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A Fixed Point Approach to the Stability of Sextic Lie ∗−Derivations
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Abstract. We obtain a general solution of the sextic functional equation f (ax + by) + f (ax−by) + f (bx + ay) +
f (bx − ay) = (ab)2(a2 + b2)[ f (x + y) + f (x − y)] + 2(a2

− b2)(a4
− b4)[ f (x) + f (y)] and investigate the stability

of sextic Lie ∗-derivations associated with the given functional equation via fixed point method. Also, we
present a counterexample for a single case.

1. Introduction

The stability problem of functional equations originated from a question of Ulam ([19]) concerning
the stability of group homomorphisms. Hyers ([7]) gave a first affirmative partial answer to the question
of Ulam for Banach spaces. Afterwards, the result of Hyers was generalized by Aoki ([1]) for additive
mapping. Also, Rassias ([16]) generalized Hyers’ Theorem for a unbounded Cauchy difference controlled
by ε(||x||p + ||y||p) (0 ≤ p < 1).Gavruta ([6]) replaced the factor ||x||p + ||y||p by a general control functionφ(x, y) .
Later, the result of Rassias has provided a lot of influence in the development of what we call Hyers-Ulam
stability or Hyers-Ulam-Rassias stability of functional equations. In 1996, Isac and Rassias ([9]) were first to
provide applications of new fixed point theorems for the proof of stability theory of functional equations.
Jang and Park ([10]) investigated the stability of ∗-derivations and of quadratic ∗-derivations with Cauchy
functional equation and the Jensen functional equation on Banach ∗-algebra. The stability of ∗-derivations
on Banach ∗-algebra by using fixed point alternative was proved by Park and Bodaghi and also Yang et al.;
see ([14]) and ([22]), respectively. Also, the stability of cubic Lie derivations was introduced by Fošner and
Fošner; see ([5]). For further information about these topics, we also refer the reader to ([11]), ([8]), ([2]),
([3]), ([13]) and ([15]).

Xu and et al. ([20]) introduced the sextic functional equation

f (x + 3y) + f (x − 3y) − 6[ f (x + 2y) + f (x − 2y)] + 15[ f (x + y) + f (x − y)] (1)

= 20 f (x) + 720 f (y) .

In particular, Sahoo ([18]) and Xu and Rassias ([21]) determined the general solution of a given functional
equation without assuming any regularity conditions on the unknown function. In fact, they proved that
the solution of the given functional equation is equivalent to a symmetric and additive function in each
variable.
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In this paper, we deal with the following functional equation:

f (ax + by) + f (ax − by) + f (bx + ay) + f (bx − ay) (2)

= (ab)2(a2 + b2)[ f (x + y) + f (x − y)] + 2(a2
− b2)(a4

− b4)[ f (x) + f (y)]

for all x , y ∈ X and integers a, b (a, b , 0 ,±1 and a , ±b) . We will obtain the general solution of the
functional equation (2) by using the symmetric and additive functions and investigate the Hyers-Ulam
stability of the sextic Lie ∗-derivations associated with the given functional equation. Also, we will present
a counterexample for a single case.

2. General Solution of a Sextic Functional Equation

In this section let X and Y be real vector spaces and we investigate the general solution of the functional
equation (2). Before we proceed, we would like to introduce some basic definitions concerning n-additive
symmetric mappings and key concepts which are found in ([18]) and ([21]). A function A : X → Y is
said to be additive if A(x + y) = A(x) + A(y) for all x , y ∈ X . Let n be a positive integer. A function
An : Xn

→ Y is called n-additive if it is additive in each of its variables. A function An is said to be
symmetric if An(x1 , · · · , xn) = An(xσ(1) , · · · , xσ(n)) for every permutation {σ(1) , · · · , σ(n)} of {1 , 2 , · · · ,n} . If
An(x1 , x2 , · · · , xn) is an n-additive symmetric map, then An(x) will denote the diagonal An(x , x , · · · , x) and
An(rx) = rnAn(x) for all x ∈ X and all r ∈ Q . such a function An(x) will be called a monomial function of
degree n (assuming An . 0). Furthermore the resulting function after substitution x1 = x2 = · · · = xs = x
and xs+1 = xs+2 = · · · = xn = y in An(x1 , x2 , · · · , xn) will be denoted by As,n−s(x , y) .

