Absolute Weighted Arithmetic Mean Summability Factors of Infinite Series and Trigonometric Fourier Series

Hüseyin Bor ${ }^{\text {a }}$
${ }^{a}$ P. O. Box 121, TR-06502 Bahçelievler, Ankara, Turkey

Abstract

In this paper, we generalized a known theorem dealing with absolute weighted arithmetic mean summability of infinite series by using a quasi-f-power increasing sequence instead of a quasi- σ-power increasing sequence. And we applied it to the trigonometric Fourier series

1. Introduction

A positive sequence $\left(b_{n}\right)$ is said to be an almost increasing sequence if there exists a positive increasing sequence c_{n} and two positive constants M and N such that $M c_{n} \leq b_{n} \leq N c_{n}$ (see [1]). A positive sequence $X=\left(X_{n}\right)$ is said to be a quasi-f-power increasing sequence if there exists a constant $K=K(X, f) \geq 1$ such that $K f_{n} X_{n} \geq f_{m} X_{m}$ for all $n \geq m \geq 1$, where $f=\left\{f_{n}(\sigma, \beta)\right\}=\left\{n^{\sigma}(\log n)^{\beta}, \beta \geq 0,0<\sigma<1\right\}$ (see [13]). If we take $\beta=0$, then we get a quasi- σ-power increasing sequence. Every almost increasing sequence is a quasi- σ-power increasing sequence for any non-negative σ, but the converse is not true for $\sigma>0$ (see [11]). For any sequence $\left(\lambda_{n}\right)$ we write that $\Delta^{2} \lambda_{n}=\Delta \lambda_{n}-\Delta \lambda_{n+1}$ and $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1}$. The sequence $\left(\lambda_{n}\right)$ is said to be of bounded variation, denoted by $\left(\lambda_{n}\right) \in \mathcal{B V}$, if $\sum_{n=1}^{\infty}\left|\Delta \lambda_{n}\right|<\infty$. Let $\sum a_{n}$ be a given infinite series with the partial sums $\left(s_{n}\right)$. By u_{n}^{α} and t_{n}^{α} we denote the nth Cesàro means of order α, with $\alpha>-1$, of the sequences $\left(s_{n}\right)$ and $\left(n a_{n}\right)$, respectively, that is (see [6])

$$
\begin{equation*}
u_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=0}^{n} A_{n-v}^{\alpha-1} s_{v} \quad \text { and } \quad t_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v}, \quad\left(t_{n}{ }^{1}=t_{n}\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}^{\alpha}=\frac{(\alpha+1)(\alpha+2) \ldots .(\alpha+n)}{n!}=O\left(n^{\alpha}\right), \quad A_{-n}^{\alpha}=0 \text { for } n>0 . \tag{2}
\end{equation*}
$$

The series $\sum a_{n}$ is said to be summable $|C, \alpha|_{k}, k \geq 1$, if (see [8], [10])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|u_{n}^{\alpha}-u_{n-1}^{\alpha}\right|^{k}=\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}^{\alpha}\right|^{k}<\infty \tag{3}
\end{equation*}
$$

[^0]If we take $\alpha=1$, then $|C, \alpha|_{k}$ summability reduces to $|C, 1|_{k}$ summability. Let $\left(p_{n}\right)$ be a sequence of positive real numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, \quad i \geq 1\right) \tag{4}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
w_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{5}
\end{equation*}
$$

defines the sequence $\left(w_{n}\right)$ of the weighted arithmetic mean or simply the $\left(\bar{N}, p_{n}\right)$ mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ (see [9]). The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k^{\prime}} k \geq 1$, if (see [2])

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|w_{n}-w_{n-1}\right|^{k}<\infty
$$

In the special case when $p_{n}=1$ for all values of n (resp. $k=1$), $\left|\bar{N}, p_{n}\right|_{k}$ summability is the same as $|C, 1|_{k}$, (resp. $\left|\bar{N}, p_{n}\right|$) summability.

2. Known Results

The following theorems are known dealing with the $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series.
Theorem 2.1 ([12]). Let $\left(X_{n}\right)$ be an almost increasing sequence. If the sequences $\left(X_{n}\right),\left(\lambda_{n}\right)$, and $\left(p_{n}\right)$ satisfy the conditions

$$
\begin{align*}
& \lambda_{m} X_{m}=O(1) \quad \text { as } \quad m \rightarrow \infty \tag{6}\\
& \sum_{n=1}^{m} n X_{n}\left|\Delta^{2} \lambda_{n}\right|=O(1) \text { as } m \rightarrow \infty \tag{7}\\
& \sum_{n=1}^{m} \frac{P_{n}}{n}=O\left(P_{m}\right) \text { as } m \rightarrow \infty \tag{8}\\
& \sum_{n=1}^{m} \frac{\left|t_{n}\right|^{k}}{n}=O\left(X_{m}\right) \text { as } m \rightarrow \infty \tag{9}\\
& \sum_{n=1}^{m} \frac{p_{n}}{P_{n}}\left|t_{n}\right|^{k}=O\left(X_{m}\right) \text { as } \quad m \rightarrow \infty \tag{10}
\end{align*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.
It should be remarked that Theorem 2.1 also implies the known result of Bor dealing with the absolute $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series (see [3]).
Theorem 2.2 ([5]). Let $\left(X_{n}\right)$ be a quasi- σ-power increasing sequence. If the sequences $\left(X_{n}\right),\left(\lambda_{n}\right)$, and (p_{n}) satisfy the conditions (6), (7), (8), and

