A Fixed Point Theorem for JS-contraction Type Mappings with Applications to Polynomial Approximations

Ishak Altun ${ }^{\text {a,b }}$, Nassir Al Arifi ${ }^{\text {c }}$, Mohamed Jleli ${ }^{\text {d }}$, Aref Lashin ${ }^{\text {e,f }}$, Bessem Samet ${ }^{\text {d }}$
${ }^{a}$ King Saud University, College of Science, Riyadh, Saudi Arabia
${ }^{b}$ Department of Mathematics, Faculty of Science and Arts, Kirikkale University, 71450 Yahsihan, Kirikkale, Turkey ${ }^{c}$ College of Science, Geology and Geophysics Department, King Saud University, Riyadh 11451, Saudi Arabia
${ }^{d}$ Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
${ }^{e}$ College of Engineering, Petroleum and Natural Gas Engineering Department, King Saud University, Riyadh 11421, Saudi Arabia
${ }^{f}$ Faculty of Science, Geology Department, Benha University, Benha 13518, Egypt

Abstract

A fixed point theorem is established for a new class of JS-contraction type mappings. As applications, some Kelisky-Rivlin type results are obtained for linear and nonlinear q-Bernstein-Stancu operators.

1. Introduction

Let Θ be the set of functions $\theta:(0, \infty) \rightarrow(1, \infty)$ satisfying the following conditions:
$\left(\Theta_{1}\right) \theta$ is non-decreasing;
$\left(\Theta_{2}\right)$ For each sequence $\left\{t_{n}\right\} \subset(0, \infty)$, we have

$$
\lim _{n \rightarrow \infty} \theta\left(t_{n}\right)=1 \Longleftrightarrow \lim _{n \rightarrow \infty} t_{n}=0^{+}
$$

$\left(\Theta_{3}\right)$ There exist $r \in(0,1)$ and $\ell \in(0, \infty]$ such that $\lim _{t \rightarrow 0^{+}} \frac{\theta(t)-1}{t^{r}}=\ell$.
Recently, Jleli and Samet [4] introduced the class of JS-contraction mappings as follows.
Definition 1.1. Let (X, d) be a metric space, and let $T: X \rightarrow X$ be a given mapping. The mapping T is said to be a J S-contraction if there exist $\theta \in \Theta$ and $k \in(0,1)$ such that

$$
(x, y) \in X \times X, d(T x, T y)>0 \Longrightarrow \theta(d(T x, T y)) \leq\left[\theta(d(x, y)]^{k}\right.
$$

In [4], the following generalization of Banach contraction principle was established.

[^0]Theorem 1.2. Let (X, d) be a complete metric space, and let $T: X \rightarrow X$ be JS-contraction. Then T has a unique fixed point.

Observe that Banach contraction principle follows from Theorem 1.2 by taking $\theta(t)=e^{\sqrt{t}}$. For other related results, we refer the reader to $[13,16]$.

In this paper, a fixed point theorem for a new class of JS-contraction type mappings is presented. Next, this theorem is used to study the iterates properties of some polynomial operators including q-BernsteinStancu operators and q-Bernstein-Stancu operators of nonlinear type.

2. A Fixed Point Theorem

In this section, a new fixed poin theorem is established for a new class of JS-contraction type mappings. The obtained result is an extension of Theorem 1.2.

At first, let us introduce some notations. Let M be a nonempty set, and let $T: M \rightarrow M$ be a given mapping. We denote by $\operatorname{Fix}(T)$ the set of all the fixed points of T, that is,

$$
\operatorname{Fix}(T)=\{x \in M: x=T x\} .
$$

Suppose that M is a group with respect to a certain operation + . For $x \in M$ and $N \subset M$, we denote by $x+N$ the subset of M defined by

