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On the Mazur-Ulam Theorem in Non-Archimedean
Fuzzy Anti-2-Normed Spaces
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aMathematics Education, Dankook University, Gyeonggi-do, 16890, Republic of Korea

Abstract. We study the notion of a non-Archimedean fuzzy anti-2-normed space over a non-Archimedean
field and prove that Mazur-Ulam theorem holds under some conditions in non-Archimedean fuzzy anti-2-
normed spaces.

1. Introduction

A mapping f : X −→ Y is called an isometry if f satisfies

dY( f (x), f (y)) = dX(x, y)

for all x, y ∈ X , where dX(·, ·) and dY(·, ·) denote the metrics in the spaces X and Y, respectively.
The theory of isometric mappings had been originated in the classical paper ([13]) by Mazur and Ulam

in 1932.
Mazur-Ulam Theorem. Every isometry f of a normed real linear space X onto a normed real linear space
is a linear mapping up to translation, that is, x 7→ f (x) − f (0) is linear, which amounts to the definition that
f is affine.

The Mazur-Ulam theorem is not true for a normed complex vector space. In addition, the onto assump-
tion is also essential. Without this assumption, Baker([2]) proved that an isometry from a normed real linear
space into a strictly convex normed real linear space is affine.

In 1984, Katsaras([10]) and Wu and Fang([17]) introduced the notion of a fuzzy norm on linear space and
also Wu and Fang gave the generalization of Kolmogoroff normalized theorem for fuzzy topological linear
space. Gähler and Gähler([8]) defined fuzzy norm of a fuzzy real number as a difference of its positive and
negative parts. Also, Gähler([6, 7]) introduced a new approach for the theory of 2-norm and n-norm on a
linear space. Chu([5]) studied the Mazur-Ulam theorem in linear 2-normed spaces. Recently, Moslehian
and Sadeghi([15]) introduced the Mazur-Ulam theorem in the non-Archimedean strictly convex normed
spaces. Choy et al.([4]) investigated the Mazur-Ulam theorem by using the interior preserving mappings in
linear 2-normed spaces and also proved the theorem on non-Archimedean 2-normed spaces over a linear
ordered non-Archimedean field without the strict convexity assumption. Moreover, Mirmostafaee and
Moslehian([14]) introduced a non-Archimedean fuzzy norm on a linear space over a non-Archimedean field.
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In particular, Amyari and Sadeghi([1]) proved Mazur-Ulam theorem under condition of strict convexity
in non-Archimedean 2-normed spaces. Jebril and Samanta([9]) introduced a fuzzy anti-norm on a linear
space depending on the idea of fuzzy anti-norm was introduced by Bag and Samanta([3]) and investigated
their various properties. Many mathematicians considered the fuzzy normed spaces in different branches
of pure and applied mathematics.

Recently, Park and Alaca introduced the new result of the Mazur-Ulam theorem for 2-isometry in the
framework of 2-fuzzy 2-normed linear spaces; see([16]). They proved the theorem without the condition of
preserving collinearity of 2-isometry.

In this paper, we investigate the notion of a non-Archimedean fuzzy 2-normed space over a linear
ordered non-Archimedean field. We prove that Mazur-Ulam theorem holds on a non-Archimedean fuzzy
2-normed space without preserving collinearity of 2-isometry and also with interior preserving fuzzy 2-
isometry. Note that our proof of the theorem extended the cases where it is a non-Archimedean fuzzy
2-normed space.

2. Non-Archimedean Fuzzy Anti-2-Normed Space

In this section, we introduce a non-Archimedean fuzzy anti-2-normed space.

Definition 2.1. A non-Archimedean field is a fieldK equipped with a (valuation) function fromK into [0, ∞)
satisfying the following properties:

1. |a| ≥ 0 and equality holds if and only if a = 0 ,
2. |ab| = |a| |b| ,
3. |a + b| ≤ max{|a| , |b|}

for all a, b ∈ K .

