Evaluation of Hessenberg Determinants via Generating Function Approach

Emrah Kılıça, Talha Arıkan ${ }^{\text {b }}$
${ }^{a}$ TOBB University of Economics and Technology, Department of Mathematics 06560, Ankara Turkey
${ }^{b}$ Hacettepe University, Department of Mathematics, Ankara Turkey

Abstract

In this paper, we will present various results on computing of wide classes of Hessenberg matrices whose entries are the terms of any sequence. We present many new results on the subject as well as our results will cover and generalize earlier many results by using generating function method. Moreover, we will present a new approach on computing Hessenberg determinants, whose entries are general higher order linear recursions with arbitrary constant coefficients, based on finding an adjacency-factor matrix. We will give some interesting showcases to show how to use our new method.

1. Introduction

The $n \times n$ lower Hessenberg matrix H_{n} is defined as follows

$$
H_{n}=\left[\begin{array}{cccccc}
h_{11} & h_{12} & & & & 0 \\
h_{21} & h_{22} & h_{23} & & & \\
h_{31} & h_{32} & h_{33} & \ddots & & \\
\vdots & \vdots & \vdots & \ddots & \ddots & \\
h_{n-1,1} & h_{n-1,2} & h_{n-1,3} & \cdots & \ddots & h_{n-1, n} \\
h_{n 1} & h_{n 2} & h_{n 3} & \cdots & \cdots & h_{n n}
\end{array}\right]
$$

Similarly, the $n \times n$ upper Hessenberg matrix is considered as transpose of the matrix H_{n}. Throughout the paper, we are interested in a lower Hessenberg matrix so in fact our results will be also valid for an upper Hessenberg matrix. Hessenberg matrices are one of the important matrices in numerical analysis [7, 9]. For example, the Hessenberg decomposition played an important role in the matrix eigenvalues computation [9].

The authors of $[1,3,5,13,15,17,18,24,25]$ studied algebraic properties of some Hessenberg matrices such as inverses, determinants, permanents etc. For example, Cahill et al. [3] gave a recurrence relation for the determinant of the matrix H_{n} as follows

$$
\operatorname{det} H_{n}=h_{n n} \operatorname{det} H_{n-1}+\sum_{r=1}^{n-1}\left((-1)^{n-r} h_{n r} \prod_{j=r}^{n-1} h_{j, j+1} \operatorname{det} H_{r-1}\right)
$$

[^0]where $H_{0}=1$ for $n>0$.
Meanwhile some authors computed determinants and permanents of various tridiagonal matrices which are in fact Hessenberg matrices [4, 12, 14, 19-21]. For example, in [14], Kılıç et al. gave the following result
\[

\left|$$
\begin{array}{ccccc}
2 & 1 & & & 0 \\
-1 & 2 & 1 & & \\
& -1 & 2 & \ddots & \\
& & \ddots & \ddots & 1 \\
0 & & & -1 & 2
\end{array}
$$\right|=P_{n+1}
\]

where P_{n} is the nth Pell number.
Moreover the authors of [6, 7] gave closed formulas for the inverses of some Hessenberg matrices as well as algorithms to compute their inverses and determinants. The authors of $[2,11]$ gave combinatorial approach to compute the determinants of some Hessenberg matrices.

For $n \geq k$ and any reals $c_{i}, 1 \leq i \leq k$, define the k th order linear recursive sequence $\left\{u_{n}\right\}$ with constant coefficients as

$$
\begin{equation*}
u_{n}=c_{1} u_{n-1}+c_{2} u_{n-2}+c_{3} u_{n-3}+\cdots+c_{k} u_{n-k} \tag{1}
\end{equation*}
$$

with arbitrary initials u_{t} for $0 \leq t<k$ and assumed that at least one of them is different from zero.
We give the following table for some special cases of the sequence $\left\{u_{n}\right\}$:

Order	Coefficients	Initials	
2	$c_{1}=c_{2}=1$	$u_{0}=0, u_{1}=1$	Fibonacci sequence $\left\{F_{n}\right\}$
2	$c_{1}=p, c_{2}=q$	$u_{0}=0, u_{1}=1$	Gen. Fibonacci sequence $\left\{U_{n}\right\}$
2	$c_{1}=2, c_{2}=1$	$u_{0}=0, u_{1}=1$	Pell sequence $\left\{P_{n}\right\}$
2	$c_{1}=c_{2}=1$	$u_{0}=2, u_{1}=1$	Lucas sequence $\left\{L_{n}\right\}$
2	$c_{1}=p, c_{2}=q$	$u_{0}=2, u_{1}=p$	Gen. Lucas sequence $\left\{V_{n}\right\}$
2	$c_{1}=p, c_{2}=-q$	$u_{0}=a, u_{1}=b$	Horadam sequence $\left\{W_{n}\right\}$
2	$c_{1}=1, c_{2}=2$	$u_{0}=0, u_{1}=1$	Jacobsthal sequence $\left\{J_{n}\right\}$
3	$c_{1}=c_{2}=c_{3}=1$	$u_{0}=u_{1}=0, u_{2}=1$	Tribonacci sequence $\left\{T_{n}\right\}$
Table 1			

Recently, Macfarlane [22] considered the following Hessenberg matrix whose entries consist of the terms of the sequence $\left\{W_{n}\right\}$:

$$
A_{n}=\left[\begin{array}{ccccccc}
W_{1} & W_{2} & W_{3} & \cdots & W_{n-2} & W_{n-1} & W_{n} \\
-x & W_{1} & W_{2} & \cdots & W_{n-3} & W_{n-2} & W_{n-1} \\
& -x & W_{1} & \cdots & W_{n-4} & W_{n-3} & W_{n-2} \\
& & \ddots & \ddots & \vdots & \vdots & \vdots \\
& & & \ddots & W_{1} & W_{2} & W_{3} \\
& & & & -x & W_{1} & W_{2} \\
0 & & & & & -x & W_{1}
\end{array}\right]
$$

where $\left\{W_{n}\right\}$ is the Horadam sequence as in Table 1. By using the cofactor expansion of the determinant, he showed that the sequence $\left\{\operatorname{det} A_{n}\right\}$ satisfies the recurrence for $n>2$,

$$
\operatorname{det} A_{n}=(b+p x) \operatorname{det} A_{n-1}-q x(a+x) \operatorname{det} A_{n-2} .
$$

For any sequence $\left\{a_{n}\right\}$, the generating function of $\left\{a_{n}\right\}$ is the power series [27]:

$$
A(x)=\sum_{k \geq 0} a_{k} x^{k}
$$

For example, the generating function of the Fibonacci sequence $\left\{F_{n}\right\}$ is

$$
F(x)=\sum_{k \geq 0} F_{k} x^{k}=\frac{x}{1-x-x^{2}} .
$$

In general, the generating function of the sequence $\left\{u_{n}\right\}$ given in (1) is

$$
U(x)=\sum_{k \geq 0} u_{k} x^{k}=\frac{p(x)}{1-c_{1} x-c_{2} x^{2}-\cdots-c_{k} x^{k}}
$$

where the polynomial $p(x)$ is determined by the initial values of the sequence $\left\{u_{n}\right\}$.
Recently, by using generating function method, Merca [23] showed that determinant of an $n \times n$ ToeplitzHessenberg matrix is expressed as a sum over the integer partitions of n.