$$
x+N=\{x+y: y \in N\} .
$$

We denote by \mathbb{N} the set of positive integers, that is,

$$
\mathbb{N}=\{0,1,2, \cdots\}
$$

We denote by \mathbb{N}^{*} the set defined by

$$
\mathbb{N}^{*}=\{1,2,3, \cdots\}
$$

Our fixed point theorem can be stated as follows.
Theorem 2.1. Let E be a group with respect to a certain operation +. Let X be a subset of E endowed with a certain metric d such that (X, d) is complete. Let $X_{0} \subset X$ be a closed subset of X such that X_{0} is a subgroup of E. Let $T: X \rightarrow X$ be a given mapping satisfying

$$
\begin{equation*}
(x, y) \in X \times X, x-y \in X_{0}, d(T x, T y) \neq 0 \Longrightarrow \theta(d(T x, T y)) \leq\left[\theta(d(x, y)]^{k}\right. \tag{1}
\end{equation*}
$$

where $k \in(0,1)$ is a constant and $\theta \in \Theta$. Suppose that the operation mapping $\pm: X \times X \rightarrow X$ defined by

$$
\pm(x, y)=x \pm y, \quad(x, y) \in X \times X
$$

is continuous with respect to the metric d. Moreover, suppose that

$$
\begin{equation*}
x-T x \in X_{0}, \quad x \in X \tag{2}
\end{equation*}
$$

Then we have
(i) For every $x \in X$, the Picard sequence $\left\{T^{n} x\right\}$ converges to a fixed point of T.
(ii) For every $x \in X$,

$$
\left(x+X_{0}\right) \cap \operatorname{Fix}(T)=\left\{\lim _{n \rightarrow \infty} T^{n} x\right\}
$$

Proof. Let $x \in X$ be an arbitrary point in X. If for some $p \in \mathbb{N}$, we have $T^{p} x=T^{p+1} x$, then $T^{p} x$ will be a fixed point of T. So, without restriction of the generality, we can suppose that $d\left(T^{n} x, T^{n+1} x\right)>0$, for all $n \in \mathbb{N}$. From (2), we have

$$
x-T x \in X_{0}
$$

Using (1), we obtain

$$
\theta\left(d\left(T x, T^{2} x\right)\right) \leq[\theta(d(x, T x))]^{k}
$$

Again, using (2), we obtain

$$
T x-T^{2} x=T x-T(T x) \in X_{0}
$$

which implies from (1) that

$$
\theta\left(d\left(T^{2} x, T^{3} x\right)\right) \leq\left[\theta\left(d\left(T x, T^{2} x\right)\right)\right]^{k} \leq[\theta(d(x, T x))]^{k^{2}}
$$

Therefore, by induction we obtain

$$
\begin{equation*}
T^{n} x-T^{n+1} x \in X_{0}, \quad n \in \mathbb{N} \tag{3}
\end{equation*}
$$

and

$$
\theta\left(d\left(T^{n} x, T^{n+1} x\right)\right) \leq[\theta(d(x, T x))]^{k^{n}}, \quad n \in \mathbb{N}
$$

Thus, we have

$$
\begin{equation*}
1 \leq \theta\left(d\left(T^{n} x, T^{n+1} x\right)\right) \leq[\theta(d(x, T x))]^{k^{n}}, \quad n \in \mathbb{N} . \tag{4}
\end{equation*}
$$

Passing to the limit as $n \rightarrow \infty$ in (4), we obtain

$$
\lim _{n \rightarrow \infty} \theta\left(d\left(T^{n} x, T^{n+1} x\right)\right)=1
$$

which implies from $\left(\Theta_{2}\right)$ that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(T^{n} x, T^{n+1} x\right)=0 \tag{5}
\end{equation*}
$$

From condition $\left(\Theta_{3}\right)$, there exist $r \in(0,1)$ and $\ell \in(0, \infty]$ such that

$$
\lim _{n \rightarrow \infty} \frac{\theta\left(d\left(T^{n} x, T^{n+1} x\right)\right)-1}{\left[d\left(T^{n} x, T^{n+1} x\right)\right]^{r}}=\ell
$$

