On Perturbed Monomials on 2-adic Spheres Around 1

Nacima Memića ${ }^{\text {, Z Zenan Šabanac }}{ }^{\text {a }}$
${ }^{a}$ University of Sarajevo, Faculty of Natural Sciences and Mathematics, Department of Mathematics, Zmaja od Bosne 33-35, Sarajevo, Bosnia and Herzegovina

Abstract

We provide a complete description of ergodic perturbed monomials on 2-adic spheres around the unity.

1. Introduction

As it was mentioned in [4], non-expanding dynamics on the ring of p-adic integers \mathbb{Z}_{p} have been explicitly studied in many papers like [3], [2], [8] and [7]. Recently, some results on dynamical systems were considered on spheres [4] and on general compact sets [9]. First results on ergodicity for monomial dynamical systems on p-adic spheres were obtained in [6]. Later, ergodicity criteria for locally analytic dynamical systems on p-adic spheres were studied in [1].

Let \mathbb{Z}_{2} denote the ring of 2-adic integers endowed with its ultra-metric norm $|\cdot|$ and natural probability measure μ. It is known that each element x from \mathbb{Z}_{2} has the form $x=\sum_{i=0}^{\infty} x_{i} 2^{i}$, where $x_{i} \in\{0,1\}$.

Let S consist of a collection of $2^{n} \mathbb{Z}_{2}$-cosets and for arbitrary $x \in S$ let the elements $x, f(x), \ldots, f^{k-1}(x)$ be representatives of distinct classes of $2^{n} \mathbb{Z}_{2}$-cosets, where $k=2^{n} \mu(S)$.

An isometric function $f: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ is said to be transitive modulo 2^{n} on S if the set $\left\{x, f(x), \ldots, f^{k-1}(x)\right\}$ is composed of only one cycle. In other words, $f^{k}(x)=x\left(\bmod 2^{n}\right)$, but $f^{r}(x) \neq x\left(\bmod 2^{n}\right)$, for all $r<k$.

We recall that in [2, Theorem 1.1.] and [3, Proposition 4.35.] we find that an isometric function $f: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ is ergodic on S if and only if it is transitive modulo 2^{n} on the set S for every positive integer n. Moreover, [4, Section 4.] is about perturbed monomials on spheres $S_{2^{r}}(1)$ centered at 1 with radius 2^{-r}. These are functions of the form $f(x)=x^{s}+2^{r+1} u(x)$, where the function u is 1 -Lipschitz. Our attempt is to study these functions with arbitrary functions u defined on the ring \mathbb{Z}_{2}. We describe all ergodic perturbed monomials of this form on $S_{2^{r}}(1)$ for different values of integers s and r. Then, [4, Theorem 4.1.] is obtained as a direct consequence of this description. Our results are based on some reformulation of [7, Lemma 3.12.] on a compact set of \mathbb{Z}_{2} which consists of two disjoint balls of the same measure.

2. Main Results

Lemma 2.1. Let a and b be different nonnegative integers. Let $a, b<2^{k}$, where k is some positive integer. Set $S=\left(a+2^{k} \mathbb{Z}_{2}\right) \uplus\left(b+2^{k} \mathbb{Z}_{2}\right)$. Let $f: S \rightarrow S$ be isometric. Then, f is ergodic on S if and only if the following conditions are satisfied

[^0](1) $f(a)-b=0\left(\bmod 2^{k}\right)$,
(2) $f(a)+f(b)=a+b+2^{k}\left(\bmod 2^{k+1}\right)$,
(3) $\sum_{\epsilon_{k}, \ldots, \epsilon_{k+n} \in\{0,1\}}\left(f\left(a+\sum_{i=k}^{k+n} \epsilon_{2} 2^{i}\right)+f\left(b+\sum_{i=k}^{k+n} \epsilon_{i} 2^{i}\right)\right)$
$$
=\sum_{\epsilon_{k}, \ldots, \epsilon_{k+n} \in\{0,1\}}\left(a+\sum_{i=k}^{k+n} \epsilon_{i} 2^{i}+b+\sum_{i=k}^{k+n} \epsilon_{i} 2^{i}\right)+2^{k+n+1}\left(\bmod 2^{k+n+2}\right), \forall n \geq 0 .
$$

Proof. Recall that according to [7, Lemma 3.12.], an isometric function g is transitive modulo $2^{n+1}, n \geq 1$, if and only if it is transitive modulo 2^{n} and S_{n} is odd, where

$$
S_{n}=\sum_{0 \leq m \leq 2^{n}-1} g_{m_{n}}, g(m)=\sum_{i=0}^{\infty} g_{m_{i}} 2^{i}, g_{m_{i}} \in\{0,1\}, \forall i \geq 0
$$

This can be expressed as

$$
\begin{equation*}
\sum_{m=0}^{2^{n}-1} g(m)=\sum_{m=0}^{2^{n}-1} m+2^{n}\left(\bmod 2^{n+1}\right) \tag{2.1}
\end{equation*}
$$

Let $\psi: \mathbb{Z}_{2} \rightarrow S$ defined by $\psi(x)= \begin{cases}2^{k-1} x+a, & x \in 2 \mathbb{Z}_{2} ; \\ 2^{k-1}(x-1)+b, & x \in 1+2 \mathbb{Z}_{2} .\end{cases}$
It is clear that $g:=\psi^{-1} \circ f \circ \psi$ is ergodic on \mathbb{Z}_{2} if and only if f is ergodic on S. For $n \geq 2$ (2.1) can be written as