Theorem 2.1. A function f : X → Y is a solution of the functional equation (2) if and only if f is of the form
f (x) = A6(x) for all x ∈ X , where A6(x) is the diagonal of the 6-additive symmetric mapping A6 : X6

→ Y .

Proof. Suppose f satisfies the functional equation (2) . Letting x = y = 0 in the equation (2), we have

(4a6 + 4b6
− 2a4b2

− 2a2b4
− 4) f (0) = 0 (3)

for all x ∈ X and integers a, b (a, b , 0 ,±1 and a , ±b) . Hence we get f (0) = 0 . On taking y = 0 and x = 0 in
the equation (2), we get

f (ax) + f (bx) = a6 f (x) + b6 f (x) (4)

f (by) + f (−by) + f (ay) + f (−ay) (5)

= (ab)2(a2 + b2)[ f (y) + f (−y)] + 2(a2
− b2)(a4

− b4) f (y)

for all x , y ∈ X , respectively. Replacing x and y by −x and x in the equations (4) and (5), respectively we
have

f (−ax) + f (−bx) = a6 f (−x) + b6 f (−x) (6)

and

f (bx) + f (−bx) + f (ax) + f (−ax) (7)

= (ab)2(a2 + b2)[ f (x) + f (−x)] + 2(a2
− b2)(a4

− b4) f (x)

for all x ∈ X , respectively. If both equations (4) and (6) apply to the equation (7), we get

(a6 + b6
− a4b2

− a2b4) f (−x) − (a6 + b6
− a4b2

− a2b4) f (x) = 0 ,
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that is, f (−x) = f (x) for all x ∈ X . Now, we can rewrite the functional equation (2) in the following form

f (x) −
1

2(a2 − b2)(a4 − b4)
f (ax + by) −

1
2(a2 − b2)(a4 − b4)

f (ax − by)

−
1

2(a2 − b2)(a4 − b4)
f (bx + ay) −

1
2(a2 − b2)(a4 − b4)

f (bx − ay)

+
(ab)2

2(a2 − b2)2 f (x + y) +
(ab)2

2(a2 − b2)2 f (x − y) + f (y) = 0

for all x , y ∈ X and integers a, b (a, b , 0 ,±1 and a , ±b) . By Theorem 3.5 and 3.6 in ([21]), f is a generalized
polynomial function of degree at most 6, that is, f is of the form

f (x) = A6(x) + A5(x) + A4(x) + A3(x) + A2(x) + A1(x) + A0(x)

for all x ∈ X , where A0(x) = A0 is an arbitrary element of Y and Ai(x) is the diagonal of the i-additive
symmetric mapping Ai : Xi

→ Y for i = 1, 2, · · · , 6 . Since f (0) = 0 and f (−x) = f (x) for all x ∈ X , we get
A0(x) = A0 = 0 and A1(x) = A3(x) = A5(x) = 0 . Hence we have

f (x) = A6(x) + A4(x) + A2(x) ,

for all x ∈ X . The equations (4) , (5) and An(rx) = rnAn(x) for all r ∈ Q imply that

A4(x) =
(a2 + b2) − (a6 + b6)
(a6 + b6) − (a4 + b4)

A2(x)

for all x ∈ X and integers a, b (a, b , 0 ,±1 and a , ±b) . Hence A4(x) = A2(x) = 0 , that is, f (x) = A6(x) for
all x ∈ X , as desired. Conversely, assume that f (x) = A6(x) for all x ∈ X , where A6(x) is the diagonal of a
6-additive symmetric mapping A6 : X6

→ Y . Note that

A6(qx + ry) = q6A6(x) + 6q5rA5,1(x, y) + 15q4r2A4,2(x, y) + 20q3r3A3,3(x, y)
+ 15q2r4A2,4(x, y) + 6qr5A1,5(x, y) + r6A6(y)

csAs,t(x, y) = As,t(cx, y) , ctAs,t(x, y) = As,t(x, cy)

where 1 ≤ s, t ≤ 5 and c ∈ Q . Thus we may conclude that f satisfies the equation (2).