Getu [8] computed determinants of a class of Hessenberg matrices by using generating function method. He considered the infinite matrix

$$
D=\left[\begin{array}{ccccc}
b_{0} & 1 & 0 & 0 & \ldots \\
b_{1} & c_{1} & 1 & 0 & \ldots \\
b_{2} & c_{2} & c_{1} & 1 & \ldots \\
b_{3} & c_{3} & c_{2} & c_{1} & \ldots \\
b_{4} & c_{4} & c_{3} & c_{2} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Then he showed that if the following equation holds

$$
A(x)=\frac{B(x)}{C(x)+1},
$$

then

$$
a_{n}=(-1)^{n} \operatorname{det} D_{n},
$$

where $A(x), B(x)$ and $C(x)$ are the generating functions of the sequences $\left\{a_{k+1}\right\},\left\{b_{k}\right\}$ and $\left\{c_{k+1}\right\}$, resp.
In this work, we use the generating function method to determine the relationships between determinants of three classes of Hessenberg matrices whose entries are terms of the certain sequences and generating functions of these sequences. So determinants of these Hessenberg matrices could be easily found by these relations. Some of our results will generalize the results of [8]. We show that earlier computed Hessenberg determinants in $[12-16,18,21,22,25]$ with cofactor expansion could much easily be recomputed by our method. Moreover we compute two new classes of Hessenberg matrices whose determinants have not been computed before. Finally, we give an elegant method to compute the determinants of Hessenberg matrices whose entries consist of the terms of the recursive sequences: our approach is to find an adjacency-factor matrix and use the results of Section 2.

2. Evaluating Hessenberg Determinants via Generating Functions

Let $\left\{b_{n}\right\}_{n \geq 0}$ and $\left\{c_{n}\right\}_{n \geq 1}$ be any sequences. Denote their generating functions as $B(x)=\sum_{k \geq 0} b_{k} x^{k}$ and $C(x)=\sum_{k \geq 1} c_{k} x^{k}$, resp. To generalize the result of [8], we define the Hessenberg matrix $A_{n}(r, s)$ of order $n+1$:

$$
A_{n}(r, s):=\left[\begin{array}{ccccccc}
b_{0} & r & & & & & 0 \tag{2}\\
b_{1} & c_{1} & s & & & & \\
b_{2} & c_{2} & c_{1} & r & & & \\
b_{3} & c_{3} & c_{2} & c_{1} & s & & \\
\vdots & \vdots & \vdots & \cdots & \ddots & \ddots & \\
b_{n-1} & c_{n-1} & c_{n-2} & \cdots & \cdots & c_{1} & d_{n}(r, s) \\
b_{n} & c_{n} & c_{n-1} & \cdots & \cdots & c_{2} & c_{1}
\end{array}\right],
$$

where

$$
d_{n}(r, s)=\left\{\begin{array}{cc}
r & \text { if } n \text { is odd }, \\
s & \text { if } n \text { is even },
\end{array}\right.
$$

for arbitrary nonzero real numbers r and s. Briefly, we use A_{n} instead of $A_{n}(r, s)$ if there is no restrictions on r and s.

When $r=s=1$, the matrix $A_{n}(1,1)$ is considered in [8] and the author computed its determinant via generating functions. To compute determinant of A_{n} via generating function method, we have the following result:

Theorem 2.1. If

$$
A(x)=\frac{B(x)\left(C(-x)+\frac{r+s}{2}\right)-B(-x)\left(\frac{r-s}{2}\right)}{C(x) C(-x)+\left(\frac{r+s}{2}\right)(C(x)+C(-x))+r s}
$$

then (i) for even n such that $n=2 t$,

$$
\operatorname{det} A_{n}=(-1)^{n} r^{t+1} s^{t} a_{n}
$$

(ii) for odd n such that $n=2 t+1$,

$$
\operatorname{det} A_{n}=(-1)^{n} r^{t+1} s^{t+1} a_{n}
$$

where $A(x)$ is the generating function of $\left\{a_{n}\right\}$.
Proof. We consider the infinite linear system of equations

$$
\left[\begin{array}{cccccc}
r & & & & & 0 \tag{3}\\
c_{1} x & s x & & & & \\
c_{2} x^{2} & c_{1} x^{2} & r x^{2} & & & \\
c_{3} x^{3} & c_{2} x^{3} & c_{1} x^{3} & s x^{3} & & \\
c_{4} x^{4} & c_{3} x^{4} & c_{2} x^{4} & c_{1} x^{4} & r x^{4} & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
b_{0} \\
b_{1} x \\
b_{2} x^{2} \\
b_{3} x^{3} \\
b_{4} x^{4} \\
\vdots
\end{array}\right] .
$$

Here we write

$$
\begin{aligned}
r a_{0} & =b_{0} \\
c_{1} a_{0} x+s a_{1} x & =b_{1} x \\
c_{2} a_{0} x^{2}+c_{1} a_{1} x^{2}+r a_{2} x^{2} & =b_{2} x^{2} \\
c_{3} a_{0} x^{3}+c_{2} a_{1} x^{3}+c_{1} a_{2} x^{3}+s a_{3} x^{3} & =b_{3} x^{3} \\
\vdots & =\vdots
\end{aligned}
$$

By summing both sides of the above equalities, we obtain

$$
\begin{equation*}
A(x) C(x)+r \sum_{k \geq 0} a_{2 k} x^{2 k}+s \sum_{k \geq 0} a_{2 k+1} x^{2 k+1}=B(x) . \tag{4}
\end{equation*}
$$

Since

$$
\sum_{k \geq 0} a_{2 k} x^{2 k}=\frac{A(x)+A(-x)}{2} \text { and } \sum_{k \geq 0} a_{2 k+1} x^{2 k+1}=\frac{A(x)-A(-x)}{2},
$$

Eq. (4) could be rewritten as

$$
A(x)\left[C(x)+\frac{r+s}{2}\right]+A(-x)\left[\frac{r-s}{2}\right]=B(x)
$$

Taking $(-x)$ instead of x, we get

$$
A(-x)\left[C(-x)+\frac{r+s}{2}\right]+A(x)\left[\frac{r-s}{2}\right]=B(-x)
$$

Solving two equations just above in terms of $A(x)$, we get

$$
A(x)=\frac{B(x)\left(C(-x)+\frac{r+s}{2}\right)-B(-x)\left(\frac{r-s}{2}\right)}{C(x) C(-x)+\left(\frac{r+s}{2}\right)(C(x)+C(-x))+r s}
$$

as desired.
We examine the relationship between the sequences $\left\{a_{n}\right\}$ and $\left\{\operatorname{det}\left(A_{n}\right)\right\}$. If we consider the system (3) for only first $n+1$ equations and take $x=1$, the system (3) turns to

$$
\left[\begin{array}{cccccc}
r & & & & & 0 \\
c_{1} & s & & & & \\
c_{2} & c_{1} & r & & & \\
c_{3} & c_{2} & c_{1} & s & & \\
\vdots & \vdots & \vdots & \vdots & \ddots & \\
c_{n} & c_{n-1} & c_{n-2} & \cdots & \vdots & d_{n+1}(r, s)
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
\vdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{0} \\
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{n}
\end{array}\right]
$$

where $d_{n}(r, s)$ is defined as before.
By Cramer's rule, we obtain $a_{n}=\frac{(-1)^{n} \operatorname{det} A_{n}}{r^{t+1} S^{t}}$ for even n such that $n=2 t$ and $a_{n}=\frac{(-1)^{n} \operatorname{det} A_{n}}{r^{t+1} S^{t+1}}$ for odd n such that $n=2 t+1$, which completes the proof.