Suppose that $\ell<\infty$. In this case, let $B=\ell / 2>0$. From the definition of the limit, there exists $n_{0} \in \mathbb{N}$ such that

$$
\left|\frac{\theta\left(d\left(T^{n} x, T^{n+1} x\right)\right)-1}{\left[d\left(T^{n} x, T^{n+1} x\right)\right]^{r}}-\ell\right| \leq B, \quad n \geq n_{0}
$$

This implies that

$$
\frac{\theta\left(d\left(T^{n} x, T^{n+1} x\right)\right)-1}{\left[d\left(T^{n} x, T^{n+1} x\right)\right]^{r}} \geq \ell-B=B, \quad n \geq n_{0}
$$

Then,

$$
n\left[d\left(T^{n} x, T^{n+1} x\right)\right]^{r} \leq A n\left[\theta\left(d\left(T^{n} x, T^{n+1} x\right)\right)-1\right], \quad n \geq n_{0}
$$

where $A=1 / B$.
Suppose now that $\ell=\infty$. Let $B>0$ be an arbitrary positive number. From the definition of the limit, there exists $n_{0} \in \mathbb{N}$ such that

$$
\frac{\theta\left(d\left(T^{n} x, T^{n+1} x\right)\right)-1}{\left[d\left(T^{n} x, T^{n+1} x\right)\right]^{r}} \geq B, \quad n \geq n_{0}
$$

This implies that

$$
n\left[d\left(T^{n} x, T^{n+1} x\right)\right]^{r} \leq A n\left[\theta\left(d\left(T^{n} x, T^{n+1} x\right)\right)-1\right], \quad n \geq n_{0}
$$

where $A=1 / B$.
Thus, in all cases, there exists $A>0$ and $n_{0} \in \mathbb{N}$ such that

$$
n\left[d\left(T^{n} x, T^{n+1} x\right)\right]^{r} \leq A n\left[\theta\left(d\left(T^{n} x, T^{n+1} x\right)\right)-1\right], \quad n \geq n_{0}
$$

Using (4), we obtain

$$
n\left[d\left(T^{n} x, T^{n+1} x\right)\right]^{r} \leq A n\left([\theta(d(x, T x))]^{k^{n}}-1\right), \quad n \geq n_{0}
$$

Letting $n \rightarrow \infty$ in the above inequality, we obtain

$$
\lim _{n \rightarrow \infty} n\left[d\left(T^{n} x, T^{n+1} x\right)\right]^{r}=0
$$

Thus, there exists $n_{1} \in \mathbb{N}$ such that

$$
\begin{equation*}
d\left(T^{n} x, T^{n+1} x\right) \leq \frac{1}{n^{1 / r}}, \quad n \geq n_{1} . \tag{6}
\end{equation*}
$$

Using (6), we have

$$
\begin{aligned}
& d\left(T^{n} x, T^{n+m} x\right) \leq d\left(T^{n} x, T^{n+1} x\right)+d\left(T^{n+1} x, T^{n+2} x\right)+\cdots+d\left(T^{n+m-1} x, T^{n+m} x\right) \\
& \leq \frac{1}{n^{1 / r}}+\frac{1}{(n+1)^{1 / r}}+\cdots+\frac{1}{(n+m-1)^{1 / r}} \\
& \leq \sum_{i=n}^{\infty} \frac{1}{i^{1 / r}}
\end{aligned}
$$

which implies that the Picard sequence $\left\{T^{n} x\right\}$ is Cauchy in the complete metric space (X, d) (since $r \in(0,1)$). Then there is some $\omega \in X$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(T^{n} x, \omega\right)=0 \tag{7}
\end{equation*}
$$

