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Absolute Weighted Arithmetic Mean Summability Factors of
Infinite Series and Trigonometric Fourier Series
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Abstract. In this paper, we generalized a known theorem dealing with absolute weighted arithmetic mean
summability of infinite series by using a quasi-f-power increasing sequence instead of a quasi-σ-power
increasing sequence. And we applied it to the trigonometric Fourier series

1. Introduction

A positive sequence (bn) is said to be an almost increasing sequence if there exists a positive increasing
sequence cn and two positive constants M and N such that Mcn ≤ bn ≤ Ncn (see [1]). A positive sequence
X = (Xn) is said to be a quasi-f-power increasing sequence if there exists a constant K = K(X, f ) ≥ 1 such
that K fnXn ≥ fmXm for all n ≥ m ≥ 1, where f = { fn(σ, β)} = {nσ(log n)β, β ≥ 0, 0 < σ < 1}(see [13]). If
we take β=0, then we get a quasi-σ-power increasing sequence. Every almost increasing sequence is a
quasi-σ-power increasing sequence for any non-negative σ, but the converse is not true for σ > 0 (see [11]).
For any sequence (λn) we write that ∆2λn = ∆λn − ∆λn+1 and ∆λn = λn − λn+1. The sequence (λn) is said to
be of bounded variation, denoted by (λn) ∈ BV, if

∑
∞

n=1 |∆λn| < ∞. Let
∑

an be a given infinite series with
the partial sums (sn). By uαn and tαn we denote the nth Cesàro means of order α, with α > −1, of the sequences
(sn) and (nan), respectively, that is (see [6])

uαn =
1

Aα
n

n∑
v=0

Aα−1
n−vsv and tαn =

1
Aα

n

n∑
v=1

Aα−1
n−vvav, (tn

1 = tn) (1)

where

Aα
n =

(α + 1)(α + 2)....(α + n)
n!

= O(nα), Aα
−n = 0 for n > 0. (2)

The series
∑

an is said to be summable |C, α|k , k ≥ 1, if (see [8], [10])
∞∑

n=1

nk−1
∣∣∣uαn − uαn−1

∣∣∣k =

∞∑
n=1

1
n

∣∣∣tαn ∣∣∣k < ∞. (3)
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If we take α = 1, then |C, α|k summability reduces to |C, 1|k summability. Let (pn) be a
sequence of positive real numbers such that

Pn =

n∑
v=0

pv →∞ as n→∞,
(
P−i = p−i = 0, i ≥ 1

)
. (4)

The sequence-to-sequence transformation

wn =
1

Pn

n∑
v=0

pvsv (5)

defines the sequence (wn) of the weighted arithmetic mean or simply the
(
N̄, pn

)
mean of the sequence (sn),

generated by the sequence of coefficients (pn) (see [9]). The series
∑

an is said to be summable
∣∣∣N̄, pn

∣∣∣
k, k ≥ 1,

if (see [2])

∞∑
n=1

(
Pn

pn

)k−1

|wn − wn−1|
k < ∞.

In the special case when pn = 1 for all values of n (resp. k = 1), |N̄, pn|k summability is the same as |C, 1|k,
(resp. |N̄, pn|) summability.

2. Known Results

The following theorems are known dealing with the |N̄, pn|k summability factors of infinite series.
Theorem 2.1 ([12]). Let (Xn) be an almost increasing sequence. If the sequences (Xn), (λn), and (pn) satisfy
the conditions

λmXm = O(1) as m→∞, (6)

m∑
n=1

nXn|∆
2λn| = O(1) as m→∞, (7)

m∑
n=1

Pn

n
= O(Pm) as m→∞, (8)

m∑
n=1

| tn |
k

n
= O(Xm) as m→∞, (9)

m∑
n=1

pn

Pn
|tn|

k = O(Xm) as m→∞, (10)

then the series
∑

anλn is summable | N̄, pn |k, k ≥ 1.
It should be remarked that Theorem 2.1 also implies the known result of Bor dealing with the absolute
|N̄, pn|k summability factors of infinite series (see [3]).
Theorem 2.2 ([5]). Let (Xn) be a quasi-σ-power increasing sequence. If the sequences (Xn), (λn), and (pn)
satisfy the conditions (6), (7), (8), and

m∑
n=1

|tn|
k

nXn
k−1

= O(Xm) as m→∞, (11)
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m∑
n=1

pn

Pn

|tn|
k

Xn
k−1

= O(Xm) as m→∞, (12)

then the series
∑

anλn is summable |N̄, pn|k, k ≥ 1.
Remark. It should be noted that conditions (11) and (12) are the same as conditions (9) and (10), respectively,
when k=1. When k > 1 conditions (11) and (12) are weaker than conditions (9) and (10), respectively. But
the converses are not true. As in [14], we can show that if (9) is satisfied, then we get

m∑
n=1

| tn |
k

nXk−1
n

= O(
1

Xk−1
1

)
m∑

n=1

| tn |
k

n
= O(Xm).