We want to note some important and useful special cases of Theorem 2.1 with the following corollaries:
Corollary 2.2. For the matrix $A_{n}(1,1)$, we have that $a_{n}=(-1)^{n} \operatorname{det} A_{n}$ and the generating function of the sequence $\left\{\operatorname{det} A_{n}(1,1)\right\}$ is

$$
\mathcal{A}(x)=\frac{B(-x)}{1+C(-x)}
$$

This result was firstly given in [8].
Corollary 2.3. For the matrix $A_{n}(-1,-1)$, we have that $a_{n}=-\operatorname{det} A_{n}$ and the generating function of the sequence $\left\{\operatorname{det} A_{n}(-1,-1)\right\}$ is

$$
\begin{equation*}
\mathcal{A}(x)=\frac{B(x)}{1-C(x)} \tag{5}
\end{equation*}
$$

Let's give some examples.
Example 2.4. For $n \geq 0$, we have that

$$
\left|\begin{array}{ccccccc}
F_{1} & -1 & & & & & 0 \\
F_{2} & 1 & -1 & & & & \\
F_{3} & 1 & 1 & -1 & & & \\
F_{4} & 0 & 1 & 1 & -1 & & \\
\vdots & \vdots & \vdots & \cdots & \ddots & \ddots & \\
F_{n} & 0 & 0 & \cdots & \cdots & 1 & -1 \\
F_{n+1} & 0 & 0 & \cdots & \cdots & 1 & 1
\end{array}\right|=\sum_{k=0}^{n} F_{k+1} F_{n+1-k}
$$

Proof. If $b_{n}=F_{n+1}$ and $\left\{c_{n}\right\}_{1}^{\infty}=\{1,1,0, \ldots\}$, then $B(x)=\frac{1}{1-x-x^{2}}$ and $C(x)=x+x^{2}$. So the generating function of $\left\{\operatorname{det} A_{n}(-1,-1)\right\}$ by Corollary 2.3 is $\frac{1}{\left(1-x-x^{2}\right)^{2}}$, which is the generating function of $\left\{\sum_{k=0}^{n} F_{k+1} F_{n+1-k}\right\}$, as well.

Example 2.5. For $n \geq 0$, we have that

$$
\left|\begin{array}{ccccccc}
L_{0} & -1 & & & & & 0 \\
L_{1} & -F_{1} & -1 & & & & \\
L_{2} & -F_{2} & -F_{1} & -1 & & & \\
L_{3} & -F_{3} & -F_{2} & -F_{1} & -1 & & \\
\vdots & \vdots & \vdots & \cdots & \ddots & \ddots & \\
L_{n-1} & -F_{n-1} & -F_{n-2} & \cdots & \cdots & -F_{1} & -1 \\
L_{n} & -F_{n} & -F_{n-1} & \cdots & \cdots & -F_{2} & -F_{1}
\end{array}\right|=\left\{\begin{array}{cc}
2 & \text { if } n \text { is even, } \\
-1 & \text { if } n \text { is odd. }
\end{array}\right.
$$

Proof. Since $b_{n}=L_{n}$ and $\left\{c_{n}\right\}_{1}^{\infty}=\left\{-F_{n}\right\}_{1}^{\infty}, B(x)=\frac{2-x}{1-x-x^{2}}$ and $C(x)=\frac{-x}{1-x-x^{2}}$. By Corollary 2.3, the generating function of $\left\{\operatorname{det} A_{n}(-1,-1)\right\}$ is

$$
A(x)=\frac{B(x)}{1-C(x)}=\frac{2-x}{1-x^{2}}
$$

which gives the periodic sequence $\{2,-1,2,-1, \ldots\}$.
Let $\left\{b_{n}\right\}$ be any sequence and $\left\{c_{n}\right\}_{1}^{\infty}=\{1,0,0, \ldots\}$. Since $\frac{1}{1-x} B(x)$ is the generating function of the sum of the first nth term of $\left\{b_{n}\right\}$, by Corollary 2.3, we see that

$$
\operatorname{det} A_{n}(-1,-1)=\sum_{k=0}^{n} b_{k}
$$

For example,

$$
\left|\begin{array}{ccccccc}
1 & -1 & & & & & 0 \\
\frac{1}{2} & 1 & -1 & & & & \\
\frac{1}{3} & 0 & 1 & -1 & & & \\
\frac{1}{4} & 0 & 0 & 1 & -1 & & \\
\vdots & \vdots & \vdots & \cdots & \ddots & \ddots & \\
\frac{1}{n} & 0 & 0 & \cdots & \cdots & 1 & -1 \\
\frac{1}{n+1} & 0 & 0 & \cdots & \cdots & 0 & 1
\end{array}\right|=H_{n+1}
$$

where H_{n} stands for nth Harmonic number.
Since permenantal and determinantal relationships between the matrices $A_{n}(1,1)$ and $A_{n}(-1,-1)$ are

$$
\operatorname{det} A_{n}(1,1)=\operatorname{per} A_{n}(-1,-1) \text { and } \operatorname{per} A_{n}(1,1)=\operatorname{det} A_{n}(-1,-1)
$$

the corollaries given above include the results of [12, 25].
Corollary 2.6. If

$$
A(x)=\frac{C(-x) B(x)-B(-x)}{C(x) C(-x)-1}
$$

then we have

$$
\operatorname{det} A_{n}(1,-1)=(-1)^{\frac{1}{2} n(n-1)} a_{n}
$$

We will give an example:
Example 2.7. If we take $\left\{c_{n}\right\}=\left\{(-1)^{n} F_{n-1}\right\}$ and define the sequence $\left\{b_{n}\right\}$ as $b_{2 n}=-b_{2 n+1}=F_{2 n+2}$, then for even n such that $n=2 k$, the matrix $A_{n}(1,-1)$ takes the form

$$
A_{2 k}(1,-1)=\left[\begin{array}{ccccccc}
F_{2} & 1 & & & & & 0 \\
-F_{2} & 0 & -1 & & & & \\
F_{4} & F_{1} & 0 & 1 & & & \\
-F_{4} & -F_{2} & F_{1} & 0 & -1 & & \\
\vdots & \vdots & \vdots & \cdots & \ddots & \ddots & \\
-F_{2 k} & -F_{2 k-2} & F_{2 k-3} & \cdots & \cdots & 0 & -1 \\
F_{2 k+2} & F_{2 k-1} & -F_{2 k-2} & \cdots & \cdots & F_{1} & 0
\end{array}\right]
$$

and so

$$
\operatorname{det} A_{2 k}(1,-1)=(-1)^{k} F_{2 k+1}
$$

Proof. The generating functions of $\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ are $B(x)=\frac{1-x}{\left(1+x-x^{2}\right)\left(1-x-x^{2}\right)}$ and $C(x)=\frac{x^{2}}{1+x-x^{2}}$, resp. So we get $A(x)=\frac{1}{1-x-x^{2}}$ which means $\operatorname{det} A_{2 k}=(-1)^{k} F_{2 k+1}$ by Corollary 2.6.