From now on, we call the mapping f a generalized sextic mapping if f satisfies the equation (2).

3. Hyers-Ulam-Rassias Stability of Sextic Lie ∗-Derivations

In this section, we will investigate the Hyers-Ulam-Rassias stability of functional equation f in (2) when
b = 1 . Before proceeding this section, we will introduce some definitions and notations. We assume that
A is a complex normed ∗-algebra and M is a Banach A-bimodule. We will use the same symbol || · || as
norms on a normed algebra A and a normed A-bimodule M . A mapping f : A→M is a sextic homogeneous
mapping if f (µa) = µ6 f (a) , for all a ∈ A and µ ∈ C . A sextic homogeneous mapping f : A → M is called a
sextic derivation if

f (xy) = f (x)y6 + x6 f (y)

holds for all x , y ∈ A . For all x , y ∈ A , the symbol [x, y] will denote the commutator xy − yx . We say that a
sextic homogeneous mapping f : A→M is a sextic Lie derivation if

f ([x, y]) = [ f (x), y6] + [x6, f (y)]

for all x, y ∈ A . In addition, if f satisfies in condition f (x∗) = f (x)∗ for all x ∈ A , then it is called the sextic Lie
∗-derivation.
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Example 3.1. Let A = C be a complex field endowed with the map z 7→ z∗ = z̄ (where z̄ is the complex conjugate of
z). We define f : A→ A by f (a) = a6 for all a ∈ A . Then f is sextic and

f ([a, b]) = [ f (a), b6] + [a6, f (b)] = 0

for all a ∈ A . Also,
f (a∗) = f (ā) = ā6 = f (a) = f (a)∗

for all a ∈ A . Thus f is a sextic Lie ∗-derivation.

In the following, T1 will stand for the set of all complex units, that is,

T1 = {µ ∈ C | |µ| = 1} .

For the given mapping f : A→M , we consider

∆µ f (x, y) := f (kµx + µy) + f (kµx − µy) + f (µx + kµy) + f (µx − kµy) (8)

−µ6k2(k2 + 1)[ f (x + y) + f (x − y)] − 2µ6(k2
− 1)(k4

− 1)[ f (x) + f (y)]

and

∆ f (x, y) := f ([x, y]) − [ f (x), y6] − [x6, f (y)]

for all x, y ∈ A , µ ∈ C and k ∈ Z (k , 0 ,±1) .

Theorem 3.2. Suppose that f : A→M is a mapping with f (0) = 0 for which there exists a functionφ : A5
→ [0, ∞)

such that

φ̃(a, b, x, y, z) :=
∞∑
j=0

1
|k|6 jφ(k ja, k jb, k jx, k jy, k jz) < ∞ (9)

||∆µ f (a, b)|| ≤ φ(a, b, 0, 0, 0) (10)

||∆ f (x, y) + f (z∗) − f (z)∗|| ≤ φ(0, 0, x, y, z) (11)

for all µ ∈ T1
1

n0

= {eiθ
| 0 ≤ θ ≤ 2π

n0
} and all a, b, x, y, z ∈ A in which n0 ∈N . Also, if for each fixed a ∈ A the mapping

r 7→ f (ra) from R to M is continuous, then there exists a unique sextic Lie ∗-derivation S : A→M satisfying

|| f (a) − S(a)|| ≤
1

2|k|6
φ̃(a, 0, 0, 0, 0) , (12)

for all a ∈ A .