Clearly |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N . An example of a non-Archimedean valuation is the
function | · | taking everything except 0 into 1 and |0| = 0 ; see([12]). We call it a non-Archimedean trivial
valuation. Also, the most important examples of non-Archimedean spaces are p-adic numbers; see([14]).

Definition 2.2. Let X be a linear space over a field K with a non-Archimedean valuation | · | . A function
|| · || : X × X −→ [0, ∞) is said to be a non-Archimedean 2-norm if it satisfies the following properties:

1. ||x, y|| = 0 if and only if x , y are linearly dependent
2. ||x , y|| = ||y , x||
3. ||cx , y|| = |c| ||x , y||
4. ||x , y + z|| ≤ max {||x , y|| , ||x , z||} ,

for all x, y, z ∈ X and c ∈ K . Then (X, || · ||) is called a non-Archimedean 2-normed space.

Definition 2.3. Let X be a linear space over a field K with a non-Archimedean valuation | · | . A function
N : X2

×R −→ [0, 1] is said to be a non-Archimedean fuzzy anti-2-norm on X if for all x, y ∈ X and all s, t ∈ R ,

(aN1) N(x, y, t) = 1 for t ≤ 0 ,
(aN2) for t > 0 , N(x, y, t) = 0 if and only if x and y are linearly dependent,
(aN3) N(x, y, t) = N(y, x, t) ,
(aN4) N(cx, y, t) = N(x, y, t

|c| ) for c , 0 ,
(aN5) N(x, y + z,max{s, t}) ≤ max{N(x, y, s) ,N(x, z, t)} ,
(aN6) N(x, y, ∗) is a non-increasing function of R and limt→∞N(x, y, t) = 0 .

The pair (X,N) is called a non-Archimedean fuzzy anti-2-normed space.

The property (aN4) implies that N(−x, y, t) = N(x, y, t) for all x, y ∈ X and t > 0 . It is easy to show that
(aN5) is equivalent the following condition:

N(x, y + z, t) ≤ max{N(x, y, t) ,N(x, z, t)} , for all x, y, z ∈ X and t ∈ R .
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Example 2.4. Let (X, ||· , ·||) be a non-Archimedean 2-normed space. Define

N(x, y, t) =

 ||x, y||t+||x, y|| when t > 0 ,

1 when t ≤ 0 ,

where x, y ∈ X and t ∈ R . Then (X,N) is a non-Archimedean fuzzy anti-2-normed space. Indeed,

(aN1) The definition of N implies that N(x, y, t) = 1 for t ≤ 0 .
(aN2) Let t > 0 . N(x, y, t) = 0 ⇔ ||x, y|| = 0 ⇔ x and y are linearly dependent.

(aN3) N(x, y, t) =
||x, y||

t+||x, y|| =
||y, x||

t+||y, x|| = N(y, x, t) .
(aN4)

N(cx, y, t) =
||cx , y||

t + ||cx , y||
=

||x , y||
t
|c| + ||x , y||

= N(x, y,
t
|c|

)

for all c , 0 .
(aN5) Let x, y , z ∈ X and s , t ∈ R . If s , t ≤ 0 , then N(x, y + z,max{s, t}) = 1 = max{N(x, y, s) ,N(x, z, t)} . If

s < 0 < t , then N(x, y + z,max{s, t}) ≤ 1 = max{N(x, y, s) ,N(x, z, t)} . Now, let s , t > 0 . We may assume
that max{s, t} = s ≥ t . Since ||x , y + z|| ≤ max {||x , y|| , ||x , z||} , we may consider two cases where (a)
max {||x , y|| , ||x , z||} = ||x , y|| and (b) max {||x , y|| , ||x , z||} = ||x , z|| . The case (a) :

N(x, y + z ,max{s, t}) =
||x, y + z||

s + ||x, y + z||

≤
||x, y||

s + ||x, y||
≤ max{N(x, y, s) ,N(x, z, t)} .

The case (b) :

N(x, y + z ,max{s, t}) =
||x, y + z||

s + ||x, y + z||

≤
||x, z||

s + ||x, z||

≤
||x, z||

t + ||x, z||
≤ max{N(x, y, s) ,N(x, z, t)} .