To show that the converse is false when k > 1, as in [4], the following example is sufficient. We can take
Xn = nδ, 0 < δ < 1, and then construct a sequence (un) such that

|tn|
k

nXn
k−1

= Xn − Xn−1,

hence
m∑

n=1

|tn|
k

nXn
k−1

=

m∑
n=1

(Xn − Xn−1) = Xm = mδ,

and so
m∑

n=1

|tn|
k

n
=

m∑
n=1

(Xn − Xn−1)Xk−1
n =

m∑
n=1

(nδ − (n − 1)δ)nδ(k−1)

≥ δ
m∑

n=1

nδ−1nδ(k−1) = δ
m∑

n=1

nδk−1
∼

mδk

k
as m→∞.

It follows that

1
Xm

m∑
n=1

|tn|
k

n
→∞ as m→∞

provided k > 1. This shows that (9) implies (11) but not conversely. The similar argument is also valid for
the conditions (10) and (12).

3. Main Result

The aim of this paper is to generalize Theorem 2.2 by taking a quasi-f-power increasing sequence instead
of a quasi-σ-power increasing sequence. Now, we shall prove the following theorem.
Theorem 3.1 Let (Xn) be a quasi-f-power increasing sequence. If the sequences (Xn), (λn), and (pn) satisfy
the all conditions of Theorem 2.2, then the series

∑
anλn is summable |N̄, pn|k, k ≥ 1.

Remark 3.2 It should be noted that if we take β = 0, then we obtain Theorem 2.2. Also if we take (Xn) as an
almost increasing sequence, then we get a new result.
We need the following lemma for the proof of our theorem.
Lemma 3. 3 ([4]) Under the conditions (6) and (7) of Theorem 3.1, we have the following

∞∑
n=1

Xn|∆λn| < ∞, (13)

nXn|∆λn| = O(1) as n→∞. (14)
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4. Proof of Theorem 3.1

Let (Tn) be the sequence of (N̄, pn) mean of the series
∑

anλn. Then, by definition, we have

Tn =
1

Pn

n∑
v=0

pv

v∑
r=0

arλr =
1

Pn

n∑
v=0

(Pn − Pv−1)avλv. (15)

Then, for n ≥ 1, we get

Tn − Tn−1 =
pn

PnPn−1

n∑
v=1

Pv−1λv

v
vav. (16)

Applying Abel’s transformation to the right-hand side of (16), we have

Tn − Tn−1 =
pn

PnPn−1

n−1∑
v=1

∆
(Pv−1λv

v

) v∑
r=1

rar +
pnλn

nPn

n∑
r=1

vav

=
(n + 1)pntnλn

nPn
−

pn

PnPn−1

n−1∑
v=1

pvtvλv
v + 1

v

+
pn

PnPn−1

n−1∑
v=1

Pv∆λvtv
v + 1

v
+

pn

PnPn−1

n−1∑
v=1

Pvλv+1tv
1
v

= Tn,1 + Tn,2 + Tn,3 + Tn,4.

To complete the proof of Theorem 3.1, by Minkowski’s inequality, it is sufficient to show that

∞∑
n=1

(
Pn

pn

)k−1 ∣∣∣Tn,r

∣∣∣k < ∞, f or r = 1, 2, 3, 4.

Firstly, we have that

m∑
n=1

(
Pn

pn

)k−1

|Tn,1|
k = O(1)

m∑
n=1

|λn|
k−1
|λn|

pn

Pn
|tn|

k = O(1)
m∑

n=1

|λn|
pn

Pn

|tn|
k

Xn
k−1

= O(1)
m−1∑
n=1

∆|λn|

n∑
v=1

pv

Pv

|tv|
k

Xv
k−1

+ O(1)|λm|

m∑
n=1

pn

Pn

|tn|
k

Xn
k−1

= O(1)
m−1∑
n=1

|∆λn|Xn + O(1)|λm|Xm = O(1) as m→∞,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.3. Also, as in Tn,1, we have that

m+1∑
n=2

(
Pn

pn

)k−1

|Tn,2|
k = O(1)