The example just above could be also given for odd n. Here we leave it.
Corollary 2.8. If

$$
A(x)=\frac{B(x)}{C(x)+d^{\prime}}
$$

then

$$
\operatorname{det} A_{n}(d, d)=(-1)^{n} d^{n+1} a_{n}
$$

and the generating function of $\left\{\operatorname{det} A_{n}(d, d)\right\}$ is

$$
\mathcal{A}(x)=d \cdot A(-d x) .
$$

The result of [22] could be derived by using Corollary 2.8 and the properties of the generating functions.
Example 2.9. If $b_{n}=-\left(H_{n}+1\right)$ with $b_{0}=-1$ and $c_{n}=\frac{2}{n}$, then

$$
\left|\begin{array}{ccccccc}
-1 & 2 & & & & & 0 \\
-\left(H_{1}+1\right) & 2 & 2 & & & & \\
-\left(H_{2}+1\right) & 1 & 2 & 2 & & & \\
-\left(H_{3}+1\right) & \frac{2}{3} & 1 & 2 & 2 & & \\
\vdots & \vdots & \vdots & \cdots & \ddots & \ddots & \\
-\left(H_{n-1}+1\right) & \frac{2}{n-1} & \frac{2}{n-2} & \cdots & \cdots & 2 & 2 \\
-\left(H_{n}+1\right) & \frac{2}{n} & \frac{2}{n-1} & \cdots & \cdots & 1 & 2
\end{array}\right|=(-1)^{n} 2^{n-1}
$$

Proof. If we take $d=2, b_{n}=-\left(H_{n}+1\right)$ with $b_{0}=-1$ and $c_{n}=\frac{2}{n}$ in Corollary 2.8, then we get

$$
B(x)=\frac{\ln (1-x)-1}{1-x} \text { and } C(x)=\ln (1-x)^{-2}
$$

Thus $A(x)=\frac{1}{2 x-2}$ and $\operatorname{det} A_{n}=2(-2)^{n} a_{n}$, which gives us $\operatorname{det} A_{n}=(-1)^{n} 2^{n-1}$, as claimed.

When $c_{0}=d$, by Corollary 2.8, we obtain $A(x)=\frac{B(x)}{C(x)}$, where $C(x)=\sum_{k \geq 0} c_{k} x^{k}$. For example, if we choose $B(x)=x+4 x^{2}+x^{3}$ and $C(x)=(1-x)^{4}$, then

$$
\left|\begin{array}{cccccccc}
0 & 1 & & & & & & 0 \\
1 & -4 & 1 & & & & & \\
4 & 6 & -4 & 1 & & & & \\
1 & -4 & 6 & -4 & 1 & & & \\
0 & 1 & -4 & 6 & \ddots & \ddots & & \\
0 & 0 & 1 & -4 & \ddots & -4 & 1 & \\
\vdots & \vdots & \vdots & \vdots & \cdots & 6 & -4 & 1 \\
0 & 0 & 0 & 0 & \cdots & -4 & 6 & -4
\end{array}\right|_{(n+1) \times(n+1)}=(-1)^{n} n^{3} .
$$

Now we recall an already known result given in [23]. But we will give an alternative and much simple proof for it.

Corollary 2.10. If $\left\{c_{n}\right\}$ is any sequence such that $c_{0} \neq 0$, then we have

$$
\left|\begin{array}{ccccc}
c_{1} & c_{0} & 0 & \cdots & 0 \\
c_{2} & c_{1} & c_{0} & \cdots & 0 \\
c_{3} & c_{2} & c_{1} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
c_{n} & c_{n-1} & c_{n-2} & \cdots & c_{1}
\end{array}\right|_{n \times n}=\left[x^{n}\right] \frac{c_{0}}{C\left(-c_{0} x\right)}
$$

where $C(x)=\sum_{k \geq 0} c_{k} x^{k}$ and $[\circ]$ is the coefficient extraction operator.
Proof. To prove it by our result, Corollary 2.8, first we consider an equal determinant to the claimed determinant by the following equality

$$
\left|\begin{array}{ccccc}
c_{1} & c_{0} & 0 & \cdots & 0 \\
c_{2} & c_{1} & c_{0} & \cdots & 0 \\
c_{3} & c_{2} & c_{1} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
c_{n} & c_{n-1} & c_{n-2} & \cdots & c_{1}
\end{array}\right|_{n \times n}=\left|\begin{array}{cccccc}
1 & c_{0} & 0 & 0 & \cdots & 0 \\
0 & c_{1} & c_{0} & 0 & \cdots & 0 \\
0 & c_{2} & c_{1} & c_{0} & \cdots & 0 \\
0 & c_{3} & c_{2} & c_{1} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & c_{n} & c_{n-1} & c_{n-2} & \cdots & c_{1}
\end{array}\right|_{(n+1) \times(n+1)}
$$

The value of the determinant on the RHS of the above equation could be easily found by Corollary 2.8. So the claimed result directly follows.

Let's give an example related to Theorem 2.1.
Example 2.11. Let $\left\{b_{n}\right\}$ be the alternating of the sequence A135491 in [26]. Then for $n=2 k$,

$$
\left|\begin{array}{ccccccc}
b_{0} & 1 & & & & & 0 \\
b_{1} & 1 & -3 & & & & \\
b_{2} & 1 & 1 & 1 & & & \\
b_{3} & 1 & 1 & 1 & -3 & & \\
\vdots & \vdots & \vdots & \cdots & \ddots & \ddots & \\
b_{2 k-1} & 0 & 0 & \cdots & \cdots & 1 & -3 \\
b_{2 k} & 0 & 0 & \cdots & \cdots & 1 & 1
\end{array}\right|=T_{2 k+2}(-3)^{k}
$$

Similarly, for $n=2 k+1$, determinant of the corresponding Hessenberg matrix is equal to $-T_{2 k+3}(-3)^{k+1}$, where T_{n} is the nth Tribonacci number.

Proof. The generating functions of $\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ are $B(x)=\frac{1-x+x^{2}-x^{3}}{1+x-x^{2}+x^{3}}$ and $C(x)=x+x^{2}+x^{3}$, resp. By Theorem 2.1, when $r=1$ and $s=-3$, we obtain $\operatorname{det} A_{n}=T_{n+2}(-3)^{t}$ for $n=2 t$ and $\operatorname{det} A_{n}=-T_{n+2}(-3)^{t+1}$ for $n=2 t+1$, as desired.

Let $\left\{b_{n}\right\},\left\{c_{n}\right\}$ and $\left\{d_{n}\right\}$ be any number sequences. Their generating functions are $B(x)=\sum_{k \geq 0} b_{k} x^{k}, C(x)=$ $\sum_{k \geq 1} c_{k} x^{k}$ and $D(x)=\sum_{k \geq 1} d_{k} x^{k}$, respectively.

Now we consider two classes of Hessenberg determinants, which are not considered before. We start with the first one: For any nonzero real d, we define a Hessenberg matrix of order $n+1$ as follows:

$$
A_{n}=\left[\begin{array}{ccccccc}
b_{0} & d & & & & & 0 \\
b_{1} & c_{1} & d & & & & \\
b_{2} & c_{2} & d_{1} & d & & & \\
b_{3} & c_{3} & d_{2} & d_{1} & d & & \\
\vdots & \vdots & \vdots & \cdots & \ddots & \ddots & \\
b_{n-1} & c_{n-1} & d_{n-2} & \cdots & \cdots & d_{1} & d \\
b_{n} & c_{n} & d_{n-1} & \cdots & \cdots & d_{2} & d_{1}
\end{array}\right]
$$

Theorem 2.12. If

$$
\begin{equation*}
A(x)=\frac{B(x)+a_{0} D(x)-a_{0} C(x)}{D(x)+d} \text { with } a_{0}=b_{0} / d \tag{6}
\end{equation*}
$$

then

$$
\operatorname{det} A_{n}=(-1)^{n} d^{n+1} a_{n}
$$

and the generating function of $\left\{\operatorname{det} A_{n}\right\}$ is

$$
\mathcal{A}(x)=d \cdot A(-d x)
$$

Proof. Similar to the proof of Theorem 2.1, we have the following infinite linear system of equations

$$
\left[\begin{array}{cccccc}
d & & & & & 0 \\
c_{1} x & d x & & & & \\
c_{2} x^{2} & d_{1} x^{2} & d x^{2} & & & \\
c_{3} x^{3} & d_{2} x^{3} & d_{1} x^{3} & d x^{3} & & \\
c_{4} x^{4} & d_{3} x^{4} & d_{2} x^{4} & d_{1} x^{4} & d x^{4} & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
b_{0} \\
b_{1} x \\
b_{2} x^{2} \\
b_{3} x^{3} \\
b_{4} x^{4} \\
\vdots
\end{array}\right]
$$

By summing the equations come from the infinite linear system of equations just above and adding $a_{0} D(x)$ to both sides of it, we obtain

$$
a_{0} C(x)+A(x) D(x)+a_{0} A(x)=B(x)+a_{0} D(x)
$$

which gives

$$
A(x)=\frac{B(x)+a_{0} D(x)-a_{0} C(x)}{D(x)+d}
$$

as desired. Finally, if we restrict the linear system of equations to the fist $(n+1)$ equations and take $x=1$, then by Cramer's rule, we get $a_{n}=\frac{(-1)^{n} \operatorname{det} A_{n}}{d^{n+1}}$, as claimed.