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{\left|t_{n}\right|^{k}}{n X_{n}^{k-1}}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{p_{n}}{P_{n}} \frac{\left|t_{n}\right|^{k}}{X_{n}^{k-1}}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{12}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.
Remark. It should be noted that conditions (11) and (12) are the same as conditions (9) and (10), respectively, when $\mathrm{k}=1$. When $k>1$ conditions (11) and (12) are weaker than conditions (9) and (10), respectively. But the converses are not true. As in [14], we can show that if (9) is satisfied, then we get

$$
\sum_{n=1}^{m} \frac{\left|t_{n}\right|^{k}}{n X_{n}^{k-1}}=O\left(\frac{1}{X_{1}^{k-1}}\right) \sum_{n=1}^{m} \frac{\left|t_{n}\right|^{k}}{n}=O\left(X_{m}\right)
$$

To show that the converse is false when $k>1$, as in [4], the following example is sufficient. We can take $X_{n}=n^{\delta}, 0<\delta<1$, and then construct a sequence $\left(u_{n}\right)$ such that

$$
\frac{\left|t_{n}\right|^{k}}{n X_{n}{ }^{k-1}}=X_{n}-X_{n-1}
$$

hence

$$
\sum_{n=1}^{m} \frac{\left|t_{n}\right|^{k}}{n X_{n}{ }^{k-1}}=\sum_{n=1}^{m}\left(X_{n}-X_{n-1}\right)=X_{m}=m^{\delta}
$$

and so

$$
\begin{aligned}
\sum_{n=1}^{m} \frac{\left|t_{n}\right|^{k}}{n} & =\sum_{n=1}^{m}\left(X_{n}-X_{n-1}\right) X_{n}^{k-1}=\sum_{n=1}^{m}\left(n^{\delta}-(n-1)^{\delta}\right) n^{\delta(k-1)} \\
& \geq \delta \sum_{n=1}^{m} n^{\delta-1} n^{\delta(k-1)}=\delta \sum_{n=1}^{m} n^{\delta k-1} \sim \frac{m^{\delta k}}{k} \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

It follows that

$$
\frac{1}{X_{m}} \sum_{n=1}^{m} \frac{\left|t_{n}\right|^{k}}{n} \rightarrow \infty \quad \text { as } \quad m \rightarrow \infty
$$

provided $k>1$. This shows that (9) implies (11) but not conversely. The similar argument is also valid for the conditions (10) and (12).

3. Main Result

The aim of this paper is to generalize Theorem 2.2 by taking a quasi-f-power increasing sequence instead of a quasi- σ-power increasing sequence. Now, we shall prove the following theorem.
Theorem 3.1 Let $\left(X_{n}\right)$ be a quasi-f-power increasing sequence. If the sequences $\left(X_{n}\right),\left(\lambda_{n}\right)$, and $\left(p_{n}\right)$ satisfy the all conditions of Theorem 2.2, then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.
Remark 3.2 It should be noted that if we take $\beta=0$, then we obtain Theorem 2.2. Also if we take $\left(X_{n}\right)$ as an almost increasing sequence, then we get a new result.
We need the following lemma for the proof of our theorem.
Lemma 3. 3 ([4]) Under the conditions (6) and (7) of Theorem 3.1, we have the following

$$
\begin{align*}
& \sum_{n=1}^{\infty} X_{n}\left|\Delta \lambda_{n}\right|<\infty \tag{13}\\
& n X_{n}\left|\Delta \lambda_{n}\right|=O(1) \quad \text { as } \quad n \rightarrow \infty \tag{14}
\end{align*}
$$

4. Proof of Theorem 3.1

Let $\left(T_{n}\right)$ be the sequence of $\left(\bar{N}, p_{n}\right)$ mean of the series $\sum a_{n} \lambda_{n}$. Then, by definition, we have

$$
\begin{equation*}
T_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} \sum_{r=0}^{v} a_{r} \lambda_{r}=\frac{1}{P_{n}} \sum_{v=0}^{n}\left(P_{n}-P_{v-1}\right) a_{v} \lambda_{v} \tag{15}
\end{equation*}
$$