$$
\begin{gathered}
(2.1) \Leftrightarrow \sum_{m=0}^{2^{n}-1} \psi^{-1} \circ f \circ \psi(m)=2^{n-1}\left(2^{n}-1\right)+2^{n}\left(\bmod 2^{n+1}\right) \\
\Leftrightarrow \sum_{0 \leq m \leq 2^{n}-1, m \text { even }} \psi^{-1} \circ f\left(2^{k-1} m+a\right)+\sum_{0 \leq m \leq 2^{n}-1, m \text { odd }} \psi^{-1} \circ f\left(2^{k-1}(m-1)+b\right)=2^{n-1}\left(\bmod 2^{n+1}\right) \\
\Leftrightarrow \sum_{0 \leq m \leq 2^{n}-1, m \text { even }}\left(\frac{f\left(2^{k-1} m+a\right)-b}{2^{k-1}}+1+\frac{f\left(2^{k-1} m+b\right)-a}{2^{k-1}}\right)=2^{n-1}\left(\bmod 2^{n+1}\right) \\
\Leftrightarrow \sum_{0 \leq m \leq 2^{n}-1, m \text { even }}\left(f\left(2^{k-1} m+a\right)+f\left(2^{k-1} m+b\right)\right)=2^{n-1}(a+b)\left(\bmod 2^{n+k}\right) \\
\Leftrightarrow \sum_{\epsilon_{k}, \ldots, \epsilon_{k+n-2} \in\{0,1\}}\left(f\left(a+\sum_{i=k}^{k+n-2} \epsilon_{i} 2^{i}\right)+f\left(b+\sum_{i=k}^{k+n-2} \epsilon_{i} 2^{i}\right)\right)=\sum_{\epsilon_{k}, \ldots, \epsilon_{k+n-2} \in\{0,1\}}\left(a+\sum_{i=k}^{k+n-2} \epsilon_{i} 2^{i}+b+\sum_{i=k}^{k+n-2} \epsilon_{i} 2^{i}\right)+2^{n+k-1}\left(\bmod 2^{n+k}\right) .
\end{gathered}
$$

On the other hand it is clear that f is transitive modulo 2^{k} on S if and only if Condition (1) is satisfied and Condition (2) is equivalent to (2.1) for $n=1$.

Theorem 2.2. Let s and r be positive integers. Assume that $s=1(\bmod 4)$. Let the functions f and u be defined on \mathbb{Z}_{2} such that $f(x)=x^{s}+2^{r+1} u(x)$. Denote by $S_{2^{r}}(1)$ the sphere of radius 2^{-r} centered at 1 . Then, f is ergodic on $S_{2^{r}}(1)$ if and only if u satisfies the following conditions:
(1) $|u(x)-u(y)|<2^{r+1}|x-y|, \forall x, y \in S_{2^{r}}(1)$,
(2) $\sum_{\epsilon_{r+1}, \ldots, \epsilon_{l} \in\{0,1\}} u\left(1+2^{r}+\sum_{i=r+1}^{l} \epsilon_{i} 2^{i}\right)=2^{l-r}\left(\bmod 2^{l-r+1}\right), \forall l \geq r$.

Proof. It is clear that $g(x)=x^{s}$ is isometric on $S_{2^{r}}(1)$. Then, f is also isometric on this set if and only if Condition (1) is satisfied. On the other hand, applying Lemma 2.1 if f is isometric on $S_{2^{r}}(1)$ then it is also ergodic on this set if and only the following formula holds:

$$
\begin{equation*}
\sum_{\epsilon_{r+1}, \ldots, \epsilon_{l} \in\{0,1\}} f\left(1+2^{r}+\sum_{i=r+1}^{l} \epsilon_{i} 2^{i}\right)=\sum_{\epsilon_{r+1}, \ldots, \epsilon_{l} \in\{0,1\}}\left(1+2^{r}+\sum_{i=r+1}^{l} \epsilon_{i} 2^{i}\right)+2^{l+1}\left(\bmod 2^{l+2}\right), \forall l \geq r \tag{2.2}
\end{equation*}
$$

The main idea of the proof is based on the fact that the function g is ergodic on some specific subsets depending on the values of r and l. Lemma 2.1 is then applied on g which yields that f is ergodic if and only if u satisfies statement (2) of this theorem.

Set $s=1+2^{k}\left(\bmod 2^{k+1}\right)$, for some $k \geq 2$. We first consider the case when $r=1$.
For every positive even integer m and all $x \in S_{2}(1)$, we have $x^{m}+1=2(\bmod 4)$.
For every positive odd integer m and all $|x|=1$, we have

$$
\begin{equation*}
\left|x^{m}+1\right|=|x+1| \cdot\left|x^{m-1}-x^{m-2}+\ldots+x^{2}-x+1\right|=|x+1| \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|x^{m}-1\right|=|x-1| \cdot\left|x^{m-1}+x^{m-2}+\ldots+x^{2}+x+1\right|=|x-1| . \tag{2.4}
\end{equation*}
$$

It follows that for $x \in S_{2}(1)$,

$$
\begin{align*}
\left|x^{s}-x\right| & =\left|x^{s-1}-1\right|=\left|x^{\frac{s-1}{2}}-1\right| \cdot\left|x^{\frac{s-1}{2}}+1\right|=\frac{1}{2}\left|x^{\frac{s-1}{2}}+1\right|=\ldots= \tag{2.5}\\
& =\frac{1}{2^{k-1}}\left|x^{\frac{s-1}{k^{k}}}-1\right| \cdot\left|x^{\frac{s-1}{k^{k}}}+1\right|=\frac{1}{2^{k-1}}|x-1| \cdot|x+1|=\frac{1}{2^{k}}|x+1| .
\end{align*}
$$

Moreover,

$$
\begin{equation*}
\left|x^{s^{2}}-x\right|=\left|x^{s^{2}-1}-1\right|=\left|x^{(s-1) \frac{s+1}{2}}-1\right| \cdot\left|x^{(s-1) \frac{s+1}{2}}+1\right|=\left|x^{s-1}-1\right| \cdot\left|x^{s-1}+1\right|=\frac{1}{2}\left|x^{s-1}-1\right| . \tag{2.6}
\end{equation*}
$$

By means of [9, Lemma 3.1.] and [5, Proposition 9] (see also [9, Lemma 3.3.] as a modified version of [5, Proposition 9]), we get that g is ergodic on each set of the form $x+\frac{2^{k}}{|x+1|} \mathbb{Z}_{2}$, where $x \in S_{2}(1)$.