Example 2.13. For $n>0$,

$$
\left|\begin{array}{ccccccc}
P_{1} & 1 & & & & & 0 \\
P_{2} & F_{2} & 1 & & & & \\
P_{3} & F_{3} & P_{2} & 1 & & & \\
P_{4} & F_{4} & P_{3} & P_{2} & 1 & & \\
\vdots & \vdots & \vdots & \cdots & \ddots & \ddots & \\
P_{n} & F_{n} & P_{n-1} & \cdots & \cdots & P_{2} & 1 \\
P_{n+1} & F_{n+1} & P_{n} & \cdots & \cdots & P_{3} & P_{2}
\end{array}\right|=(-1)^{n} F_{n-1}
$$

where F_{n} and P_{n} are the nth Fibonacci and Pell number, resp.
Proof. It is a consequence of Theorem 2.12. When $d=1, B(x)=\sum_{k \geq 0} P_{k+1} x^{k}=\frac{1}{1-2 x-x^{2}}, C(x)=\sum_{k \geq 1} F_{k+1} x^{k}=$ $\frac{x+x^{2}}{1-x-x^{2}}$ and $D(x)=\sum_{k \geq 1} P_{k+1} x^{k}=\frac{2 x+x^{2}}{1-x-x^{2}}$, the proof follows.

If $d=c_{0}=d_{0}$, then we rewrite the equation (6) as

$$
A(x)=\frac{B(x)+a_{0} D(x)-a_{0} C(x)}{D(x)}
$$

where $C(x)=\sum_{k \geq 0} c_{k} x^{k}$ and $D(x)=\sum_{k \geq 0} d_{k} x^{k}$ and $B(x)$ is same to before.
Similarly, let $\left\{b_{n}\right\},\left\{c_{n}\right\}$ and $\left\{d_{n}\right\}$ be any sequences, whose generating functions are denoted as before.
Now we define the second class of Hessenberg matrices of order $n+1$, whose columns are periodic after first column, as follows:

$$
A_{n}=\left[\begin{array}{ccccccc}
b_{0} & d & & & & & \\
b_{1} & c_{1} & d & & & & \\
b_{2} & c_{2} & d_{1} & d & & & \\
b_{3} & c_{3} & d_{2} & c_{1} & d & & \\
b_{4} & c_{4} & d_{3} & c_{2} & d_{1} & \ddots & \\
\vdots & \vdots & \vdots & \vdots & \cdots & \ddots & d \\
\\
b_{n-1} & c_{n-1} & d_{n-2} & c_{n-3} & d_{n-4} & \cdots & s(n, 1) \\
b_{n} & c_{n} & d_{n-1} & c_{n-2} & d_{n-3} & \cdots & s(n, 2) \\
s(n+1,1)
\end{array}\right]
$$

where

$$
s(n, k)= \begin{cases}c_{k} & \text { if } n \text { is even } \\ d_{k} & \text { if } n \text { is odd }\end{cases}
$$

We have the following result for the generating function of the determinant of the just above matrix.
Theorem 2.14. If

$$
A(x)=\frac{B(x)(C(-x)+D(-x)+2)-B(-x)(C(x)-D(x))}{C(x)(1+D(-x))+D(x)(1+C(-x))+(C(-x)+D(-x))+2 d^{\prime}}
$$

then

$$
\operatorname{det} A_{n}=(-1)^{n} d^{n+1} a_{n}
$$

and the generating function of $\left\{\operatorname{det} A_{n}\right\}$ is

$$
\mathcal{A}(x)=d \cdot A(-d x)
$$

Proof. Similar to the previous theorems, if we consider the infinite linear system of equations, then we obtain

$$
\begin{equation*}
C(x) \sum_{k \geq 0} a_{2 k} x^{2 k}+D(x) \sum_{k \geq 0} a_{2 k+1} x^{2 k+1}+d A(x)=B(x) . \tag{7}
\end{equation*}
$$

Since $\sum_{k \geq 0} a_{2 k} x^{2 k}=\frac{A(x)+A(-x)}{2}$ and $\sum_{k \geq 0} a_{2 k+1} x^{2 k+1}=\frac{A(x)-A(-x)}{2}$, the equation (7) is written as

$$
A(x)\left(\frac{C(x)+D(x)}{2}+1\right)+A(-x)\left(\frac{C(x)-D(x)}{2}\right)=B(x)
$$

which, by solving in terms of $A(x)$, gives us

$$
A(x)=\frac{B(x)(C(-x)+D(-x)+2)-B(-x)(C(x)-D(x))}{C(x)(1+D(-x))+D(x)(1+C(-x))+(C(-x)+D(-x))+2 d^{\prime}}
$$

as desired. When we restricted the infinite system of equations to the first $n+1$ equations with $x=1$, we complete the proof by Cramer's rule.

Example 2.15. For even n, we have

$$
\left|\begin{array}{cccccccc}
L_{0} & 1 & & & & & & 0 \\
L_{1} & F_{1} & 1 & & & & & \\
L_{2} & F_{2} & L_{0} & 1 & & & & \\
L_{3} & F_{3} & L_{1} & F_{1} & 1 & & & \\
L_{4} & F_{4} & L_{2} & F_{2} & L_{0} & \ddots & & \\
\vdots & \vdots & \vdots & \vdots & \cdots & \ddots & 1 & \\
L_{n-1} & F_{n-1} & L_{n-3} & F_{n-3} & L_{n-5} & \cdots & F_{1} & 1 \\
L_{n} & F_{n} & L_{n-2} & F_{n-2} & L_{n-4} & \cdots & F_{2} & L_{0}
\end{array}\right|=2^{\frac{n}{2}}+1
$$

If $n=2 k+1$, the determinant of corresponding matrix is equal to 2^{k}.
Proof. Since $b_{n}=L_{n}, c_{n}=F_{n}$ and $d_{n}=L_{n-1}$, we have $B(x)=\frac{2-x}{1-x-x^{2}}, C(x)=\frac{x}{1-x-x^{2}}$ and $D(x)=\frac{2 x-x^{2}}{1-x-x^{2}}$. Hence, for $d=1$ by Theorem 2.14, we obtain

$$
\begin{aligned}
A(x) & =\frac{-x-3 x^{2}+x^{3}+2}{(x-1)(x+1)\left(2 x^{2}-1\right)}=\frac{1}{1-x^{2}}+\frac{1-x}{1-2 x^{2}} \\
& =\sum_{k=0}^{\infty} x^{2 k}+\sum_{k=0}^{\infty} 2^{k} x^{2 k}-\sum_{k=0}^{\infty} 2^{k} x^{2 k+1} \\
& =\sum_{k=0}^{\infty}\left(2^{k}+1\right) x^{2 k}-\sum_{k=0}^{\infty} 2^{k} x^{2 k+1}
\end{aligned}
$$

as claimed.