Proof. Letting b = 0 and µ = 1 in the inequality (10), we have

|| f (a) −
1
k6 f (ka)|| ≤

1
2|k|6

φ(a, 0, 0, 0, 0) (13)

for all a ∈ A . By using the induction, it is easy to show that

||
1

k6n f (kna) −
1

k6m f (kma)|| ≤
1

2|k|6

n−1∑
j=m

φ(k ja, 0, 0, 0, 0)
|k|6 j (14)
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for n > m ≥ 0 and a ∈ A . The inequalities (9) and (14) imply that the sequence { 1
k6n f (kna)}∞n=0 is a Cauchy

sequence. Since M is complete, the Cauchy sequence is convergent. Hence we can define a mapping
S : A→M as

S(a) = lim
n→∞

1
k6n f (kna) (15)

for a ∈ A . On taking m = 0 in the inequality (14), we have

||
1

k6n f (kna) − f (a)|| ≤
1

2|k|6

n−1∑
j=0

φ(k ja, 0, 0, 0, 0)
|k|6 j (16)

for n > 0 and a ∈ A . On taking n→∞ in the inequality (16), the inequalities (9) implies that the inequality
(12) holds.

Now, we will show that the mapping L is a unique sextic Lie ∗-derivation satisfying the inequality (12).
We note that

||∆µS(a, b)|| = lim
n→∞

1
|k|6n ||∆µ f (kna, knb)|| (17)

≤ lim
n→∞

φ(kna, knb, 0, 0, 0)
|k|6n = 0 ,

for all a, b ∈ A and µ ∈ T1
1

n0

. On taking µ = 1 in the inequality (17), it follows that the mapping S is a sextic

mapping. Also, the inequality (17) implies that ∆µS(a, 0) = 0 . Hence

S(µa) = µ6S(a)

for all a ∈ A and µ ∈ T1
1

n0

. Let µ ∈ T1 = {λ ∈ C | |λ| = 1} . Then µ = eiθ , where 0 ≤ θ ≤ 2π . Let µ1 = µ
1

n0 = e
iθ
n0 .

Hence we have µ1 ∈ T1
1

n0

. Then

S(µa) = S(µn0
1 a) = µ6n0

1 S(a) = µ6S(a)

for all µ ∈ T1 and a ∈ A . Suppose that ρ is any continuous linear functional on A and a is a fixed element in
A . Then we can define a function 1 : R→ R by

1(r) = ρ(S(ra))

for all r ∈ R . It is easy to check that 1 is sextic. Let

1n(r) = ρ
( f (knra)

k6n

)
for all n ∈N and r ∈ R .

Note that 1 is measurable because 1 is the the pointwise limit of the sequence of measurable functions
1n . Hence 1 is continuous see ([4]) and

1(r) = r61(1)

for all r ∈ R . Thus
ρ(S(ra)) = 1(r) = r61(1) = r6ρ(S(a)) = ρ(r6S(a))

for all r ∈ R . Since ρ was an arbitrary continuous linear functional on A we may conclude that

S(ra) = r6S(a)
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for all r ∈ R . Let µ ∈ C (µ , 0) . Then µ
|µ| ∈ T

1 . Hence

S(µa) = S
( µ
|µ|
|µ|a

)
=

( µ
|µ|

)6
S(|µ|a) =

( µ
|µ|

)6
|µ|6S(a) = µ6S(a)

for all a ∈ A and µ ∈ C (µ , 0) . Since a was an arbitrary element in A , we may conclude that S is sextic
homogeneous.

Next, replacing x and y by knx and kny , respectively, and letting z = 0 in the inequality (11), we have

||∆S(x, y)|| = lim
n→∞
||
∆ f (knx, kny)

k6n ||

≤ lim
n→∞

1
|k|6nφ(0, 0, knx, kny, 0) = 0

for all x, y ∈ A . Hence we have ∆S(x, y) = 0 for all x, y ∈ A . That is, S is a sextic Lie derivation. Letting
x = y = 0 and replacing z by knz in the inequality (11), we get∣∣∣∣∣∣∣∣ f (knz∗)

k6n −
f (knz)∗

k6n

∣∣∣∣∣∣∣∣ ≤ φ(0, 0, 0, 0, knz)
|k|6n (18)

for all z ∈ A . As n→∞ in the inequality (18), we have

S(z∗) = S(z)∗

for all z ∈ A . This means that S is a sextic Lie ∗-derivation. Now, assume S′ : A → A is another sextic
∗-derivation satisfying the inequality (12). Then

||S(a) − S′(a)|| =
1
|k|6n ||S(kna) − S′(kna)||

≤
1
|k|6n

(
||S(kna) − f (kna)|| + || f (kna) − S′(kna)||

)
≤

1
2|k|6n+1

∞∑
j=0

1
|k|6 jφ(k j+na, 0, 0, 0, 0)

≤
1

2|k|6n+1 φ̃(kna, 0, 0, 0, 0) ,

which tends to zero as n → ∞ , for all a ∈ A . Thus S(a) = S′(a) for all a ∈ A . This proves the uniqueness of
S .