Now we verify that (2.2) is equivalent to Condition (2) for all $l \geq 1$. First, for $l \leq k$ and $x \in S_{2}(1)$ we have from (2.5)

$$
\left|x^{s}-x\right|=\frac{1}{2^{k}}|x+1| \leq \frac{1}{2^{l}}|x+1| \leq \frac{1}{2^{l+2}} .
$$

It follows immediately that Condition (2) is equivalent to (2.2). Now, let $l \geq k+1$. We have

$$
\begin{equation*}
x^{s}=x\left(\bmod 2^{l+2}\right), \forall x \in\left\{|x+1| \leq 2^{-l-2+k}\right\} \tag{2.7}
\end{equation*}
$$

Moreover, from Lemma 2.1, since as mentioned above g is ergodic on each set of the form $x+\frac{2^{k}}{|x+1|} \mathbb{Z}_{2}$,

$$
\begin{align*}
& \forall t \leq l-k, \forall x \in\left\{|x+1|=2^{-t}\right\}, \forall \epsilon_{t+1}, \ldots, \epsilon_{t+k-1} \in\{0,1\}: \\
& \sum_{\epsilon_{t+k}, \ldots, \epsilon_{l} \in\{0,1\}}\left(3+\sum_{i=2}^{t-1} 2^{i}+\sum_{i=t+1}^{l} \epsilon_{i} 2^{i}\right)^{s}=\sum_{\epsilon_{t+k}, \ldots, \epsilon_{l} \in\{0,1\}}\left(3+\sum_{i=2}^{t-1} 2^{i}+\sum_{i=t+1}^{l} \epsilon_{i} 2^{i}\right)+2^{l+1}\left(\bmod 2^{l+2}\right), \tag{2.8}
\end{align*}
$$

and

$$
\begin{align*}
& t=l-k+1, \forall x \in\left\{|x+1|=2^{-t}\right\}: \\
& \left(3+\sum_{i=2}^{t-1} 2^{i}+\sum_{i=t+1}^{l} \epsilon_{i} 2^{i}\right)^{s}=\left(3+\sum_{i=2}^{t-1} 2^{i}+\sum_{i=t+1}^{l} \epsilon_{i} 2^{i}\right)+2^{l+1}\left(\bmod 2^{l+2}\right) \tag{2.9}
\end{align*}
$$

It follows from (2.5) and (2.9) that

$$
\begin{aligned}
& \forall t \leq l-k+1, \forall x \in\left\{|x+1|=2^{-t}\right\}: \\
& \sum_{\epsilon_{t+1}, \ldots, \epsilon_{l} \in\{0,1\}}\left(3+\sum_{i=2}^{t-1} 2^{i}+\sum_{i=t+1}^{l} \epsilon_{i} 2^{i}\right)^{s}=\sum_{\epsilon_{t+1}, \ldots, \epsilon_{l} \in\{0,1\}}\left(3+\sum_{i=2}^{t-1} 2^{i}+\sum_{i=t+1}^{l} \epsilon_{i} 2^{i}\right)+\sum_{\epsilon_{t+1}, \ldots, \epsilon_{t+k-1} \in\{0,1\}} 2^{l+1}\left(\bmod 2^{l+2}\right) \\
& =\sum_{\epsilon_{t+1}, \ldots, \epsilon_{l} \in\{0,1\}}\left(3+\sum_{i=2}^{t-1} 2^{i}+\sum_{i=t+1}^{l} \epsilon_{2} 2^{i}\right)\left(\bmod 2^{l+2}\right) .
\end{aligned}
$$

We obtain from (2.7) and (2.10)

$$
\begin{align*}
& \sum_{\epsilon_{2}, \ldots, \epsilon_{l} \in\{0,1\}}\left(3+\sum_{i=2}^{l} \epsilon_{i} 2^{i}\right)^{s}=\sum_{t=2}^{l+1-k} \sum_{\epsilon_{t+1}, \ldots, \epsilon_{l} \in\{0,1\}}\left(3+\sum_{i=2}^{t-1} 2^{i}+\sum_{i=t+1}^{l} \epsilon_{i} 2^{i}\right)^{s}+\sum_{\epsilon_{l+2-k}, \ldots, \epsilon_{l} \in\{0,1\}}\left(3+\sum_{i=2}^{l+1-k} 2^{i}+\sum_{i=l+2-k}^{l} \epsilon_{i} 2^{i}\right)^{s} \\
= & \sum_{t=2}^{l+1-k} \sum_{\epsilon_{t+1}, \ldots, \epsilon_{l} \in\{0,1\}}\left(3+\sum_{i=2}^{t-1} 2^{i}+\sum_{i=t+1}^{l} \epsilon_{2} 2^{i}\right)+\sum_{\epsilon_{l+2-k}, \ldots, \varepsilon_{l} \in\{0,1\}}\left(3+\sum_{i=2}^{l+1-k} 2^{i}+\sum_{i=l+2-k}^{l} \epsilon_{2} 2^{i}\right)\left(\bmod 2^{l+2}\right) \tag{2.11}\\
= & \sum_{\epsilon_{2}, \ldots, \epsilon_{l} \in\{0,1\}}\left(3+\sum_{i=2}^{l} \epsilon_{i} 2^{i}\right)\left(\bmod 2^{l+2}\right),
\end{align*}
$$

which completes the proof for the case when $r=1$.
Now, let $r \geq 2$. We have from (2.4) for $x \in S_{2^{r}}(1)$

$$
\begin{equation*}
\left|x^{s}-x\right|=\left|x^{s-1}-1\right|=\left|x^{\frac{s-1}{2}}+1\right| \cdot\left|x^{\frac{s-1}{2}}-1\right|=\frac{1}{2}\left|x^{\frac{s-1}{2}}-1\right|=\ldots=\frac{1}{2^{k}}\left|x^{\frac{s-1}{2^{k}}}-1\right|=\frac{1}{2^{k}}|x-1| . \tag{2.12}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\left|x^{s^{2}}-x\right|=\left|x^{s^{2}-1}-1\right|=\left|x^{(s-1) \frac{s+1}{2}}-1\right| \cdot\left|x^{(s-1) \frac{s+1}{2}}+1\right|=\left|x^{s-1}-1\right| \cdot\left|x^{s-1}+1\right|=\frac{1}{2}\left|x^{s-1}-1\right| . \tag{2.13}
\end{equation*}
$$

Hence, g is ergodic on each set of the form $x+2^{r+k} \mathbb{Z}_{2}$, where $x \in S_{2^{r}}$ (1). In order to see that Condition (2) is equivalent to (2.2), first consider the case when $l \leq r+k-2$. From (2.12)

$$
\left|x^{s}-x\right|=\frac{1}{2^{k}}|x-1|=\frac{1}{2^{k+r}} \leq \frac{1}{2^{l+2}}
$$

which gives immediately that Condition (2) is equivalent to (2.2).
Besides, when $l \geq r+k$, for all $\epsilon_{r+1}, \ldots, \epsilon_{r+k-1} \in\{0,1\}$ we have from ergodicity of function g on the set $1+2^{r}+\sum_{i=r+1}^{r+k-1} \epsilon_{i} 2^{i}+2^{r+k} \mathbb{Z}_{2}:$

$$
\sum_{\epsilon_{r+k}, \ldots, \epsilon_{l}\{\{0,1\}}\left(1+2^{r}+\sum_{i=r+1}^{l} \epsilon_{i} 2^{i}\right)^{s}=\sum_{\epsilon_{r+k}, \ldots, \epsilon_{l}\{\{0,1\}}\left(1+2^{r}+\sum_{i=r+1}^{l} \epsilon_{i} 2^{i}\right)+2^{l+1}\left(\bmod 2^{l+2}\right) .
$$