These cases imply that

N(x, y + z,max{s, t}) ≤ max{N(x, y, s) ,N(x, z, t)} .

(aN6) Let s < t ≤ 0 and let s ≤ 0 < t . These cases imply that N(x, y, s) = 1 ≥ N(x, y, t) . If 0 < s < t , then

N(x, y, s) −N(x, y, t) =
(s − t)||x, y||

(s + ||x, y||)(t + ||x, y||)
≤ 0 .

Hence N(x, y, ∗) is a non-increasing function of R . Also,

lim
t→∞

N(x, y, t) = lim
t→∞

||x, y||
t + ||x, y||

= 0 ,

for all x , y ∈ X .

Definition 2.5. A non-Archimedean fuzzy anti-2-normed space is said to be strictly convex if N(x, y +
z,max{s, t}) = max{N(x, y, s) ,N(x, z, t)} and N(x, y, s) = N(x, z, t) imply y = z and s = t .
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Definition 2.6. Let (X,N) and (Y,N) be two non-Archimedean fuzzy anti-2-normed spaces. We call f :
(X,N) −→ (Y,N) a fuzzy 2-isometry if N(a− c, b− c, t) = N( f (a)− f (c), f (b)− f (c), t) , for all a, b, c ∈ X and t > 0 .

For given points x , y and z ∈ X , 4xyz denotes the triangle determined by x , y and z .A point (x+ y+z)/3
is called a barycenter of 4xyz . If p is a point of a set {t1x + t2y + t3z | t1 + t2 + t3 = 1 , ti ∈ K , ti > 0 , i = 1, 2, 3} ,
then p is called an interior point of 4xyz .

Definition 2.7. Let (X,N) and (Y,N) be two non-Archimedean fuzzy anti-2-normed spaces. We call f :
(X,N) −→ (Y,N) an interior preserving mapping of the triangle if f (p) is an interior point of 4 f (x) f (y) f (z) ,
where p is an interior point of 4xyz .

3. Mazur-Ulam Theorem

We first denote the set of all elements ofK whose norms are 1 by C , that is,

C = {r ∈ K | |r| = 1} .

We recall the definition of ordered non-Archimedean fieldK .

Definition 3.1. A field K is orderable if there exists a non-empty K+ ⊂ K such that
(1) 0 < K+

(2) for all x , y ∈ K+, x + y ∈ K+ and xy ∈ K+

(3) for all x(, 0) ∈ K, x ∈ K+ or − x ∈ K+.

Provided that K is orderable, we can fix a set K+ that satisfies a strict order relation on K by x <K+
y if

and only if y − x ∈ K+. Then we call (K, <K+
) an ordered field.

Definition 3.2. LetK be an ordered field and a non-Archimedean field equipped with a (valuation) function
fromK into [0, ∞). Then we callK an ordered non-Archimedean field.

In this section, we will prove Mazur-Ulam theorem on non-Archimedean fuzzy anti-2-normed space X over
a linear ordered non-Archimedean fieldK .

Lemma 3.3. Let (X ,N) be a non-Archimedean fuzzy anti-2-normed space over a linear ordered non-Archimedean
fieldK . Then

N(x, y, t) = N(x, y + rx, t) , for all r ∈ K .

Proof. Let x, y ∈ X and let r ∈ K . Without loss generality, we may assume t > 0 . Then

N(x, y + rx, t) ≤ max{N(x, y, t) ,N(x, rx, t)} = N(x, y, t) .

Conversely,

N(x, y, t) = N(x, y + rx − rx, t) ≤ max{N(x, y + rx, t) ,N(x, rx, t)}
= N(x, y + rx, t) .

Thus N(x, y, t) = N(x, y + rx, t) for all r ∈ K .