On the other hand, observe that for $n, p \geq 1$,

$$
T^{n} x-T^{n+p} x=\left(T^{n} x-T^{n+1} x\right)+\left(T^{n+1} x-T^{n+2} x\right)+\cdots+\left(T^{n+p-1} x-T^{n+p} x\right)
$$

Therefore, by (3) and using the fact that $\left(X_{0},+\right)$ is a group, we deduce that

$$
T^{n} x-T^{n+p} x \in X_{0}, \quad n, p \geq 1
$$

Passing to the limit as $p \rightarrow \infty$, using (7), the continuity of the operation mapping \pm, and the closure of X_{0}, we obtain that

$$
\begin{equation*}
T^{n} x-\omega \in X_{0}, \quad n \in \mathbb{N} \tag{8}
\end{equation*}
$$

Without restriction of the generality, we may suppose that $d\left(T^{n} x, T \omega\right)>0$, for all $n \in \mathbb{N}$. Therefore, using (8) and (1), we have

$$
1 \leq \theta\left(d\left(T^{n+1} x, T \omega\right)\right) \leq\left[\theta\left(T^{n} x, \omega\right)\right]^{k}, \quad n \in \mathbb{N} .
$$

Passing to the limit as $n \rightarrow \infty$, using (7) and $\left(\Theta_{2}\right)$, we deduce that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(T^{n+1} x, T \omega\right)=0 \tag{9}
\end{equation*}
$$

Next, (7), (9) and the uniqueness of the limit yield $\omega=T \omega$, that is, ω is a fixed point of T. Then (i) is proved. In order to prove (ii), let $x \in X$ be fixed. We know that the Picard sequence $\left\{T^{n} x\right\}$ converges to $\omega \in X$, a fixed point of T. Moreover, from (8), we have $\omega-x \in X_{0}$, that is, $\omega \in x+X_{0}$. Therefore, we have

$$
\left\{\lim _{n \rightarrow \infty} T^{n} x\right\} \subset\left(x+X_{0}\right) \cap \operatorname{Fix}(T)
$$

Now, let $z \in\left(x+X_{0}\right) \cap \operatorname{Fix}(T)$ be fixed. Then

$$
T z=z \quad \text { and } \quad z-x \in X_{0}
$$

Therefore, we have

$$
z-T x=T z-T x=(T z-z)+(x-T x)+(z-x) \in X_{0} .
$$

Again,

$$
z-T^{2} x=T^{2} z-T^{2} x=\left(T^{2} z-T z\right)+\left(T x-T^{2} x\right)+(z-T x) \in X_{0} .
$$

Hence, by induction we obtain

$$
z-T^{n} x \in X_{0}, \quad n \in \mathbb{N}
$$

Without restriction of the generality, we may suppose that $z \neq T^{n} x$, for all $n \in \mathbb{N}$. Therefore, by (1) we have

$$
1 \leq \theta\left(d\left(z, T^{n+1} x\right)\right)=\theta\left(d\left(T z, T^{n+1} x\right)\right) \leq\left[\theta\left(d\left(z, T^{n} x\right)\right)\right]^{k} \leq \cdots \leq[\theta(d(z, x))]^{k+1}, \quad n \in \mathbb{N}
$$

Passing to the limit as $n \rightarrow \infty$ and using $\left(\Theta_{2}\right)$, we deduce that

$$
\lim _{n \rightarrow \infty} d\left(T^{n} x, z\right)=0
$$

which yields $z \in\left\{\lim _{n \rightarrow \infty} T^{n} x\right\}$. Then we proved that

$$
\left(x+X_{0}\right) \cap \operatorname{Fix}(T) \subset\left\{\lim _{n \rightarrow \infty} T^{n} x\right\}
$$