Then, for $n \geq 1$, we get

$$
\begin{equation*}
T_{n}-T_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} \frac{P_{v-1} \lambda_{v}}{v} v a_{v} . \tag{16}
\end{equation*}
$$

Applying Abel's transformation to the right-hand side of (16), we have

$$
\begin{aligned}
T_{n}-T_{n-1}= & \frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} \Delta\left(\frac{P_{v-1} \lambda_{v}}{v}\right) \sum_{r=1}^{v} r a_{r}+\frac{p_{n} \lambda_{n}}{n P_{n}} \sum_{r=1}^{n} v a_{v} \\
= & \frac{(n+1) p_{n} t_{n} \lambda_{n}}{n P_{n}}-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} p_{v} t_{v} \lambda_{v} \frac{v+1}{v} \\
& +\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} \Delta \lambda_{v} t_{v} \frac{v+1}{v}+\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} \lambda_{v+1} t_{v} \frac{1}{v} \\
= & T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4} .
\end{aligned}
$$

To complete the proof of Theorem 3.1, by Minkowski's inequality, it is sufficient to show that

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3,4
$$

Firstly, we have that

$$
\begin{aligned}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, 1}\right|^{k} & =O(1) \sum_{n=1}^{m}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right| \frac{p_{n}}{P_{n}}\left|t_{n}\right|^{k}=O(1) \sum_{n=1}^{m}\left|\lambda_{n}\right| \frac{p_{n}}{P_{n}} \frac{\left|t_{n}\right|^{k}}{X_{n}{ }^{k-1}} \\
& =O(1) \sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{v=1}^{n} \frac{p_{v}}{P_{v}} \frac{\left|t_{v}\right|^{k}}{X_{v}{ }^{k-1}}+O(1)\left|\lambda_{m}\right| \sum_{n=1}^{m} \frac{p_{n}}{P_{n}} \frac{\left|t_{n}\right|^{k}}{X_{n}{ }^{k-1}} \\
& =O(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| X_{n}+O(1)\left|\lambda_{m}\right| X_{m}=O(1) \text { as } m \rightarrow \infty,
\end{aligned}
$$

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.3. Also, as in $T_{n, 1}$, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, 2}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}}\left(\sum_{v=1}^{n-1} p_{v}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k}\right) \times\left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v}\right| p_{v}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right| \frac{p_{v}}{P_{v}} \frac{\left|t_{v}\right|^{k}}{X_{v}^{k-1}}=O(1) \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

Again, by using (8), we get that

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, 3}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1} P_{v}\left|\Delta \lambda_{v}\right|\left|t_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}^{k}}\left(\sum_{v=1}^{n-1} \frac{P_{v}}{v} v\left|\Delta \lambda_{v} \| t_{v}\right|\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}}\left(\sum_{v=1}^{n-1} \frac{P_{v}}{v}\left(v\left|\Delta \lambda_{v}\right|\right)^{k}\left|t_{v}\right|^{k}\right) \times\left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} \frac{P_{v}}{v}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m} \frac{P_{v}}{v}\left(v\left|\Delta \lambda_{v}\right|\right)^{k-1} v\left|\Delta \lambda_{v}\right| p_{v}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m} v\left|\Delta \lambda_{v}\right| \frac{\left|t_{v}\right|^{k}}{v X_{v}{ }^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v\left|\Delta \lambda_{v}\right|\right) \sum_{r=1}^{v} \frac{\left|t_{r}\right|^{k}}{r X_{r}^{k-1}}+O(1) m\left|\Delta \lambda_{m}\right| \sum_{v=1}^{m} \frac{\left|t_{v}\right|^{k}}{v X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v\left|\Delta \lambda_{v}\right|\right)\right| X_{v}+O(1) m\left|\Delta \lambda_{m}\right| X_{m} \\
& =O(1) \sum_{v=1}^{m-1} v X_{v}\left|\Delta^{2} \lambda_{v}\right|+O(1) \sum_{v=1}^{m-1} X_{v}\left|\Delta \lambda_{v}\right|+O(1) m\left|\Delta \lambda_{m}\right| X_{m} \\
& =O(1) a s m \rightarrow \infty,
\end{aligned}
$$

by virtue of the hypotheses of Theorem 3.1 and and Lemma 3.3. Finally, by using (8), we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, 4}\right|^{k} & \leq \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}^{k}}\left(\sum_{v=1}^{n-1} \frac{P_{v}}{v}\left|\lambda_{v+1}\right|\left|t_{v}\right|\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}}\left(\sum_{v=1}^{n-1} \frac{P_{v}}{v}\left|\lambda_{v+1}\right|^{k}\left|t_{v}\right|^{k}\right) \times\left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} \frac{P_{v}}{v}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m} \frac{P_{v}}{v}\left|\lambda_{v+1}\right|^{k-1}\left|\lambda_{v+1}\right|\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v+1}\right| \frac{\left|t_{v}\right|^{k}}{v X_{v}{ }^{k-1}}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

This completes the proof of Theorem 3.1.

