, Quasiregular Mappings, Springer, Berlin (1993).
[6] J. Väisälä, Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229. Springer-Verlag, Berlin-New York, 1971.
[7] J. F. Zhu, Some estimates for harmonic mappings with given boundary function, J. Math. Anal. Appl. 411 (2014), 631-638.
[8] J. F. Zhu, A harnack inequality on the boundary of the unit ball, J. Math. Anal. Appl. 438 (2016), 519-522.

[^0]: 2010 Mathematics Subject Classification. Primary 30C65; Secondary 31B05
 Keywords. Quasiconformal mapping, Angle, Inequalities
 Received: 16 July 2016; Accepted: 20 November 2016
 Communicated by Miodrag Mateljević
 The author of this work was supported by the NNSF of China Grant Nos. 11501220, 11471128, and the NNSF of Fujian Province Grant No. 2016J01020, and the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (ZQN-PY402).

 Email address: flandy@hqu.edu.cn (Jian-Feng Zhu)