Corollary 3.3. Let θ , r be positive real numbers with r < 6 and let f : A→M be a mapping with f (0) = 0 such that

||∆µ f (a, b)|| ≤ θ(||a||r + ||b||r) (19)

||∆ f (x, y) + f (z∗) − f (z)∗|| ≤ θ(||x||r + ||y||r + ||z||r) (20)

for all µ ∈ T1
1

n0

and a, b, x, y, z ∈ A . Then there exists a unique sextic Lie ∗-derivation S : A→M satisfying

|| f (a) − S(a)|| ≤
θ||a||r

2(|k|6 − |k|r)

for all a ∈ A .
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Proof. On taking φ(a, b, x, y, z) = θ(||a||r + ||b||r + ||x||r + ||y||r + ||z||r) for all a, b, x, y, z ∈ A , it is easy to show that
the inequalities (19) and (20) hold. Similar to the proof of Theorem 3.2, we have

|| f (a) − S(a)|| ≤
1

2|k|6
φ̃(a, 0, 0, 0, 0, )

=
θ||a||r

2|k|6

∞∑
j=0

( |k|r
|k|6

) j

=
θ||a||r

2|k|6
1

1 − |k|
r

|k|6
=

θ||a||r

2(|k|6 − |k|r)

for all a ∈ A and r < 6 .

In the following corollaries, we show the hyperstability for the sextic Lie ∗-derivations.

Corollary 3.4. Let r be positive real numbers with r < 6 and let f : A→M be a mapping with f (0) = 0 such that

||∆µ f (a, b)|| ≤ ||a||r||b||r

||∆ f (x, y) + f (z∗) − f (z)∗|| ≤ ||x||r||y||r||z||r

for all µ ∈ T1
1

n0

and a, b, x, y, z ∈ A . Then f is a sextic Lie ∗-derivation on A .

Proof. On taking φ(a, b, x, y, z) = (||a||r + ||x||r)(||b||r + ||y||r||z||r) , we have

||∆µ f (a, b)|| ≤ φ(a, b, 0, 0, 0) = ||a||r||b||r

||∆ f (x, y) + f (z∗) − f (z)∗|| ≤ φ(0, 0, x, y, z) = ||x||r||y||r||z||r

for all µ ∈ T1
1

n0

and a, b, x, y, z ∈ A . Similar to the proof of Theorem 3.2, we have

|| f (a) − S(a)|| ≤
1

2|k|6
φ̃(a, 0, 0, 0, 0)

=
1

2|k|6

∞∑
j=0

1
|k|6 jφ(a, 0, 0, 0, 0) = 0

for all a ∈ A and r < 6 . Hence the inequality (12) implies that f = S , that is, f is a sextic Lie ∗-derivation on
A .

Corollary 3.5. Let r be positive real numbers with r < 6 and let f : A→M be a mapping with f (0) = 0 such that

||∆µ f (a, b)|| ≤ ||a||r||b||r (21)

||∆ f (x, y) + f (z∗) − f (z)∗|| ≤ ||x||r(||y||r + ||z||r) (22)

for all µ ∈ T1
1

n0

and a, b, x, y, z ∈ A . Then f is a sextic Lie ∗-derivation on A .

Proof. On taking φ(a, b, x, y, z) = (||a||r + ||x||r)(||b||r + ||y||r + ||z||r) , it is easy to show that the inequalities (21)
and (22) hold. Similar to the proof of Theorem 3.2, we my conclude that the inequality 12) is true, that is,

|| f (a) − S(a)|| ≤
1

2|k|6

∞∑
j=0

1
|k|6 jφ(a, 0, 0, 0, 0) = 0

for all a ∈ A and r < 6 . Hence the inequality (12) implies that f = S , that is, f is a sextic Lie ∗-derivation on
A .