Lemma 3.4. Let (X ,N) be a non-Archimedean fuzzy anti-2-normed space over a linear ordered non-Archimedean
fieldK with C = {2n

|n ∈ Z} and let a, b, c ∈ X and t > 0 . Suppose X is strictly convex. Then α = a+b
2 is the unique

element of X such that

N(a − c, a − α, t) = N(b − α, b − c, t) = N(a − c, b − c, t)

where N(a − c, b − c, t) , 0 and α ∈ {sa + (1 − s)b | s ∈ K}.
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Proof. Let α = a+b
2 ∈ X and t > 0 . By Lemma 3.3, we have

N(a − c, a − α, t) = N(a − c, a −
a + b

2
, t) = N(a − c,

a − b
2
, t)

= N(a − c, a − b, |2|t) = N(a − c, a − b, t)
= N(a − c, b − c, t) .

Similarly,

N(b − α, b − c, t) = N(b −
a + b

2
, b − c, t) = N(b − a, b − c, t)

= N(a − c, b − c, t) .

Hence we have N(a − c, a − α, t) = N(a − c, b − c, t) = N(b − α, b − c, t) , that is, the existence part holds. To
show the uniqueness part, assume that β is such an element of X such that

N(a − c, a − β, t) = N(b − β, b − c, t) = N(a − c, b − c, t)

where N(a − c, b − c, t) , 0 and α ∈ {sa + (1 − s)b | s ∈ K}. Hence we may let

β = sa + (1 − s)b

where s ∈ K . We may assume s , 0 and s , 1 .

N(a − c, b − c, t) = N(a − c, a − β, t) = N(a − c, a − (sa + (1 − s)b), t)

= N(a − c, a − b,
t

|1 − s|
) = N(a − c, b − c,

t
|1 − s|

) .

Similarly, we have

N(a − c, b − c, t) = N(b − β, b − c, t) = N(a − c, b − c,
t
|s|

) ,

that is,

N(a − c, b − c, t) = N(a − c, b − c,
t

|1 − s|
) = N(a − c, b − c,

t
|s|

) .

We note that

N(a − c + a − c, b − c,max{
t
|s|
,

t
|1 − s|

})

≤ max{N(a − c, b − c,
t
|s|

),N(a − c, b − c,
t

|1 − s|
)}

= N(a − c, b − c,
t
|s|

) = N(a − c, b − c,
t

|1 − s|
) ,

and

N(a − c + a − c, b − c,max{
t
|s|
,

t
|1 − s|

})

= N(2(a − c), b − c,max{
t
|s|
,

t
|1 − s|

})

= N(a − c, b − c,max{
t
|s|
,

t
|1 − s|

}) .
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The previous note implies that

N(a − c, b − c, t) = N(a − c, b − c,
t
|s|

) = N(a − c, b − c,
t

|1 − s|
) .

The strict convexity of X implies that |s| = |1 − s| = 1 . Then there exist elements t1 and t2 in Z such that
1 − s = 2t1 and s = 2t2 . Since 2t1 + 2t2 = 1 , we know that t1 , t2 < 0 . Without loss of generality, we let
1 − s = 2−n1 and s = 2−n2 with n1 ≥ n2 . If n1  n2 then

1 = 2−n1 + 2−n2 = 2−n1 (1 + 2n1−n2 ) .

Hence 2n1 = 1 + 2n1−n2 . This is a contradiction. Thus n1 = n2 , that is, s = 1
2 . This implies that β = a+b

2 = α .
Therefore the proof is completed.

Theorem 3.5. Let X and Y be non-Archimedean fuzzy anti-2-normed spaces over a linear ordered non-Archimedean
fieldK with C = {2n

|n ∈ Z} . Let X and Y be strict convexities. If f : X −→ Y is a fuzzy 2-isometry, then f (x)− f (0)
is additive.

Proof. Let 1(x) = f (x) − f (0) . Since f is a fuzzy 2-isometry, so is 1 . Since 1 : X −→ Y is a fuzzy 2-isometry,
we have

N(1(a) − 1(c), 1(a) − 1(
a + b

2
), t) = N(a − c, a −

a + b
2
, t)

= N(a − c, a − b, t) = N(a − c, b − c, t)
= N(1(a) − 1(c), 1(b) − 1(c), t) .