The proof is complete.
The following result follows immediately from Theorem 2.1 with $\theta(t)=e^{\sqrt{t}}$.
Corollary 2.2. Let E be a group with respect to a certain operation +. Let X be a subset of E endowed with a certain metric d such that (X, d) is complete. Let $X_{0} \subset X$ be a closed subset of X such that X_{0} is a subgroup of E. Let $T: X \rightarrow X$ be a given mapping satisfying

$$
(x, y) \in X \times X, x-y \in X_{0} \Longrightarrow d(T x, T y) \leq k d(x, y)
$$

where $k \in(0,1)$ is a constant. Suppose that the operation mapping $\pm: X \times X \rightarrow X$ defined by

$$
\pm(x, y)=x \pm y, \quad(x, y) \in X \times X
$$

is continuous with respect to the metric d. Moreover, suppose that

$$
x-T x \in X_{0}, \quad x \in X
$$

Then we have
(i) For every $x \in X$, the Picard sequence $\left\{T^{n} x\right\}$ converges to a fixed point of T.
(ii) For every $x \in X$,

$$
\left(x+X_{0}\right) \cap \operatorname{Fix}(T)=\left\{\lim _{n \rightarrow \infty} T^{n} x\right\}
$$

3. Applications: Iterates Properties of Some Polynomial Operators

In this section, as applications of Theorem 2.1, the iterates properties of some polynomial operators are investigated. Two types of polynomial operators are discussed: q-Bernstein-Stancu operators and q -Bernstein-Stancu operators of nonlinear type. For each kind of operators, a Kelisky-Rivlin type result is established. Let us mention some well known contributions in this topic. In [6], via some linear algebra tools, Kelisky and Rivlin studied the iterates properties of the class of Bernstein operators. Another proof of Kelisky-Rivlin theorem was presented by I.A. Rus [10] with the help of some trick with the Contraction principle. Another possibility to establish Kelisky-Rivlin theorem, which is based on a fixed point theorem for linear operators on a Banach space, was suggested by Jachymski [3]. For other related works, we refer to $[1,2,8,14,15]$ and references therein.

The following basic notations in quantum calculus will be used. Let $q>0$. For any $n \in \mathbb{N}$, the q-integer $[n]_{q}$ is defined by

$$
[n]_{q}=1+q+q^{2}+\cdots+q^{n-1}(n \geq 1),[0]_{q}=0
$$

The q-factorial $[n]_{q}$! is defined by

$$
[n]_{q}!=[1]_{q}[2]_{q} \cdots[n]_{q}(n \geq 1),[0]_{q}!=1
$$

For integers $0 \leq k \leq n$, the q-binomial is defined by

$$
\binom{n}{k}_{q}=\frac{[n]_{q}!}{[n-k]_{q}![k]_{q}!}
$$

It is clear that for $q=1$, we have

$$
[n]_{1}=n,[n]_{1}!=n!,\binom{n}{k}_{1}=\binom{n}{k} .
$$

For more details on quantum calculus, we refer to [5].

3.1. A Kelisky-Rivlin type result for q-Bernstein-Stancu operators

Let $C([0,1] ; \mathbb{R})$ be the set of real valued and continuous functions $f:[0,1] \rightarrow \mathbb{R}$. For $f \in C([0,1] ; \mathbb{R})$, $q>0, \alpha \geq 0$ and each $n \in \mathbb{N}^{*}$, the q-Bernstein-Stancu operator of order n is defined by [7]

$$
B_{n}(q, \alpha)(f)(t)=\sum_{i=0}^{n} f\left(\frac{[i]_{q}}{[n]_{q}}\right) B_{n, i}^{q, \alpha}(t), \quad t \in[0,1]
$$

where

$$
B_{n, i}^{q, \alpha}(t)=\binom{n}{i}_{q} \frac{\prod_{s=0}^{i-1}\left(t+\alpha[s]_{q}\right) \prod_{j=0}^{n-i-1}\left(1-q^{j} t+\alpha[j]_{q}\right)}{\prod_{j=0}^{n-1}\left(1+\alpha[j]_{q}\right)}
$$