D. Kang, H. Koh / Filomat 31:15 (2017), 4933–4944 4940

4. Stability of Sextic Lie *-Derivations via a Fixed Point Method

In this section, we will investigate the stability of the given functional equation (8) using the alternative
fixed point method. Before proceeding the proof, we will state the theorem, the alternative of fixed point;
see ([12]) and ([17]).

Definition 4.1. Let X be a set. A function d : X × X→ [0, ∞] is called a generalized metric on X if d satisfies
(1) d(x, y) = 0 if and only if x = y ;
(2) d(x, y) = d(y, x) for all x, y ∈ X ;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

Theorem 4.2 ( The alternative of fixed point ([12]), ([17]) ). Suppose that we are given a complete generalized
metric space (Ω, d) and a strictly contractive mapping T : Ω → Ω with Lipschitz constant l . Then for each given
x ∈ Ω , either

d(Tnx, Tn+1x) = ∞ for all n ≥ 0 ,

or there exists a natural number n0 such that

1. d(Tnx, Tn+1x) < ∞ for all n ≥ n0 ;
2. The sequence (Tnx) is convergent to a fixed point y∗ of T ;
3. y∗ is the unique fixed point of T in the set

4 = {y ∈ Ω|d(Tn0 x, y) < ∞} ;

4. d(y, y∗) ≤ 1
1−l d(y,Ty) for all y ∈ 4 .

Theorem 4.3. Let f : A → M be a continuous mapping with f (0) = 0 and let φ : A5
→ [0,∞) be a continuous

mapping such that

||∆µ f (a, b)|| ≤ φ(a, b, 0, 0, 0) (23)

||∆ f (x, y) + f (z∗) − f (z)∗|| ≤ φ(0, 0, x, y, z) (24)

for all µ ∈ T1
1

n0

and a, b, x, y, z ∈ A . If there exists a constant l ∈ (0, 1) such that

φ(ka, kb, kx, ky, kz) ≤ |k|6lφ(a, b, x, y, z) (25)

for all a, b, x, y, z ∈ A , then there exists a sextic Lie ∗-derivation S : A→M satisfying

|| f (a) − S(a)|| ≤
1

2|k|6(1 − l)
φ(a, 0, 0, 0, 0) (26)

for all a ∈ A .

Proof. Consider the set
Ω = {1 | 1 : A→ A , 1(0) = 0}

and introduce the generalized metric on Ω ,

d(1, h) = inf {c ∈ (0,∞) | ‖ 1(a) − h(a) ‖≤ cφ(a, 0, 0, 0, 0) , for all a ∈ A} .

It is easy to show that (Ω, d) is complete. Now we define a function T : Ω→ Ω by

T(1)(a) =
1
k6 1(ka) (27)



D. Kang, H. Koh / Filomat 31:15 (2017), 4933–4944 4941

for all a ∈ A . Note that for all 1, h ∈ Ω , let c ∈ (0, ∞) be an arbitrary constant with d(1, h) ≤ c . Then

||1(a) − h(a)|| ≤ cφ(a, 0, 0, 0, 0) (28)

for all a ∈ A . Letting a = ka in the inequality (28) and using both inequalities (25) and (27), we have

||T(1)(a) − T(h)(a)|| =
1
|k|6
||1(ka) − h(ka)||

≤
1
|k|6

cφ(ka, 0, 0, 0, 0) ≤ c lφ(a, 0, 0, 0, 0) ,

that is,
d(T1, Th) ≤ c l .

Hence we have that
d(T1, Th) ≤ l d(1, h) ,

for all 1, h ∈ Ω , that is, T is a strictly self-mapping of Ω with the Lipschitz constant l . Letting µ = 1 , b = 0
in the inequality (23), we get

||
1
k6 f (ka) − f (a)|| ≤

1
2|k|6

φ(a, 0, 0, 0, 0)

for all a ∈ A . This means that
d(T f , f ) ≤

1
2|k|6

.