We consider certain Hessenberg matrices whose superdiagonal are constant or two periodic. Now we give a general idea for Hessenberg matrices with arbitrary superdiagonal entries. To show how this idea will be applied, we present two Hessenberg matrices whose superdiagonals now consist of the terms of two special sequences, $\{n+1\}$ and $\left\{2^{n}\right\}$, resp.

Let $\left\{b_{n}\right\},\left\{c_{n}\right\}_{n=1}^{\infty}$ and $\left\{d_{n}\right\}$ such that $d_{n} \neq 0$ for all $n \in \mathbb{N}$ be any sequences. First define the Hessenberg matrix A_{n} of order $n+1$ of the form

$$
A_{n}:=\left[\begin{array}{ccccccc}
b_{0} & d_{0} & & & & & 0 \\
b_{1} & c_{1} & d_{1} & & & & \\
b_{2} & c_{2} & c_{1} & d_{2} & & & \\
b_{3} & c_{3} & c_{2} & c_{1} & d_{3} & & \\
\vdots & \vdots & \vdots & \cdots & \ddots & \ddots & \\
b_{n-1} & c_{n-1} & c_{n-2} & \cdots & \cdots & c_{1} & d_{n-1} \\
b_{n} & c_{n} & c_{n-1} & \cdots & \cdots & c_{2} & c_{1}
\end{array}\right] .
$$

Consider the following infinite linear system of equations

$$
\left[\begin{array}{cccccc}
d_{0} & & & & & 0 \\
c_{1} x & d_{1} x & & & & \\
c_{2} x^{2} & c_{1} x^{2} & d_{2} x^{2} & & & \\
c_{3} x^{3} & c_{2} x^{3} & c_{1} x^{3} & d_{3} x^{3} & & \\
c_{4} x^{4} & c_{3} x^{4} & c_{2} x^{4} & c_{1} x^{4} & d_{4} x^{4} & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
b_{0} \\
b_{1} x \\
b_{2} x^{2} \\
b_{3} x^{3} \\
b_{4} x^{4} \\
\vdots
\end{array}\right]
$$

which gives us the relation

$$
\begin{equation*}
A(x) C(x)+\sum_{k=0}^{\infty} a_{k} d_{k} x^{k}=B(x) \tag{8}
\end{equation*}
$$

where $C(x)=\sum_{k \geq 1} c_{k} x^{k}$. If we restricted this infinite system to the first $n+1$ equations with $x=1$, then by Cramer's rule we have

$$
a_{n}=\frac{(-1)^{n} \operatorname{det} A_{n}}{\prod_{k=0}^{n} d_{k}}
$$

Now we present two special cases of the idea mentioned above.
Theorem 2.16. If $\left\{d_{n}\right\}=\{n+1\}$, then

$$
x A(x)\left(e^{\int \frac{C(x)}{x} d x}\right)=\int e^{\int \frac{C(x)}{x} d x} B(x) d x+C
$$

with

$$
\operatorname{det} A_{n}=(-1)^{n}(n+1)!a_{n}
$$

where C is a constant.
Proof. By (8), we have

$$
A(x) C(x)+\sum_{k=0}^{\infty} a_{k}(k+1) x^{k}=B(x)
$$

which, equivalently, gives us

$$
A(x) C(x)+(x A(x))^{\prime}=B(x)
$$

By taking $y=x \cdot A(x)$, we get the first order linear differential equation

$$
y \frac{C(x)}{x}+y^{\prime}=B(x)
$$

The solution of this differential equation is

$$
y=\left(e^{\int \frac{C(x)}{x} d x}\right)^{-1}\left(\int e^{\int \frac{C(x)}{x} d x} B(x) d x+C\right)
$$

which completes the proof. Note that the constant C is determined by the initial $y(0)=0$.
Example 2.17. For $n \geq 0$, we have

$$
\left|\begin{array}{ccccccc}
1 & 1 & & & & & 0 \\
3 & 1 & 2 & & & & \\
5 & 1 & 1 & 3 & & & \\
7 & 1 & 1 & 1 & 4 & & \\
\vdots & \vdots & \vdots & \cdots & \ddots & \ddots & \\
2 n-1 & 1 & 1 & \cdots & \cdots & 1 & n \\
2 n+1 & 1 & 1 & \cdots & \cdots & 1 & 1
\end{array}\right|=(-1)^{n}(n+1)!
$$

Proof. Since $b_{n}=2 n+1$ and $c_{n}=1$, we obtain $B(x)=\frac{x+1}{(x-1)^{2}}$ and $C(x)=\frac{x}{1-x}$. So we get

$$
\int \frac{1}{1-x} d x=-\ln (x-1) \text { and } e^{\int \frac{c(x)}{x} d x}=\frac{1}{x-1}
$$

By Theorem 2.16, we have that

$$
\begin{aligned}
& x A(x) \frac{1}{x-1}=\int \frac{x+1}{(x-1)^{3}} d x+C \\
& x A(x) \frac{1}{x-1}=-\frac{x}{(x-1)^{2}}+C .
\end{aligned}
$$

For $x=0$, we find that $C=0$ and so

$$
A(x)=\frac{1}{1-x}
$$

which gives $\operatorname{det} A_{n}=(-1)^{n}(n+1)$!.
For the case $b_{n}=c_{n+1}$, i.e. $B(x)=\frac{C(x)}{x}$, the relation given in Theorem 2.16 turns

$$
x A(x)=1+C\left(e^{\int \frac{C(x)}{x} d x}\right)^{-1}
$$

Now we present the other special case with an example which could be produced by (8).
Example 2.18. For $n \geq 0$,

$$
\left|\begin{array}{ccccccc}
1 & 1 & & & & & 0 \\
3 & 1 & 2 & & & & \\
4 & 1 & 1 & 4 & & & \\
\frac{10}{3} & \frac{1}{2} & 1 & 1 & 8 & & \\
\vdots & \vdots & \vdots & \cdots & \ddots & \ddots & \\
\frac{2^{n-2}(n+1)}{(n-1)!} & \frac{1}{(n-2)!} & \frac{1}{(n-3)!} & \cdots & \cdots & 1 & 2^{n-1} \\
\frac{2^{n-1}(n+2)}{n!} & \frac{1}{(n-1)!} & \frac{1}{(n-2)!} & \cdots & \cdots & 1 & 1
\end{array}\right|=\frac{(-1)^{n} 2^{\binom{n+1}{2}}}{n!} .
$$

Proof. Since $b_{n}=\frac{2^{n-1}(n+2)}{n!}$ and $c_{n}=\frac{1}{(n-1)!}$, their generating functions are $B(x)=e^{2 x}(x+1)$ and $C(x)=x e^{x}$, resp. By (8), we have

$$
x e^{x} A(x)+A(2 x)=e^{2 x}(x+1) .
$$

Hence we find that $A(x)=e^{x}$, which gives $a_{n}=\frac{1}{n!}$. Finally, from the relation $a_{n}=\frac{(-1)^{n} \operatorname{det} A_{n}}{2^{\left({ }^{n+1}\right)}}$, we obtain claimed result.

3. A Matrix Method to Compute a Class of Hessenberg Determinants

In this section, we give a new method to compute a class of Hessenberg determinants in which the entries of each matrix in the class are terms of a general linear recurrence relation.