From here on an empty product is taken to be equal to 1 .
If $\alpha=0, B_{n}(q, 0)$ reduces to the q-Bernstein polynomial of order n introduced by Phillips [9]

$$
B_{n}(q, 0)(f)(t)=\sum_{i=0}^{n} f\left(\frac{[i]_{q}}{[n]_{q}}\right)\binom{n}{i}_{q} t^{i} \prod_{j=0}^{n-1-i}\left(1-q^{j} t\right), \quad t \in[0,1] .
$$

If $q=1, B_{n}(1, \alpha)$ reduces to the Bernstein-Stancu polynomial of order n introduced by Stancu [11]

$$
B_{n}(1, \alpha)(f)(t)=\sum_{i=0}^{n} f\left(\frac{i}{n}\right)\binom{n}{i} \frac{\prod_{s=0}^{i-1}(t+\alpha s) \prod_{j=0}^{n-i-1}(1-t+\alpha j)}{\prod_{j=0}^{n-1}(1+\alpha j)}, \quad t \in[0,1]
$$

If $(\alpha, q)=(0,1)$, we obtain the standard Bernstein polynomial of order n

$$
B_{n}(1,0)(f)(t)=\sum_{i=0}^{n} f\left(\frac{i}{n}\right)\binom{n}{i} t^{i}(1-t)^{n-i}, \quad t \in[0,1]
$$

The following lemmas will be useful later (see $[2,15]$).
Lemma 3.1. Let $n \in \mathbb{N}^{*}, q \in(0,1)$ and $\alpha \geq 0$. Then

$$
\sum_{i=0}^{n} B_{n, i}^{q, \alpha}(t)=1
$$

Lemma 3.2. Let $n \in \mathbb{N}^{*}, q \in(0,1)$ and $\alpha \geq 0$. Then

$$
\min \left\{B_{n, 0}^{q, \alpha}(t)+B_{n, n}^{q, \alpha}(t): t \in[0,1]\right\}>0
$$

We have the following Kelisky-Rivlin type result for q-Bernstein-Stancu operators.
Theorem 3.3. Let $n \in \mathbb{N}^{*}, \alpha \geq 0$ and $0<q<1$. Then, for every $f \in C([0,1] ; \mathbb{R})$,

$$
\lim _{N \rightarrow \infty}\left[B_{n}(q, \alpha)\right]^{N}(f)(t)=f(0)+[f(1)-f(0)] t, \quad t \in[0,1] .
$$

Proof. Let $X=E=C([0,1] ; \mathbb{R})$. We endow X with the metric d defined by

$$
d(f, g)=\max \{|f(t)-g(t)|: t \in[0,1]\}, \quad(f, g) \in X \times X
$$

Then (X, d) is a complete metric space. Let X_{0} be the subset of X defined by

$$
X_{0}=\{f \in X: f(0)=f(1)=0\} .
$$

Then X_{0} is a closed linear subspace of X. Let $(f, g) \in X \times X$ be such that $f-g \in X_{0}$, that is,

$$
(f, g) \in X \times X \quad \text { and } \quad f(0)=g(0), f(1)=g(1)
$$

Let $t \in[0,1]$ be fixed. Then we have

$$
\begin{aligned}
& \left|B_{n}(q, \alpha)(f)(t)-B_{n}(q, \alpha)(g)(t)\right| \\
& =\left|\sum_{i=0}^{n} f\left(\frac{[i]_{q}}{[n]_{q}}\right) B_{n, i}^{q, \alpha}(t)-\sum_{i=0}^{n} g\left(\frac{[i]_{q}}{[n]_{q}}\right) B_{n, i}^{q, \alpha}(t)\right| \\
& =\left|\sum_{i=0}^{n}\left(f\left(\frac{[i]_{q}}{[n]_{q}}\right)-g\left(\frac{[i]_{q}}{[n]_{q}}\right)\right) B_{n, i}^{q, \alpha}(t)\right| \\
& \leq \sum_{i=0}^{n}\left|f\left(\frac{[i]_{q}}{[n]_{q}}\right)-g\left(\frac{[i]_{q}}{[n]_{q}}\right)\right| B_{n, i}^{q, \alpha}(t) \\
& =\sum_{i=1}^{n-1}\left|f\left(\frac{[i]_{q}}{[n]_{q}}\right)-g\left(\frac{[i]_{q}}{[n]_{q}}\right)\right| B_{n, i}^{q, \alpha}(t) \\
& \leq\left(\sum_{i=1}^{n-1} B_{n, i}^{q, \alpha}(t)\right) d(f, g)
\end{aligned}
$$