Since limn→∞ d(Tn f ,S) = 0 , there exists a fixed point S of T in Ω such that

S(a) = lim
n→∞

f (kna)
k6n , (29)

for all a ∈ A . Hence
d( f ,S) ≤

1
1 − l

d(T f , f ) ≤
1

2|k|6
1

1 − l
.

This implies that the inequality (26) holds for all a ∈ A . Since l ∈ (0, 1) , the inequality (25) shows that

lim
n→∞

φ(kna, knb, knx, kny, knz)
|k|6n = 0 . (30)

Replacing a and b by kna and knb , respectively, in the inequality (23), we have

1
|k|6n ||∆µ f (kna, knb)|| ≤

φ(kna, knb, 0, 0, 0)
|k|6n .

On taking the limit as n tend to infinity, we have ∆µ f (a, b) = 0 for all a , b ∈ A and all µ ∈ T1
1

n0

. The remains

are similar to the proof of Theorem 3.2.

Corollary 4.4. Let θ , r be positive real numbers with r < 6 and let f : A→M be a mapping with f (0) = 0 such that

||∆µ f (a, b)|| ≤ θ(||a||r + ||b||r) (31)

||∆ f (x, y) + f (z∗) − f (z)∗|| ≤ θ(||x||r + ||y||r + ||z||r) (32)

for all µ ∈ T1
1

n0

and a, b, x, y, z ∈ A . Then there exists a unique sextic Lie ∗-derivation S : A→M satisfying

|| f (a) − S(a)|| ≤
θ||a||r

2|k|6(1 − l)

for all a ∈ A .
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Proof. On taking φ(a, b, x, y, z) = θ(||a||r + ||b||r + ||x||r + ||y||r + ||z||r) for all a, b, x, y, z ∈ A , it is easy to show that
the inequalities (31) and (32) hold. Similar to the proof of Theorem 4.3, we have

|| f (a) − S(a)|| ≤
1

2|k|6(1 − l)
φ(a, 0, 0, 0, 0, ) =

θ||a||r

2|k|6(1 − l)

for all a ∈ A and r < 6 .

In the following corollaries, we show the hyperstability for the sextic Lie ∗-derivations.

Corollary 4.5. Let r be positive real numbers with r < 6 and let f : A→M be a mapping with f (0) = 0 such that

||∆µ f (a, b)|| ≤ ||a||r||b||r

||∆ f (x, y) + f (z∗) − f (z)∗|| ≤ ||x||r||y||r||z||r

for all µ ∈ T1
1

n0

and a, b, x, y, z ∈ A . Then f is a sextic Lie ∗-derivation on A .

Proof. On taking φ(a, b, x, y, z) = (||a||r + ||x||r)(||b||r + ||y||r||z||r) in Theorem 4.3 for all a, b, x, y, z ∈ A , we have
φ̃(a, 0, 0, 0, 0) = 0 .Hence the inequality (26) implies that f = S , that is, f is a sextic Lie ∗-derivation on A .

Corollary 4.6. Let r be positive real numbers with r < 6 and let f : A→M be a mapping with f (0) = 0 such that

||∆µ f (a, b)|| ≤ ||a||r||b||r

||∆ f (x, y) + f (z∗) − f (z)∗|| ≤ ||x||r(||y||r + ||z||r)

for all µ ∈ T1
1

n0

and a, b, x, y, z ∈ A . Then f is a sextic Lie ∗-derivation on A .

Proof. On taking φ(a, b, x, y, z) = (||a||r + ||x||r)(||b||r + ||y||r + ||z||r) in Theorem 4.3 for all a, b, x, y, z ∈ A ,we have
φ̃(a, 0, 0, 0, 0) = 0 .Hence the inequality (26) implies that f = S , that is, f is a sextic Lie ∗-derivation on A .

5. Counterexample

In this section, we will present a counterexample to show that the functional equation (2) is not stable
for r = 6 and µ = 1 in Corollary 3.3.