Consider the following lower Hessenberg matrix of order n for nonzero real r :

$$
E_{n}(r)=\left[\begin{array}{cccccc}
u_{1} & r & & & & \\
u_{2} & u_{1} & r & & & \\
u_{3} & u_{2} & u_{1} & r & & \\
& & & & \ddots & \\
u_{4} & u_{3} & u_{2} & u_{1} & \ddots & \\
\vdots & \vdots & \vdots & \vdots & \ddots & \ddots \\
u_{n-1} & u_{n-2} & u_{n-3} & u_{n-4} & \cdots & u_{1} \\
u_{n} & u_{n-1} & u_{n-2} & u_{-3} & \cdots & u_{2} \\
u_{1}
\end{array}\right]
$$

where the terms u_{n} 's are defined as in (1).
We only consider the matrix $E_{n}(r)$ with case $r=-1$, briefly denoted by E_{n}, while giving our method but one could follow whole steps will be given above for the matrix $E_{n}(r)$ with any nonzero r.

Indeed one could compute determinant of the matrix E_{n} by using the results of Section 2. Here we will present a new and easy method to compute $\operatorname{det}\left(E_{n}\right)$. For this, we define an adjacency-factor matrix related with the matrix E_{n} : Define a $n \times n$ lower triangular adjacency-factor matrix M as

$$
M_{i j}=\left\{\begin{array}{cl}
1 & \text { if } i=j, \\
-c_{i-j} & \text { if } 1 \leq i-j \leq k \\
0 & \text { otherwise }
\end{array}\right.
$$

Clearly the matrix M has the form

$$
M=\left[\begin{array}{ccccccc}
1 & & & & & & 0 \\
-c_{1} & 1 & & & & & \\
-c_{2} & -c_{1} & 1 & & & & \\
\vdots & -c_{2} & \ddots & \ddots & & & \\
-c_{k} & & \ddots & & & & \\
& \ddots & & \ddots & \ddots & \ddots & \\
0 & & -c_{k} & \cdots & -c_{2} & -c_{1} & 1
\end{array}\right] .
$$

From a matrix multiplication, we obtain that

$$
M E_{n}=\widehat{E}_{n}
$$

where

$$
\widehat{E}_{n}=\left\{\begin{array}{cl}
-1 & \text { if } j=i+1 \\
b_{i} & \text { if } j=1 \text { and } i \leq k, \\
d_{i-j+1} & \text { if } i \geq j>1 \text { and } i-j \leq k-1 \\
0 & \text { otherwise }
\end{array}\right.
$$

with

$$
b_{m}=u_{m}-\sum_{l=1}^{m-1} u_{m-l} c_{l} \text { and } d_{m}=u_{m}-\sum_{l=1}^{m-1} u_{m-l} c_{l}+c_{m}
$$

for $1 \leq m \leq k$.
Here since $\operatorname{det} M=1$, we have $\operatorname{det} E_{n}=\operatorname{det}_{n} \widehat{E}$. Afterwards, we prefer to compute the value of the determinant of \widehat{E}_{n} instead of the matrix E_{n} because the matrix \widehat{E}_{n} is a banded matrix with bandwidth $k+1$ and includes many zeros and so it gives us to advantage to choose the matrix \widehat{E}_{n} rather than E_{n} regard to use of the results of the previous section to compute determinants of Hessenberg matrices.

By Corollary 2.3, we have that

$$
\begin{equation*}
\sum_{i \geq 0} \operatorname{det} E_{i+1} x^{i}=\sum_{i \geq 0} \operatorname{det} \widehat{E}_{i+1} x^{i}=\frac{\sum_{i=1}^{k} b_{i} x^{i-1}}{1-\sum_{i=1}^{k} d_{i} x^{i}} \tag{9}
\end{equation*}
$$

As a special case, if we consider the recurrence relation $\left\{u_{n}\right\}$ defined in (1) with the initials $u_{-k+2}=u_{-k+3}=$ $\cdots=u_{-1}=u_{0}=0$ and $u_{1}=1$, then we have

$$
\begin{aligned}
& b_{1}=1 \text { and } b_{i}=0 \text { for } 1<i \leq k \\
& d_{1}=1+c_{1} \text { and } d_{i}=c_{i} \text { for } 1<i \leq k
\end{aligned}
$$

Hence the generating function of the determinant of the matrix E_{n+1} is written as

$$
\begin{equation*}
\frac{1}{1-\left(1+c_{1}\right) x-c_{2} x^{2}-\cdots-c_{k} x^{k}} \tag{10}
\end{equation*}
$$

Now we give an example to show how to use the method described above.
Example 3.1. For positive integer m, define the sequence $\left\{u_{n}\right\}$ with $u_{n}=\binom{m+n-1}{m}$ and construct the following $n \times n$ matrix $A_{n}(m)$

$$
A_{n}(m):=\left[\begin{array}{ccccccc}
\binom{m}{m} & -1 \\
\binom{m+1}{m} & \binom{m}{m} & -1 & & & & 0 \\
\binom{m+2}{m} & \binom{m+1}{m} & \binom{m}{m} & \ddots & & & \\
\binom{m+3}{m} & \binom{m+2}{m} & \binom{m+1}{m} & \cdots & -1 & & \\
\cdots & \cdots & \cdots & \cdots & \binom{m}{m} & -1 & \\
\binom{m+n-2}{m} & \binom{m+n-3}{m} & \binom{m+n-4}{m} & \vdots & \binom{m+1}{m} & \binom{m}{m} & -1 \\
\binom{m+n-1}{m} & \binom{m+n-2}{m} & \binom{m+n-3}{m} & \vdots & \binom{m+2}{m} & \binom{m+1}{m} & \binom{m}{m}
\end{array}\right],
$$

where $\binom{n}{k}$ is the usual binomial coefficient. Then

$$
\operatorname{det} A_{n+1}(m)=\sum_{k=0}^{n}\binom{(m+1) n+m(1-k)}{k}
$$

Proof. We should find the recursion relation for the sequence $\left\{u_{n}\right\}$. From [10], we recall the Equation 5.24: For $l \geq 0$ and integers m, n,

$$
\sum_{k}\binom{l}{m+k}\binom{s+k}{n}(-1)^{k}=(-1)^{l+m}\binom{s-m}{n-l}
$$

If we choose $l \rightarrow m+1, m \rightarrow 1, s \rightarrow m-n$ and $n \rightarrow m$ in the equation above, then we obtain

$$
\begin{aligned}
\sum_{k=-1}^{m}(-1)^{k}\binom{m+1}{k+1}\binom{n-k-1}{m} & =\sum_{k=-1}^{m}(-1)^{k+m}\binom{m+1}{k+1}\binom{m-n+k}{m} \\
& =\binom{n-m-1}{-1}=0
\end{aligned}
$$

By the above equation, we could deduce

$$
\sum_{k=0}^{m}(-1)^{k}\binom{m+1}{k+1}\binom{n-k-1}{m}=\binom{n}{m}
$$

If we take $n=n+m-1$, then we get the recurrence relation of order $m+1$ for the sequence $\left\{u_{n}\right\}$:

$$
u_{n}=\sum_{k=0}^{m}(-1)^{k}\binom{m+1}{k+1} u_{n-k-1}
$$

with $u_{-m+1}=u_{-m+2}=\cdots=u_{-1}=u_{0}=0$ and $u_{1}=1$. By our method, we see that the adjacency-factor matrix for the matrix $A_{n}(m)$ is

$$
M_{i j}=(-1)^{i-j}\binom{m+1}{i-j}
$$

which is also equal to

$$
M_{i j}=\left[\begin{array}{ccccc}
1 & & & & 0 \\
-1 & 1 & & & \\
& -1 & 1 & & \\
& & \ddots & \ddots & \\
0 & & & -1 & 1
\end{array}\right]^{m+1}
$$