On the other hand, using Lemmas 3.1 and 3.2, we get

$$
\begin{aligned}
\sum_{i=1}^{n-1} B_{n, i}^{q, \alpha}(t) & =1-\left(B_{n, 0}^{q, \alpha}(t)+B_{n, n}^{q, \alpha}(t)\right) \\
& \leq 1-\lambda
\end{aligned}
$$

where

$$
\begin{equation*}
\lambda=\min \left\{B_{n, 0}^{q, \alpha}(t)+B_{n, n}^{q, \alpha}(t): t \in[0,1]\right\}>0 \tag{10}
\end{equation*}
$$

Terefore, we have

$$
(f, g) \in X \times X, f-g \in X_{0} \Longrightarrow d\left(B_{n}(q, \alpha)(f), B_{n}(q, \alpha)(g)\right) \leq k d(f, g)
$$

where $k=1-\lambda \in(0,1)$. Next, using lemma 3.1, for every $f \in X$ we have

$$
\gamma(t):=f(t)-B_{n}(q, \alpha)(f)(t)=\sum_{i=0}^{n}\left(f(t)-f\left(\frac{[i]_{q}}{[n]_{q}}\right)\right) B_{n, i}^{q, \alpha}(t), t \in[0,1] .
$$

We can check easily that

$$
\gamma(0)=\gamma(1)=0
$$

which yields

$$
f-B_{n}(q, \alpha)(f) \in X_{0}, \quad f \in X
$$

Applying Theorem 2.1 (or Corollary 2.2), we deduce that

$$
\left(f+X_{0}\right) \cap \operatorname{Fix}\left(B_{n}(q, \alpha)\right)=\left\{\lim _{N \rightarrow \infty}\left[B_{n}(q, \alpha)\right]^{N}(f)\right\}, \quad f \in X
$$

Let $f \in X$. It is not difficult to observe that the function $\omega:[0,1] \rightarrow \mathbb{R}$ defined by

$$
\omega(t)=f(0)(1-t)+f(1) t, \quad t \in[0,1]
$$

belongs to $\operatorname{Fix}\left(B_{n}(q, \alpha)\right)$. Moreover, for all $t \in[0,1]$,

$$
\mu(t):=\omega(t)-f(t)=f(0)(1-t)+f(1) t-f(t)
$$

Observe that

$$
\mu(0)=f(0)-f(0)=0
$$

and

$$
\mu(1)=f(1)-f(1)=0
$$

Therefore, $\omega \in f+X_{0}$. As consequence, we get

$$
\lim _{N \rightarrow \infty} d\left(\left[B_{n}(q, \alpha)\right]^{N}(f), \omega\right)=0
$$

which yields the desired result.
Remark 3.4. Another proof of Theorem 3.3 can be found in [15]. This proof is based on some linear algebra tools. In our opinion, the presented proof in this paper is more esay and more simplified.