Also, for $l=r+k-1$ and all $\epsilon_{r+1}, \ldots, \epsilon_{r+k-1} \in\{0,1\}$

$$
\left(1+2^{r}+\sum_{i=r+1}^{l} \epsilon_{i} 2^{i}\right)^{s}=\left(1+2^{r}+\sum_{i=r+1}^{l} \epsilon_{i} 2^{i}\right)+2^{l+1}\left(\bmod 2^{l+2}\right) .
$$

This yields for $l \geq r+k-1$,

$$
\sum_{\epsilon_{r+1}, \ldots, \epsilon_{l}\{\{0,1\}}\left(1+2^{r}+\sum_{i=r+1}^{l} \epsilon_{i} 2^{i}\right)^{s}=\sum_{\epsilon_{r+1}, \ldots, \epsilon_{l}\{\{0,1\}}\left(1+2^{r}+\sum_{i=r+1}^{l} \epsilon_{i} 2^{i}\right)+\sum_{\epsilon_{r+1}, \ldots, \epsilon_{r+k-1} \in\{0,1\}} 2^{l+1}\left(\bmod 2^{l+2}\right)
$$

$$
=\sum_{\epsilon_{r+1}, \ldots, \epsilon_{l} \in\{0,1\}}\left(1+2^{r}+\sum_{i=r+1}^{l} \epsilon_{i} 2^{i}\right)\left(\bmod 2^{l+2}\right) .
$$

Theorem 2.3. Let s and r be positive integers. Assume that $s=3(\bmod 4)$ and $r \geq 2$. Let the functions f and u be defined on \mathbb{Z}_{2} such that $f(x)=x^{s}+2^{r+1} u(x)$. Then, f is ergodic on $S_{2^{r}}(1)$ if and only if u satisfies the following conditions:
(1) $|u(x)-u(y)|<2^{r+1}|x-y|, \forall x, y \in S_{2^{r}}(1)$,
(2) $u(x)=0(\bmod 2), \forall x \in S_{2^{r}}(1)$,
(3) $\sum_{\epsilon_{r+1}, \ldots, \epsilon_{l} \in\{0,1\}} u\left(1+2^{r}+\sum_{i=r+1}^{l} \epsilon_{i} 2^{i}\right)=2^{l-r}\left(\bmod 2^{l-r+1}\right), \forall l \geq r+1$.

Proof. Arguing as in the previous theorem, it suffices to prove that an isometric function f is ergodic on $S_{2^{r}}(1)$ if and only if Conditions (2) and (3) are simultaneously satisfied. The sphere $S_{2^{r}}(1)$ can be expressed as $\left(x+2^{r+2} \mathbb{Z}_{2}\right) \cup\left(x+2^{r+1}+2^{r+2} \mathbb{Z}_{2}\right)$, for all $x \in S_{2^{r}}(1)$. Notice that from Condition (1) of Lemma $2.1 f$ is transitive modulo 2^{r+2} if and only if $f(x)=x+2^{r+1}\left(\bmod 2^{r+2}\right)$, for all $x \in S_{2^{r}}(1)$. Namely,

$$
x^{s}-x+2^{r+1} u(x)=2^{r+1}\left(\bmod 2^{r+2}\right), \forall x \in S_{2^{r}}(1) .
$$

From (2.3) and (2.4)

$$
\begin{equation*}
\left|x^{s}-x\right|=\left|x^{s-1}-1\right|=\left|x^{\frac{s-1}{2}}+1\right| \cdot\left|x^{\frac{s-1}{2}}-1\right|=|x+1| \cdot|x-1|=2^{-r-1} \tag{2.14}
\end{equation*}
$$

Hence, f is transitive modulo 2^{r+2} if and only if Condition (2) is true. It remains to prove that f is transitive modulo 2^{l+2} for all $l \geq r+1$ if and only if Condition (3) is valid.

If $s=2^{k}-1\left(\bmod 2^{k+1}\right)$, let $l \in\{r+1, \ldots, k+r-1\}$. Notice that from (2.3) and (2.4) we also have

$$
\begin{align*}
\left|x^{s^{2}}-x\right| & =\left|x^{s^{2}-1}-1\right|=\left|x^{\frac{s+1}{2}(s-1)}+1\right| \cdot\left|x^{\frac{s+1}{2}(s-1)}-1\right|=\frac{1}{2}\left|x^{\frac{s+1}{2}(s-1)}-1\right|=\ldots= \\
& =\frac{1}{2^{k}}\left|x^{\frac{s+1}{2^{k}}(s-1)}-1\right|=\frac{1}{2^{k}}\left|x^{\frac{s+1}{2^{k}} \frac{s-1}{2}}+1\right| \cdot\left|x^{\frac{s+1}{2^{\frac{s}{2}}} \frac{s-1}{2}}-1\right|=\frac{1}{2^{k}}|x+1| \cdot|x-1|=2^{-k-r-1} . \tag{2.15}
\end{align*}
$$

From (2.14) and (2.15) we conclude that the function g is ergodic on each set of the form $\left(x+2^{k+r+1} \mathbb{Z}_{2}\right) \cup$ $\left(x^{s}+2^{k+r+1} \mathbb{Z}_{2}\right)$, where $x \in S_{2^{r}}(1)$. Hence, $\forall x \in S_{2^{r}}(1): g^{2}\left(x+2^{k+r+1} \mathbb{Z}_{2}\right)=x+2^{k+r+1} \mathbb{Z}_{2}$. It follows that $\forall l \in\{r+1, \ldots, k+r-1\}, \forall x \in S_{2^{r}}(1): g^{2}\left(x+2^{l+2} \mathbb{Z}_{2}\right)=x+2^{l+2} \mathbb{Z}_{2}$. Therefore, $\forall l \in\{r+1, \ldots, k+r-1\}, \forall x \in S_{2^{r}}(1)$ function g is transitive modulo 2^{l+1} on the set $\left(x+2^{l+1} \mathbb{Z}_{2}\right) \cup\left(x^{s}+2^{l+1} \mathbb{Z}_{2}\right)$, but it is not transitive modulo 2^{l+2}. According to Lemma 2.1, for $a=x, b=x^{s}\left(\bmod 2^{l+1}\right)$ and $k=l+1$, Condition (1) is verified, but Condition (2) which gives transitivity of g modulo 2^{l+2} is not verified.