m+1∑
n=2

pn

PnPn−1

n−1∑
v=1

pv|tv|
k
|λv|

k

 ×
 1

Pn−1

n−1∑
v=1

pv


k−1

= O(1)
m∑

v=1

|λv|
k−1
|λv|pv|tv|

k
m+1∑

n=v+1

pn

PnPn−1

= O(1)
m∑

v=1

|λv|
pv

Pv

|tv|
k

Xv
k−1

= O(1) as m→∞.
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Again, by using (8), we get that

m+1∑
n=2

(
Pn

pn

)k−1 ∣∣∣Tn,3

∣∣∣k = O(1)
m+1∑
n=2

pn

PnPk
n−1

n−1∑
v=1

Pv|∆λv||tv|


k

= O(1)
m+1∑
n=2

pn

PnPk
n−1

n−1∑
v=1

Pv

v
v|∆λv||tv|


k

= O(1)
m+1∑
n=2

pn

PnPn−1

n−1∑
v=1

Pv

v
(v|∆λv|)k

|tv|
k

 ×
 1

Pn−1

n−1∑
v=1

Pv

v


k−1

= O(1)
m∑

v=1

Pv

v
(v|∆λv|)k−1v|∆λv|pv|tv|

k
m+1∑

n=v+1

pn

PnPn−1

= O(1)
m∑

v=1

v|∆λv|
|tv|

k

vXv
k−1

= O(1)
m−1∑
v=1

∆ (v|∆λv|)
v∑

r=1

|tr|
k

rXr
k−1

+ O(1)m|∆λm|

m∑
v=1

|tv|
k

vXv
k−1

= O(1)
m−1∑
v=1

|∆ (v|∆λv|)|Xv + O(1)m|∆λm|Xm

= O(1)
m−1∑
v=1

vXv|∆
2λv| + O(1)

m−1∑
v=1

Xv|∆λv| + O(1)m|∆λm|Xm

= O(1) as m→∞,

by virtue of the hypotheses of Theorem 3.1 and and Lemma 3.3. Finally, by using (8), we have that

m+1∑
n=2

(
Pn

pn

)k−1 ∣∣∣Tn,4

∣∣∣k ≤

m+1∑
n=2

pn

PnPk
n−1

n−1∑
v=1

Pv

v
|λv+1||tv|


k

= O(1)
m+1∑
n=2

pn

PnPn−1

n−1∑
v=1

Pv

v
|λv+1|

k
|tv|

k

 ×
 1

Pn−1

n−1∑
v=1

Pv

v


k−1

= O(1)
m∑

v=1

Pv

v
|λv+1|

k−1
|λv+1||tv|

k
m+1∑

n=v+1

pn

PnPn−1

= O(1)
m∑

v=1

|λv+1|
|tv|

k

vXv
k−1

= O(1) as m→∞.

This completes the proof of Theorem 3.1.

5. An Application to Trigonometric Fourier Series

Let f be a periodic function with period 2π and Lebesgue integrable over (−π, π). The trigonometric
Fourier series of f is defined as

f (x) ∼
1
2

a0 +

∞∑
n=1

(an cos nx + bn sin nx) =

∞∑
n=0

An(x).
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Write φ(t) = 1
2 { f (x + t) + f (x − t)} and φα(t) = α

tα
∫ t

0 (t − u)α−1φ(u)du, (α > 0).

It is well know that if φ1(t) ∈ BV(0, π), then tn(x) = O(1), where tn(x) is the (C, 1) mean of the sequence
(nAn(x)) (see [7]). Using this fact, we have obtained the following main result dealing with the trigonometric
Fourier series.
Theorem 5.1 ([5]) Let (Xn) be a quasi-σ-power increasing sequence. If φ1(t) ∈ BV(0, π), and the sequences
(pn), (λn), and (Xn) satisfy the conditions of Theorem 3.1, then the series

∑
An(x)λn is summable

∣∣∣N̄, pn

∣∣∣
k,

k ≥ 1.
Now, we have the following general theorem for the trigonometric Fourier series.
Theorem 5. 2 Let (Xn) be a quasi-f-power increasing sequence. If φ1(t) ∈ BV(0, π), and the sequences (pn),
(λn), and (Xn) satisfy the conditions of Theorem 3.1, then the series

∑
An(x)λn is summable

∣∣∣N̄, pn

∣∣∣
k, k ≥ 1.

It should be noted that if we take β = 0, then we get Theorem 5.1. Also if we take pn = 1 for all values of n,
then we obtain a new result for the |C, 1|k summability of trigonometric Fourier series.
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