Similarly, we get N(1(b) − 1( a+b
2 ), 1(b) − 1(c), t) = N(1(a) − 1(c), 1(b) − 1(c), t) . Hence

N(1(a) − 1(c), 1(a) − 1(
a + b

2
), t) = N(1(b) − 1(

a + b
2

), 1(b) − 1(c), t)

= N(1(a) − 1(c), 1(b) − 1(c), t) .

We note that

N(1(
a + b

2
) − 1(b), 1(a) − 1(b), t) = N(

a + b
2
− b, a − b, t)

= N(a − b, a − b, t) = 0 .

By Definition 2.3, we have 1( a+b
2 ) − 1(b) = s(1(a) − 1(b)) , that is,

1(
a + b

2
) = s1(a) + (1 − s)1(b)

for some s ∈ K . The uniqueness of Lemma 3.4 implies that 1( a+b
2 ) =

1(a)+1(b)
2 for all a, b ∈ X . Thus f (x)− f (0)

is additive, as desired.

In the following, we will investigate that the interior preserving mapping carries the barycenter of a
triangle to the barycenter point of the corresponding triangle. By using this result, we will prove a Mazur-
Ulam theorem on non-Archimedean fuzzy anti-2-normed space X over a linear ordered non-Archimedean
fieldK with C = {3n

|n ∈ Z} .

Lemma 3.6. Let (X ,N) be a non-Archimedean fuzzy anti-2-normed space over a linear ordered non-Archimedean
field K with C = {3n

|n ∈ Z} and let a, b, c ∈ X and t > 0 . Suppose X is strictly convex. Then α = a+b+c
3 is the

unique element of X such that

N(a − α, b − α, t) = N(b − α, c − α, t) = N(a − α, c − α, t) = N(a − b, a − c, t)

where α ∈ {t1a + t2b + t3c | t1 + t2 + t3 = 1 , ti ∈ K , ti > 0 , i = 1, 2, 3} .
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Proof. Let α = a+b+c
3 ∈ X and t > 0 . By Lemma 3.3, we have

N(a − α, b − α, t) = N(a − α, b − a, t) = N(2a − b − c, b − a, |3|t)
= N(a − c, b − a, t) = N(a − c, b − c, t)
= N(a − b, a − c, t) .

Similarly, we get

N(b − α, c − α, t) = N(a − b, a − c, t) and N(a − α, c − α, t) = N(a − b, a − c, t) .

Hence we have N(a − α, b − α, t) = N(b − α, c − α, t) = N(a − α, c − α, t) = N(a − b, a − c, t) , that is, the
existence part holds. To show the uniqueness part, assume that β is such an element of X such that

N(a − β, b − β, t) = N(b − β, c − β, t) = N(a − β, c − β, t) = N(a − b, a − c, t)

where β ∈ {t1a + t2b + t3c | t1 + t2 + t3 = 1 , ti ∈ K , ti > 0 , i = 1, 2, 3} . Hence we may let β = s1a + s2b +
s3c where s1 + s2 + s3 = 1 . Then we have

N(a − b, a − c, t) = N(a − β, b − β, t) = N((1 − s1)a − s2b − (1 − s1 − s2)c, b − a, t)
= N((1 − s1 − s2)a − (1 − s1 − s2)c, b − a, t)

= N(a − c, b − a,
t

|1 − s1 − s2|
)

= N(a − b, a − c,
t

|1 − s1 − s2|
) .

Also, we have

N(a − b, a − c, t) = N(a − β, c − β, t) = N((1 − s1)a − s2b − (1 − s1 − s2)c, c − a, t)
= N(s2a − s2b, c − a, t)

= N(a − b, a − c,
t
|s2|

) .

Similarly, we get

N(a − b, a − c, t) = N(b − β, c − β, t) = N(a − b, a − c,
t
|s1|

) ,

that is,

N(a − b, a − c,
t

|1 − s1 − s2|
) = N(a − b, a − c,

t
|s2|

) = N(a − b, a − c,
t
|s1|

) .