We get $g(a)+g(b)=a+b\left(\bmod 2^{l+2}\right)$. Namely, if x has the form $x=a=1+2^{r}+\sum_{i=r+2}^{l} \epsilon_{i} 2^{i}$ and $x^{s}=b\left(\bmod 2^{l+1}\right)$, where $b=1+2^{r}+2^{r+1}+\sum_{i=r+2}^{l} \epsilon_{i}^{\prime} 2^{i}$, we must have

$$
\left(1+2^{r}+\sum_{i=r+2}^{l} \epsilon_{i} 2^{i}\right)^{s}+\left(1+2^{r}+2^{r+1}+\sum_{i=r+2}^{l} \epsilon_{i}^{\prime} 2^{i}\right)^{s}=\left(1+2^{r}+\sum_{i=r+2}^{l} \epsilon_{i} 2^{i}\right)+\left(1+2^{r}+2^{r+1}+\sum_{i=r+2}^{l} \epsilon_{i}^{\prime} 2^{i}\right)\left(\bmod 2^{l+2}\right)
$$

This yields

$$
\sum_{\epsilon_{r+1}, \ldots, \epsilon_{l} \in\{0,1\}}\left(1+2^{r}+\sum_{i=r+1}^{l} \epsilon_{i} 2^{i}\right)^{s}=\sum_{\epsilon_{r+1}, \ldots, \epsilon_{l} \in\{0,1\}}\left(1+2^{r}+\sum_{i=r+1}^{l} \epsilon_{i} 2^{i}\right)\left(\bmod 2^{l+2}\right),
$$

which implies that Condition (3) is equivalent to the transitivity of f modulo 2^{l+2}.

Besides, for $l \geq k+r$, since function g is ergodic on each set of the form $\left(x+2^{k+r+1} \mathbb{Z}_{2}\right) \cup\left(x^{s}+2^{k+r+1} \mathbb{Z}_{2}\right)$, we get for all fixed $\epsilon_{r+2}, \ldots, \epsilon_{k+r} \in\{0,1\}$, if $\epsilon_{r+2}^{\prime}, \ldots, \epsilon_{k+r}^{\prime} \in\{0,1\}$ are such that

$$
\left(1+2^{r}+\sum_{i=r+2}^{k+r} \epsilon_{i} 2^{i}\right)^{s} \in 1+2^{r}+2^{r+1}+\sum_{i=r+2}^{k+r} \epsilon_{i}^{\prime} 2^{i}+2^{k+r+1} \mathbb{Z}_{2}
$$

according to Lemma 2.1 (3) we must have for $l \geq k+r+1$:

$$
\begin{aligned}
& \sum_{\epsilon_{k+r+1}, \ldots, \epsilon_{l} \in\{0,1\}}\left(\left(1+2^{r}+\sum_{i=r+2}^{l} \epsilon_{i} 2^{i}\right)^{s}+\left(1+2^{r}+2^{r+1}+\sum_{i=r+2}^{k+r} \epsilon_{i}^{\prime} 2^{i}+\sum_{i=r+k+1}^{l} \epsilon_{i} 2^{i}\right)^{s}\right) \\
= & \left.\sum_{\epsilon_{k+r+1}, \ldots, \epsilon_{l} \in\{0,1\}}\left(1+2^{r}+\sum_{i=r+2}^{l} \epsilon_{i} 2^{i}\right)+\left(1+2^{r}+2^{r+1}+\sum_{i=r+2}^{k+r} \epsilon_{i}^{\prime} 2^{i}+\sum_{i=r+k+1}^{l} \epsilon_{i} 2^{i}\right)\right)+2^{l+1}\left(\bmod 2^{l+2}\right),
\end{aligned}
$$

and for $l=r+k$, by Lemma 2.1 (2), we have:

$$
\begin{gathered}
\left(1+2^{r}+\sum_{i=r+2}^{r+k} \epsilon_{i} 2^{i}\right)^{s}+\left(1+2^{r}+2^{r+1}+\sum_{i=r+2}^{k+r} \epsilon_{i}^{\prime} 2^{i}\right)^{s} \\
=\left(1+2^{r}+\sum_{i=r+2}^{r+k} \epsilon_{i} 2^{i}\right)+\left(1+2^{r}+2^{r+1}+\sum_{i=r+2}^{k+r} \epsilon_{i}^{\prime} 2^{i}\right)+2^{l+1}\left(\bmod 2^{l+2}\right) .
\end{gathered}
$$

Therefore, for every $l \geq k+r$, we also get that f is transitive modulo 2^{l+2} if and only if Condition (3) is true because

$$
\begin{gathered}
\sum_{\epsilon_{r+1}, \ldots, \epsilon_{l} \in\{0,1\}}\left(1+2^{r}+\sum_{i=r+1}^{l} \epsilon_{i} 2^{i}\right)^{s}=\sum_{\epsilon_{r+1}, \ldots, \epsilon_{l} \in\{0,1\}}\left(1+2^{r}+\sum_{i=r+1}^{l} \epsilon_{i} 2^{i}\right)+\sum_{\epsilon_{r+2}, \ldots, \epsilon_{r+k} \in\{0,1\}} 2^{l+1}\left(\bmod 2^{l+2}\right) \\
=\sum_{\epsilon_{r+1}, \ldots, \epsilon_{l} \in\{0,1\}}\left(1+2^{r}+\sum_{i=r+1}^{l} \epsilon_{i} 2^{i}\right)\left(\bmod 2^{l+2}\right) .
\end{gathered}
$$

Theorem 2.4. Let $s=3(\bmod 4)$. Let the functions f and u be defined on \mathbb{Z}_{2} such that $f(x)=x^{s}+4 u(x)$. Then, f is ergodic on $S_{2}(1)$ if and only if u satisfies the following conditions:
(1) $|u(x)-u(y)|<4|x-y|, \forall x, y \in S_{2}$ (1),
(2) $u(x)=1(\bmod 2), \forall x \in S_{2}(1)$,
(3) $\sum_{\epsilon_{2}, \ldots, \epsilon_{l} \in\{0,1\}} u\left(3+\sum_{i=2}^{l} \epsilon_{i} 2^{i}\right)=0\left(\bmod 2^{l+2}\right), \forall l \geq 2$.