5. An Application to Trigonometric Fourier Series

Let f be a periodic function with period 2π and Lebesgue integrable over $(-\pi, \pi)$. The trigonometric Fourier series of f is defined as

$$
f(x) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)=\sum_{n=0}^{\infty} A_{n}(x)
$$

Write $\quad \phi(t)=\frac{1}{2}\{f(x+t)+f(x-t)\} \quad$ and $\quad \phi_{\alpha}(t)=\frac{\alpha}{t^{\alpha}} \int_{0}^{t}(t-u)^{\alpha-1} \phi(u) d u, \quad(\alpha>0)$.
It is well know that if $\phi_{1}(t) \in \mathcal{B} \mathcal{V}(0, \pi)$, then $t_{n}(x)=O(1)$, where $t_{n}(x)$ is the $(C, 1)$ mean of the sequence $\left(n A_{n}(x)\right)$ (see [7]). Using this fact, we have obtained the following main result dealing with the trigonometric Fourier series.
Theorem 5.1 ([5]) Let $\left(X_{n}\right)$ be a quasi- σ-power increasing sequence. If $\phi_{1}(t) \in \mathcal{B V} \mathcal{V}(0, \pi)$, and the sequences $\left(p_{n}\right),\left(\lambda_{n}\right)$, and $\left(X_{n}\right)$ satisfy the conditions of Theorem 3.1, then the series $\sum A_{n}(x) \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k^{\prime}}$ $k \geq 1$.
Now, we have the following general theorem for the trigonometric Fourier series.
Theorem 5. 2 Let $\left(X_{n}\right)$ be a quasi-f-power increasing sequence. If $\phi_{1}(t) \in \mathcal{B V}(0, \pi)$, and the sequences (p_{n}), $\left(\lambda_{n}\right)$, and $\left(X_{n}\right)$ satisfy the conditions of Theorem 3.1, then the series $\sum A_{n}(x) \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k^{\prime}} k \geq 1$.
It should be noted that if we take $\beta=0$, then we get Theorem 5.1. Also if we take $p_{n}=1$ for all values of n , then we obtain a new result for the $|C, 1|_{k}$ summability of trigonometric Fourier series.

Acknowledgement. The author expresses his thanks to the referee for his/her useful comments and suggestions for the improvement of this paper.

References

[1] N. K. Bari and S. B. Stečkin, Best approximation and differential properties of two conjugate functions, Trudy. Moskov. Mat. Obšč. 5 (1956) 483-522 (in Russian)
[2] H. Bor, On two summability methods, Math. Proc. Camb. Philos Soc. 97 (1985) 147-149.
[3] H. Bor, On absolute summability factors, Proc. Amer. Math. Soc. 118 (1993) 71-75.
[4] H. Bor, Quasi-monotone and almost increasing sequences and their new applications, Abstr. Appl. Anal. 2012, Art. ID 793548, 6 pp.
[5] H. Bor, An application of power increasing sequences to infinite series and Fourier series, Filomat 31 (2017) 1543-1547.
[6] E. Cesàro, Sur la multiplication des séries, Bull. Sci. Math. 14 (1890) 114-120.
[7] K. K. Chen, Functions of bounded variation and the Cesàro means of Fourier series, Acad. Sinica Sci. Record 1 (1945) 283-289.
[8] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. 7 (1957) 113-141.
[9] G. H. Hardy, Divergent series, Oxford Univ. Press, New York and London, 1949.
[10] E. Kogbetliantz, Sur les séries absolument sommables par la méthode des moyennes arithmétiques, Bull. Sci. Mat. 49 (1925) 234-256.
[11] L. Leindler, A new application of quasi power increasing sequences, Publ. Math. Debrecen 58 (2001) 791-796.
[12] S. M. Mazhar, Absolute summability factors of infinite series, Kyungpook Math. J. 39 (1999) 67-73.
[13] W. T. Sulaiman, Extension on absolute summability factors of infinite series, J. Math. Anal. Appl. 322 (2006) 1224-1230.
[14] W. T. Sulaiman, A note on $|A|_{k}$ summability factors of infinite series, Appl. Math. Comput. 216 (2010) 2645-2648.

[^0]: 2010 Mathematics Subject Classification. 26D15, 40D15, 40F05, 40G99, 42A24, 46A45
 Keywords. Weighted arithmetic mean, infinite series, trigonometric Fourier series, Hölder inequality, Minkowski inequality, almost increasing sequence, quasi-power increasing sequence, sequence space

 Received: 12 August 2016; Accepted: 08 December 2016
 Communicated by Dragan S. Djordjević
 Email address: hbor33@gmail.com (Hüseyin Bor)