Example 5.1. Let φ : R→ R be a mapping defined by

φ(x) =

{
θx6 for |x| < 1
θ otherwise

where θ > 0 is a constant and a mapping f : R→ R by

f (x) =

∞∑
i=0

φ(kix)
k6i (33)

for all x ∈ R . Then the mapping f satisfies the inequality

|∆1 f (x, y)| ≤ (2k6
− k4
− k2 + 4)

2k18θ

k6 − 1
(|x|6 + |y|6) (34)

for all x ∈ R . Then there does not exist a sextic mapping S : R→ R and a constant β > 0 such that

| f (x) − S(x)| ≤ β|x|6 (35)

for all x ∈ R .
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Proof. The definitions of φ and f imply that

| f (x)| =
∣∣∣∣ ∞∑

i=0

φ(kix)
k6i

∣∣∣∣ ≤ ∞∑
i=0

θ

k6i =
θk6

k6 − 1

for all x ∈ R . Hence f is bounded by θk6

k6−1 . If |x|6 + |y|6 ≥ 1 , then the inequality (34) holds. Now, we suppose
that 0 < |x|6 + |y|6 < 1 . Then there exists a positive integer t such that

1
k6(t+2)

≤ |x|6 + |y|6 <
1

k6(t+1)
. (36)

Since |x|6 + |y|6 < 1
k6(t+1) we have

k6tx6 <
1
k6 and k6ty6 <

1
k6 .

That is,

ktx <
1
k

and kty <
1
k
.

These imply that kt−1x, kt−1y, kt−1(x + y), kt−1(x− y), kt−1(kx + y), kt−1(kx− y), kt−1(x + ky), kt−1(x− ky) ∈ (−1, 1) .
Hence we obtain that k jx, k jy, k j(x + y), k j(x − y), k j(kx + y), k j(kx − y), k j(x + ky), k j(x − ky) ∈ (−1, 1) for each
j = 0, 1, · · · , t − 1 . Also, for each j = 0, 1, · · · , t − 1 ,

φ(k j(kx + y)) + φ(k j(kx − y)) + φ(k j(x + ky)) + φ(k j(x − ky))
−k2(k2 + 1)[φ(k j(x + y)) + φ(k j(x − y))]
−2(k2

− 1)(k4
− 1)[φ(k jx) + φ(k jy)] = 0 .

From the definition of f and the inequality (36), we have

|∆1 f (x, y)| ≤

∞∑
j=0

{
φ(k j(kx + y)) + φ(k j(kx − y))

+φ(k j(x + ky)) + φ(k j(x − ky))
−k2(k2 + 1)[φ(k j(x + y)) + φ(k j(x − y))]

−2(k2
− 1)(k4

− 1)[φ(k jx) + φ(k jy)]
}

≤

∞∑
j=t

2θ(2k6
− k4
− k2 + 4)

k6 j

≤ 2θk12(2k6
− k4
− k2 + 4)

1
k6(t+2)

k6

k6 − 1

≤ (2k6
− k4
− k2 + 4)

2k18θ

k6 − 1
(|x|6 + |y|6) .

We claim that the sextic functional equation (2) is not stable for r = 6 and µ = 1 in Corollary 3.3. Assume
that there exists a sextic mapping S : R → R and a constant β > 0 satisfying the inequality (35). Since
f is bounded and continuous for all x ∈ R, S is bounded on any open interval containing the origin and
continuous at the origin. In view of Corollary 3.3, S(x) must have the form S(x) = γx6 for all x ∈ R . Hence
we have that

| f (x)| ≤ (β + |γ|)|x|6 . (37)

But we can choose a positive integer m with mθ > β + |γ| . If x ∈ (0 , 1
k6(m−1) ) , then k6t

∈ (0 , 1) for all
t = 0, 1, · · · ,m − 1 . For this x , we have

f (x) =

∞∑
i=0

φ(kix)
k6i ≥

m−1∑
i=0

θ(kix)6

k6i = mθx6 > (β + |γ|)x6
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This implies that it is a contradiction to the inequality (37). Therefore the sextic functional equation (2) is
not stable when r = 6 and µ = 1 .
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