Proof. As seen above, f is isometric if and only if Condition (1) is true. Assume that Condition (1) is satisfied. As seen in (2.14) we have that

$$
\begin{equation*}
\left|x^{s}-x\right|=|x+1| \cdot|x-1|=\frac{1}{2}|x+1| \leq \frac{1}{8}, \forall x \in S_{2}(1) . \tag{2.16}
\end{equation*}
$$

Therefore, f is transitive modulo 8 if and only if $4 u(x)=4(\bmod 8)$, which is equivalent to Condition (2).
Recall that for $s=2^{k}-1\left(\bmod 2^{k+1}\right)$, from (2.15) we have

$$
\begin{equation*}
\left|x^{s^{2}}-x\right|=\frac{1}{2^{k}}|x+1| \cdot|x-1|=\frac{1}{2^{k+1}}|x+1| . \tag{2.17}
\end{equation*}
$$

This means that g is ergodic on each set of the form $\left(x+\frac{2^{k+1}}{|x+1|} \mathbb{Z}_{2}\right) \cup\left(x^{s}+\frac{2^{k+1}}{|x+1|} \mathbb{Z}_{2}\right)$, where $x \in S_{2}(1)$.
In order to prove that f is transitive modulo 2^{l+2}, for all $l \geq 2$ if and only if Condition (3) is satisfied it suffices to verify that

$$
\begin{equation*}
\sum_{\epsilon_{2}, \ldots, \epsilon_{l} \in\{0,1\}}\left(3+\sum_{i=2}^{l} \epsilon_{i} 2^{i}\right)^{s}=\sum_{\epsilon_{2}, \ldots, \epsilon_{l} \in\{0,1\}}\left(3+\sum_{i=2}^{l} \epsilon_{i} 2^{i}\right)+2^{l+1}\left(\bmod 2^{l+2}\right) . \tag{2.18}
\end{equation*}
$$

Indeed, take first $l \leq k+1$. For all $t \geq 2$ and $x \in\left\{|x+1|=2^{-t}\right\}$, the function g is not transitive modulo 2^{l+2} on $\left(x+2^{l+1} \mathbb{Z}_{2}\right) \cup\left(x^{s}+2^{l+1} \mathbb{Z}_{2}\right)$.
Then, from Lemma 2.1, if $t \leq l-1$, for all fixed $\epsilon_{t+2}, \ldots, \epsilon_{l} \in\{0,1\}$, if $\epsilon_{t+2^{\prime}}^{\prime}, \ldots, \epsilon_{l}^{\prime} \in\{0,1\}$ are such that

$$
\left(3+\sum_{i=2}^{t-1} 2^{i}+\sum_{i=t+2}^{l} \epsilon_{i} 2^{i}\right)^{s} \in 3+\sum_{i=2}^{t-1} 2^{i}+2^{t+1}+\sum_{i=t+2}^{l} \epsilon_{i}^{\prime} 2^{i}+2^{l+1} \mathbb{Z}_{2}
$$

we must have

$$
\begin{align*}
& \left(3+\sum_{i=2}^{t-1} 2^{i}+\sum_{i=t+2}^{l} \epsilon_{i} 2^{i}\right)^{s}+\left(3+\sum_{i=2}^{t-1} 2^{i}+2^{t+1}+\sum_{i=t+2}^{l} \epsilon_{i}^{\prime} 2^{i}\right)^{s}= \tag{2.19}\\
& 3+\sum_{i=2}^{t-1} 2^{i}+\sum_{i=t+2}^{l} \epsilon_{i} 2^{i}+3+\sum_{i=2}^{t-1} 2^{i}+2^{t+1}+\sum_{i=t+2}^{l} \epsilon_{i}^{\prime} 2^{i}\left(\bmod 2^{l+2}\right) .
\end{align*}
$$

Besides, for $t=l$, we have

$$
\begin{equation*}
\left(3+\sum_{i=2}^{l-1} 2^{i}\right)^{s}=3+\sum_{i=2}^{l-1} 2^{i}+2^{l+1}\left(\bmod 2^{l+2}\right) . \tag{2.20}
\end{equation*}
$$

While, when $t \geq l+1$, we have from (2.16),

$$
\begin{equation*}
x^{s}=x\left(\bmod 2^{l+2}\right), \forall x \in\left\{|x+1|=2^{-t}\right\} \tag{2.21}
\end{equation*}
$$

Using (2.19), (2.20) and (2.21), we get

$$
\begin{gathered}
\sum_{\epsilon_{2}, \ldots, \epsilon_{i} \in\{0,1\}}\left(3+\sum_{i=2}^{l} \epsilon_{i} 2^{i}\right)^{s}=\sum_{t=2}^{l-1} \sum_{\epsilon_{t+1}, \ldots, \epsilon_{i} \in\{0,1\}}\left(3+\sum_{i=2}^{t-1} 2^{i}+\sum_{i=t+1}^{l} \epsilon_{i} 2^{i}\right)^{s}+\left(3+\sum_{i=2}^{l-1} 2^{i}\right)^{s}+\left(3+\sum_{i=2}^{l} 2^{i}\right)^{s} \\
=\sum_{t=2}^{l-1} \sum_{\epsilon_{t+1}, \ldots, \epsilon_{i} \in\{0,1\}}\left(3+\sum_{i=2}^{t-1} 2^{i}+\sum_{i=t+1}^{l} \epsilon_{2} 2^{i}\right)+\left(3+\sum_{i=2}^{l-1} 2^{i}\right)+2^{l+1}+\left(3+\sum_{i=2}^{l} 2^{i}\right)\left(\bmod 2^{l+2}\right) \\
\\
=\sum_{\epsilon_{2}, \ldots, \epsilon_{i} \mid\{0,1\}}\left(3+\sum_{i=2}^{l} \epsilon_{i} 2^{i}\right)+2^{l+1}\left(\bmod 2^{l+2}\right) .
\end{gathered}
$$