We note that

N(a − b + a − b + a − b, a − c,max{
t
|s1|

,
t
|s2|

,
t

|1 − s1 − s2|
})

≤ max{N(a − b, a − c,
t
|s1|

),N(a − b, a − c,
t
|s2|

),N(a − b, a − c,
t

|1 − s1 − s2|
)}

= N(a − b, a − c,
t
|s1|

) = N(a − b, a − c,
t
|s2|

) = N(a − b, a − c,
t

|1 − s1 − s2|
) ,

and

N(a − b + a − b + a − b, a − c,max{
t
|s1|

,
t
|s2|

,
t

|1 − s1 − s2|
})

= N(3(a − b), a − c,max{
t
|s1|

,
t
|s2|

,
t

|1 − s1 − s2|
})

= N(a − b, a − c,max{
t
|s1|

,
t
|s2|

,
t

|1 − s1 − s2|
}) .
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The strict convexity of X implies that |s1| = |s2| = |1 − s1 − s2| = 1 . Then there exist elements k1 , k2 and k3
in Z such that s1 = 3k1 , s2 = 3k2 and 1 − s1 − s2 = 3k3 . Since 3k1 + 3k2 + 3k3 = 1 , we know that k1 , k2 , k3 < 0 .
Without loss of generality, we let s1 = 3−n1 , s2 = 3−n2 and 1 − s1 − s2 = 3−n3 with n1 ≥ n2 ≥ n3 . Then

1 = 3−n1 + 3−n2 + 3−n3 = 3−n1 (1 + 3n1−n2 + 3n1−n3 ) .

Hence 3n1 = 1+3n1−n2 +3n1−n3 . This is a contradiction. Thus s1 = s2 = s3 = 1
3 . This implies that β = a+b+c

3 = α .
Therefore the proof is completed.

Theorem 3.7. Let X and Y be non-Archimedean fuzzy anti-2-normed spaces over a linear ordered non-Archimedean
field K with C = {3n

|n ∈ Z} . Let X and Y be strict convexities. If f : X −→ Y is an interior preserving fuzzy
2-isometry, then f (x) − f (0) is additive.

Proof. Let 1(x) = f (x) − f (0) . Since f is a fuzzy 2-isometry, so is 1 . For a , b and c ∈ X , let 4abc be a triangle
determined by the points a , b and c , and let x be an interior point of 4abc . Since f is an interior preserving
mapping, we may write

f (x) = s1 f (a) + s2 f (b) + s3 f (c) ,

where si ∈ K , si > 0 (i = 1, 2, 3) with s1 + s2 + s3 = 1 . Then we have

1(x) = s1 f (a) + s2 f (b) + s3 f (c) − f (0)
= s1( f (a) − f (0)) + s2( f (b) − f (0)) + s3( f (c) − f (0))
= s11(a) + s21(b) + s31(c) .

Hence 1(x) is an interior point of 41(a)1(b)1(c) , that is, 1 is also an interior preserving mapping.
Since 1 : X −→ Y is a fuzzy 2-isometry, we have

N(1(a) − 1(
a + b + c

3
), 1(b) − 1(

a + b + c
3

), t)

= N(a −
a + b + c

3
, b −

a + b + c
3

, t)

= N(a − b, b −
a + b + c

3
, t) = N(a − b, 2b − a − c, |3|t)

= N(a − b, a − c, t) = N(1(a) − 1(b), 1(a) − 1(c), t) .

Similarly, we get

N(1(b) − 1(
a + b + c

3
), 1(c) − 1(

a + b + c
3

), t)

= N(1(a) − 1(b), 1(a) − 1(c), t)

= N(1(a) − 1(
a + b + c

3
), 1(c) − 1(

a + b + c
3

), t) .

Since a+b+c
3 is an interior point of the triangle 4abc and 1 is an interior preserving mapping, 1( a+b+c

3 ) is an
interior point of the triangle 41(a)1(b)1(c) . By the uniqueness of Lemma 3.6, we have

1(
a + b + c

3
) =
1(a) + 1(b) + 1(c)

3

for all a, b, c ∈ X . Thus f (x) − f (0) is additive, as desired.
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