Thus by (10), we find the generating function of the sequence $\left\{\operatorname{det} A_{n+1}(m)\right\}$ as follows

$$
\frac{1}{1-\left(1+\binom{m+1}{1}\right) x+\binom{m+1}{2} x^{2}-\cdots-(-1)^{m}\binom{m+1}{m+1} x^{m+1}}=\frac{1}{(1-x)^{m+1}-x}
$$

In other words, we have that

$$
\begin{equation*}
\left[x^{n}\right] \frac{1}{(1-x)^{m+1}-x}=\operatorname{det} A_{n+1}(m) \tag{11}
\end{equation*}
$$

To prove this claim, it is sufficient to show that

$$
\sum_{n \geq 0} \sum_{k=0}^{n}\binom{(m+1) n+m(1-k)}{k} x^{n}=\frac{1}{(1-x)^{m+1}-x}
$$

Consider,

$$
\begin{aligned}
\sum_{n \geq 0} \sum_{k=0}^{n}\binom{(m+1) n+m(1-k)}{k} x^{n} & =\sum_{k \geq 0} \sum_{n \geq k}\binom{(m+1) n+m(1-k)}{k} x^{n} \\
& =\sum_{n \geq 0} x^{n} \sum_{k \geq 0}\binom{m+n+m n+k}{k} x^{k} \\
& =\frac{1}{(1-x)^{m+1}} \sum_{n \geq 0}\left(\frac{x}{(1-x)^{m+1}}\right)^{n} \\
& =\frac{1}{(1-x)^{m+1}-x},
\end{aligned}
$$

which completes the proof.
Finally, we obtain

$$
\left|\begin{array}{cccccc}
\binom{m}{m} & -1 \\
\binom{m+1}{m} & \binom{m}{m} & -1 & & & 0 \\
\binom{m+2}{m} & \binom{m+1}{m} & \ddots & \ddots & & \\
\cdots & \cdots & \cdots & \binom{m}{m} & -1 & \\
\binom{m+n-2}{m} & \binom{m+n-3}{m} & \vdots & \binom{m+1}{m} & \binom{m}{m} & -1 \\
\binom{m+n-1}{m} & \binom{m+n-2}{m} & \vdots & \binom{m+2}{m} & \binom{m+1}{m} & \binom{m}{m}
\end{array}\right|=\sum_{k=0}^{n-1}\binom{(m+1) n-m k-1}{k} .
$$

As a special case for $m=1$, we get

$$
\left|\begin{array}{cccccc}
1 & -1 & & & & 0 \\
2 & 1 & -1 & & & \\
3 & 2 & \ddots & \ddots & & \\
\cdots & \cdots & \cdots & 1 & -1 & 0 \\
n-1 & n-2 & \vdots & 2 & 1 & -1 \\
n & n-1 & \vdots & 3 & 2 & 1
\end{array}\right|=\sum_{k=0}^{n-1}\binom{2 n-k-1}{k}=F_{2 n}
$$

which could be also found in [22].

References

[1] J. Abderramán Marrero, V. Tomeo and E. Torrano, On inverses of infinite Hessenberg matrices, J. Comput. Appl. Math. 275 (2014) 356-365.
[2] A. T. Benjamin and M. A. Shattuck, Recounting determinants for a class of Hessenbergmatrices. Integers 7 (2007) A55.
[3] N. D. Cahill, J. R. D'Errico, D. A. Narayan and J. Y. Narayan, Fibonacci determinants, College Math. J. 33 (2002) 221-225.
[4] N. D. Cahill and D. A. Narayan, Fibonacci and Lucas numbers as tridiagonal matrix determinants, Fibonacci Quart. 42 (2004), 216-221.
[5] J. L. Cereceda, Determinantal Representations for Generalized Fibonacci and Tribonacci Numbers, Int. J. Contemp. Math. Sciences 9 (6) (2014) 269-285.
[6] Y.-H. Chen and C.-Y. Yu, A new algorithm for computing the inverse and the determinant of a Hessenberg matrix, Appl. Math. Comput. 218 (2011) 4433-4436.
[7] M. Elouafi and A. D. Aiat Hadj, A new recursive algorithm for inverting Hessenberg matrices, Appl. Math. Comput. 214 (2009) 497-499.
[8] S. Getu, Evaluating Determinants via Generating Functions, Mathematics Magazine 64(1) (1991) 45-53.
[9] G. H. Golub and C. F. Van Loan, Matrix Computations, third ed., Johns Hopkins University Press, Baltimore and London, 1996. pp. 341-352.
[10] R. L. Graham, D. E. Knuth and O. Patashnik. Concrete Mathematics (Second Edition), Addison Wesley, 1994.
[11] M. Janjić, Hessenberg matrices and integer sequences, J. Integer Seq. 13 (2010). Article ID 10.7.8.
[12] E. Kıliç and D. Taşcı, On the permanents of some tridiagonal matrices with applications to the Fibonacci and Lucas numbers, Rocky Mountain J. Math 37 (6) (2007), 203-219.
[13] E. Kılıç and D. Taşcı, On sums of second order linear recurrences by hessenberg matrices, Rocky Mountain J. Math 38 (2) (2008), 531-544.
[14] E. Kılıç, On the second order linear recurrences by tridiagonal matrices, Ars Comb. 91 (2009), 11-18.
[15] E. Kılıç and D. Taşcı, On the generalized Fibonacci and Pell sequences by hessenberg matrices, Ars Comb. 94 (2010), 161-174.
[16] E. Kılıç, D. Taşcı and P. Haukkanen, On the generalized Lucas sequences by Hessenberg matrices, Ars Combinatoria 95 (2010) 383-395.
[17] E. Kıliç, The Generalized Fibonomial Matrix, Europen J. Combinatorics 31 (2010) 193-209.
[18] E. Kılıç and P. Stanica, A matrix approach for general higher order linear recurrence, Bull. Malays. Math. Sci. Soc. (2) 34(1) (2011) 51-67.
[19] E. Kıliç, Sylvester-tridiagonal matrix with alternating main diagonal entries and its spectra, Inter. J. Nonlinear Sciences and Numerical Simulation 14(5) (2013), 261-266.
[20] E. Kılıç and T. Arıkan, Evaluation of spectrum of 2-periodic tridiagonal-Sylvester matrix, Turkish Journal of Mathematics 40 (2016), 80-89
[21] H.-C. Li, On Fibonacci-Hessenberg matrices and the Pell and Perrin numbers, Appl. Math. Comput. 218 (17) (2012) $8353-8358$.
[22] A. J. Macfarlane, Use of determinants to present identities involving Fibonacci and related numbers, Fibonacci Quart. 48(1) (2010) 68-76.
[23] M. Merca, A note on the determinant of a Toeplitz-Hessenberg matrix, Special Matrices 1 (2013) 10-16.
[24] J. L. Ramírez, On convolved generalized Fibonacci and Lucas polynomials, Appl. Math Comput. 229 (2014) 208-213.
[25] J. L. Ramírez, Hessenberg Matrices and the Generalized Fibonacci-Narayana Sequence, Filomat 29(7) (2015) 1557-1563.
[26] The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org, 2010.
[27] H. S. Wilf, Generatingfunctionology (2nd ed.), Academic Press, San Diego, 1994.

[^0]: 2010 Mathematics Subject Classification. Primary 15A15,05A15; Secondary 11B39
 Keywords. Hessenberg matrix, determinant, generating function, recursive sequence, method
 Received: 12 August 2016; Accepted: 05 October 2016
 Communicated by Dragana S. Cvetković-Ilić
 Email addresses: ekilic@etu.edu.tr (Emrah Kılıç), tarikan@hacettepe.edu.tr (Talha Arıkan)