This proves (2.18) for $l \in\{2, \ldots, k+1\}$.
In a similar way, if $l \geq k+2$ and $t \in\{2, \ldots, l-k\}$, then since g is ergodic on $\left(x+2^{t+k+1} \mathbb{Z}_{2}\right) \cup\left(x^{s}+2^{t+k+1} \mathbb{Z}_{2}\right)$, for $x \in\left\{|x+1|=2^{-t}\right\}$, we get for all fixed $\epsilon_{t+2}, \ldots, \epsilon_{t+k} \in\{0,1\}$, if $\epsilon_{t+2}^{\prime}, \ldots, \epsilon_{t+k}^{\prime} \in\{0,1\}$ are such that

$$
\left(3+\sum_{i=2}^{t-1} 2^{i}+\sum_{i=t+2}^{t+k} \epsilon_{i} 2^{i}\right)^{s} \in 3+\sum_{i=2}^{t-1} 2^{i}+2^{t+1}+\sum_{i=t+2}^{t+k} \epsilon_{i}^{\prime} 2^{i}+2^{t+k+1} \mathbb{Z}_{2}
$$

we have from Lemma 2.1

$$
\begin{aligned}
& \sum_{\epsilon_{t+k+1}, \ldots, \epsilon_{l} \in\{0,1\}}\left[\left(3+\sum_{i=2}^{t-1} 2^{i}+\sum_{i=t+2}^{l} \epsilon_{i} 2^{i}\right)^{s}+\left(3+\sum_{i=2}^{t-1} 2^{i}+2^{t+1}+\sum_{i=t+2}^{t+k} \epsilon_{i}^{\prime} 2^{i}+\sum_{i=t+k+1}^{l} \epsilon_{i} 2^{i}\right)^{s}\right] \\
= & \sum_{\epsilon_{t+k+1}, \ldots, \epsilon_{l} \in\{0,1\}}\left[\left(3+\sum_{i=2}^{t-1} 2^{i}+\sum_{i=t+2}^{l} \epsilon_{i} 2^{i}\right)+\left(3+\sum_{i=2}^{t-1} 2^{i}+2^{t+1}+\sum_{i=t+2}^{t+k} \epsilon_{i}^{\prime} 2^{i}+\sum_{i=t+k+1}^{l} \epsilon_{i} 2^{i}\right)\right]+2^{l+1}\left(\bmod 2^{l+2}\right),
\end{aligned}
$$

where if $t=l-k$, the sum over $\epsilon_{t+k+1}, \ldots, \epsilon_{l} \in\{0,1\}$ contains only one term and $\sum_{i=t+k+1}^{l} \epsilon_{i} 2^{i}=0$.
Therefore,

$$
\begin{align*}
\sum_{\epsilon_{t+1}, \ldots, \epsilon_{l} \in\{0,1\}}\left(3+\sum_{i=2}^{t-1} 2^{i}+\sum_{i=t+1}^{l} \epsilon_{i} 2^{i}\right)^{s} & =\sum_{\epsilon_{t+1}, \ldots, \epsilon_{l} \in\{0,1\}}\left(3+\sum_{i=2}^{t-1} 2^{i}+\sum_{i=t+1}^{l} \epsilon_{i} 2^{i}\right)+\sum_{\epsilon_{t+2}, \ldots, \epsilon_{t+k} \in\{0,1\}} 2^{l+1}\left(\bmod 2^{l+2}\right) \tag{2.22}\\
& =\sum_{\epsilon_{t+1}, \ldots, \epsilon_{l} \in\{0,1\}}\left(3+\sum_{i=2}^{t-1} 2^{i}+\sum_{i=t+1}^{l} \epsilon_{i} 2^{i}\right)\left(\bmod 2^{l+2}\right) .
\end{align*}
$$

Meanwhile, for $t \in\{l-k+1, \ldots, l-1\}$, as seen above function g is not transitive modulo 2^{l+2} on the set $\left(x+2^{l+1} \mathbb{Z}_{2}\right) \cup\left(x^{s}+2^{l+1} \mathbb{Z}_{2}\right)$, for $x \in\left\{|x+1|=2^{-t}\right\}$. Hence, for all fixed $\epsilon_{t+2}, \ldots, \epsilon_{l} \in\{0,1\}$, if $\epsilon_{t+2}^{\prime}, \ldots, \epsilon_{l}^{\prime} \in\{0,1\}$ are such that

$$
\left(3+\sum_{i=2}^{t-1} 2^{i}+\sum_{i=t+2}^{l} \epsilon_{i} 2^{i}\right)^{s} \in 3+\sum_{i=2}^{t-1} 2^{i}+2^{t+1}+\sum_{i=t+2}^{l} \epsilon_{i}^{\prime} 2^{i}+2^{l+1} \mathbb{Z}_{2}
$$

where $\sum_{i=t+2}^{l} \epsilon_{i} 2^{i}=\sum_{i=t+2}^{l} \epsilon_{i}^{\prime} 2^{i}=0$, for $t=l-1$, we have

$$
\begin{align*}
& \left(3+\sum_{i=2}^{t-1} 2^{i}+\sum_{i=t+2}^{l} \epsilon_{i} 2^{i}\right)^{s}+\left(3+\sum_{i=2}^{t-1} 2^{i}+2^{t+1}+\sum_{i=t+2}^{l} \epsilon_{i}^{\prime} 2^{i}\right)^{s} \\
& =\left(3+\sum_{i=2}^{t-1} 2^{i}+\sum_{i=t+2}^{l} \epsilon_{i} 2^{i}\right)+\left(3+\sum_{i=2}^{t-1} 2^{i}+2^{t+1}+\sum_{i=t+2}^{l} \epsilon_{i}^{\prime} 2^{i}\right)\left(\bmod 2^{l+2}\right) . \tag{2.23}
\end{align*}
$$

For $t=l$, we get

$$
\begin{equation*}
\left(3+\sum_{i=2}^{l-1} 2^{i}\right)^{s}=3+\sum_{i=2}^{l-1} 2^{i}+2^{l+1}\left(\bmod 2^{l+2}\right) . \tag{2.24}
\end{equation*}
$$

Finally, when $t \geq l+1$, we have from (2.16)

$$
\begin{equation*}
\left(3+\sum_{i=2}^{t-1} 2^{i}\right)^{s}=3+\sum_{i=2}^{t-1} 2^{i}\left(\bmod 2^{l+2}\right) . \tag{2.25}
\end{equation*}
$$

We conclude from (2.22), (2.23), (2.24) and (2.25)

$$
\begin{gathered}
\sum_{\epsilon_{2}, \ldots, \epsilon_{l} \in\{0,1\}}\left(3+\sum_{i=2}^{l} \epsilon_{i} 2^{i}\right)^{s}=\sum_{t=2}^{l-1} \sum_{\epsilon_{t+1}, \ldots, \epsilon_{l}\{\{0,1\}}\left(3+\sum_{i=2}^{t-1} 2^{i}+\sum_{i=t+1}^{l} \epsilon_{i} 2^{i}\right)^{s}+\left(3+\sum_{i=2}^{l-1} 2^{i}\right)^{s}+\left(3+\sum_{i=2}^{l} 2^{i}\right)^{s}= \\
=\sum_{t=2}^{l-1} \sum_{\epsilon_{t+1}, \ldots, \epsilon_{l} \in\{0,1\}}\left(3+\sum_{i=2}^{t-1} 2^{i}+\sum_{i=t+1}^{l} \epsilon_{2} 2^{i}\right)+\left(3+\sum_{i=2}^{l-1} 2^{i}\right)+2^{l+1}+\left(3+\sum_{i=2}^{l} 2^{i}\right)\left(\bmod 2^{l+2}\right)
\end{gathered}
$$

$$
=\sum_{\epsilon_{2}, \ldots, \epsilon_{l} \in\{0,1\}}\left(3+\sum_{i=2}^{l} \epsilon_{i} 2^{i}\right)+2^{l+1}\left(\bmod 2^{l+2}\right) .
$$

Corollary 2.5. [4, Theorem 4.1.] Let u be a 1-Lipschitz function defined on \mathbb{Z}_{2}. Let s and r be positive integers, then the function $f(x)=x^{s}+2^{r+1} u(x)$ is ergodic on $S_{2^{r}}(1)$ if and only if $s=1(\bmod 4)$ and $u(1)=1(\bmod 2)$.
Proof. Assume first that f is ergodic and $u(1)=0(\bmod 2)$. It is clear that in this case u does not satisfy the conditions of Theorems 2.2 and 2.4. It follows that $s=3(\bmod 4)$ and $r \geq 2$. Meanwhile, we prove that u does not verify Condition (3) of Theorem 2.3. Indeed, since u is 1-Lipschitz

$$
u\left(1+2^{r}\right)+u\left(1+2^{r}+2^{r+1}\right)=2 u\left(1+2^{r}\right)(\bmod 4)=0(\bmod 4)
$$

which contradicts Condition (3) of Theorem 2.3 for $l=r+1$.
In this part we assume that f is ergodic and $u(1)=1(\bmod 2)$ and $s=3(\bmod 4)$. By means of Theorem 2.3, we get that $r=1$. By Theorem $2.4 u$ satisfies Conditions (1), (2) and (3). Meanwhile,

$$
u(3)+u(7)=2 u(3)(\bmod 4)=2(\bmod 4)
$$

which contradicts Condition (3) of Theorem 2.4.
On the other hand, if $s=1(\bmod 4)$ and $u(1)=1(\bmod 2)$, then we claim that u satisfies all conditions of Theorem 2.2. Indeed, for $l=r$ Condition (2) of Theorem 2.2 is equivalent to $u\left(1+2^{r}\right)=1(\bmod 2)$, which is true by assumption.

Suppose that Condition (2) of Theorem 2.2 is satisfied for all $l \in\left\{r, \ldots, l_{0}\right\}$, for some $l_{0} \geq r$.

$$
\begin{gathered}
\sum_{\epsilon_{r+1}, \ldots, \epsilon_{0}+1} \in\{0,1\} \\
u\left(1+2^{r}+\sum_{i=r+1}^{l_{0}+1} \epsilon_{i} 2^{i}\right)=\sum_{\epsilon_{r+1}, \ldots, \epsilon_{l_{0}} \in\{0,1\}}\left[u\left(1+2^{r}+\sum_{i=r+1}^{l_{0}} \epsilon_{i} 2^{i}\right)+u\left(1+2^{r}+\sum_{i=r+1}^{l_{0}} \epsilon_{i} 2^{i}+2^{l_{0}+1}\right)\right] \\
=2 \sum_{\epsilon_{r+1}, \ldots, \epsilon_{l_{0}} \in\{0,1\}} u\left(1+2^{r}+\sum_{i=r+1}^{l_{0}} \epsilon_{i} 2^{i}\right)\left(\bmod 2^{l_{0}+1}\right)=2^{l_{0}+1-r}\left(\bmod 2^{l_{0}+1-r+1}\right),
\end{gathered}
$$

because

$$
u\left(1+2^{r}+\sum_{i=r+1}^{l_{0}} \epsilon_{i} 2^{i}+2^{l_{0}+1}\right)-u\left(1+2^{r}+\sum_{i=r+1}^{l_{0}} \epsilon_{i} 2^{i}\right)=0\left(\bmod 2^{l_{0}+1}\right)
$$

This proves Condition (2) for all $l \geq r$.

Acknowledgment. The authors thank the referees for their valuable suggestions and comments that improved the presentation.

References

[1] V. Anashin, Ergodic transformations in the space of p-adic integers, p-Adic Mathematical Physics, AIP Conf. Proc. 826 (2006) 3-24.
[2] V. S. Anashin, Uniformly distributed sequences of p-adic integers, Discrete Math. Appl. 12 (6) (2002) 527-590.
[3] V. Anashin, A. Khrennikov, Applied Algebraic Dynamics, de Gruyter Expositions in Mathematics 49., Berlin, 2009.
[4] V. Anashin, A. Khrennikov, E. Yurova, Ergodicity criteria for non-expanding transformations of 2-adic spheres, Discrete Contin. Dyn. Syst. 34 (2) (2014) 367-377.
[5] F. Durand, F. Paccaut, Minimal polynomial dynamics on the set of 3-adic integers, Bull. Lond. Math. Soc. 41 (2) (2009) 302-314.
[6] M. Gundlach, A. Khrennikov, K.-O. Lindahl, On ergodic behavior of p-adic dynamical system, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 4 (4) (2001) 569-577.
[7] S. Jeong, Toward the ergodicity of p-adic 1-Lipschitz functions represented by the van der Put series, J. Number Theory, 133 (9) (2013) 2874-2891.
[8] A. Khrennikov, E. Yurova, Criteria of measure-preserving for p-adic dynamical systems in terms of the van der Put basis, J. Number Theory 133 (2) (2013) 484-491.
[9] N. Memić, Ergodic polynomials on subsets of p-adic integers, p-Adic Numbers Ultrametric Anal. Appl. 8 (2) (2016) 149-159.

[^0]: 2010 Mathematics Subject Classification. 11S82
 Keywords. Perturbed monomials, Transitive functions, 2-adic spheres
 Received: 28 July 2016; Accepted: 20 October 2016
 Communicated by Dragana S. Cvetković-Ilić
 Email addresses: nacima.o@gmail.com (Nacima Memić), zsabanac@pmf.unsa.ba (Zenan Šabanac)