3.2. A Kelisky-Rivlin type result for nonlinear q-Bernstein-Stancu operators

For $f \in C([0,1] ; \mathbb{R}), q>0, \alpha \geq 0$ and each $n \in \mathbb{N}^{*}$, we define the nonlinear q-Bernstein-Stancu operator of order n by

$$
T_{n}(q, \alpha)(f)(t)=\sum_{i=0}^{n}\left|f\left(\frac{[i]_{q}}{[n]_{q}}\right)\right| B_{n, i}^{q, \alpha}(t), \quad t \in[0,1] .
$$

Using Theorem 2.1, we shall establish the following Kelisky-Rivlin type result.
Theorem 3.5. Let $n \in \mathbb{N}^{*}, \alpha \geq 0$ and $0<q<1$. Then, for every $f \in C([0,1] ; \mathbb{R})$ such that $f(0) \geq 0$ and $f(1) \geq 0$,

$$
\lim _{N \rightarrow \infty}\left[T_{n}(q, \alpha)\right]^{N}(f)(t)=f(0)+[f(1)-f(0)] t, \quad t \in[0,1] .
$$

Proof. Let $E=C([0,1] ; \mathbb{R})$ and X be the subset if E defined by

$$
X=\{f \in E: f(0) \geq 0, f(1) \geq 0\}
$$

We endow X with the metric d defined by

$$
d(f, g)=\max \{|f(t)-g(t)|: t \in[0,1]\}, \quad(f, g) \in X \times X
$$

Then (X, d) is a complete metric space. Let X_{0} be the subset of X defined by

$$
X_{0}=\{f \in E: f(0)=f(1)=0\} .
$$

Then X_{0} is a closed subgroup of E. Let $(f, g) \in X \times X$ be such that $f-g \in X_{0}$, that is,

$$
(f, g) \in X \times X \quad \text { and } \quad f(0)=g(0), f(1)=g(1)
$$

Let $t \in[0,1]$ be fixed. Then we have

$$
\begin{aligned}
& \left|T_{n}(q, \alpha)(f)(t)-T_{n}(q, \alpha)(g)(t)\right| \\
& =\left|\sum_{i=0}^{n}\right| f\left(\frac{[i]_{q}}{[n]_{q}}\right)\left|B_{n, i}^{q, \alpha}(t)-\sum_{i=0}^{n}\right| g\left(\frac{[i]_{q}}{[n]_{q}}\right)\left|B_{n, i}^{q, \alpha}(t)\right| \\
& =\left|\sum_{i=0}^{n}\left(\left|f\left(\frac{[i]_{q}}{[n]_{q}}\right)\right|-\left|g\left(\frac{[i]_{q}}{[n]_{q}}\right)\right|\right) B_{n, i}^{q, \alpha}(t)\right| \\
& \leq \sum_{i=0}^{n}\left|f\left(\frac{[i]_{q}}{[n]_{q}}\right)-g\left(\frac{[i]_{q}}{[n]_{q}}\right)\right| B_{n, i}^{q, \alpha}(t) \\
& =\sum_{i=1}^{n-1}\left|f\left(\frac{[i]_{q}}{[n]_{q}}\right)-g\left(\frac{[i]_{q}}{[n]_{q}}\right)\right| B_{n, i}^{q, \alpha}(t) \\
& \leq\left(\sum_{i=1}^{n-1} B_{n, i}^{q, \alpha}(t)\right) d(f, g) \\
& =(1-\lambda) d(f, g),
\end{aligned}
$$

where λ is given by (10). Terefore, we have

$$
(f, g) \in X \times X, f-g \in X_{0} \Longrightarrow d\left(T_{n}(q, \alpha)(f), T_{n}(q, \alpha)(g)\right) \leq k d(f, g)
$$

where $k=1-\lambda \in(0,1)$. Next, for every $f \in X$ we have

$$
\gamma^{\prime}(t): \left.=f(t)-T_{n}(q, \alpha)(f)(t)=\sum_{i=0}^{n}\left(f(t)-\left\lvert\, f\left(\frac{[i]_{q}}{[n]_{q}}\right)\right.\right) \right\rvert\, B_{n, i}^{q, \alpha}(t), \quad t \in[0,1] .
$$

Observe that

$$
\gamma^{\prime}(0)=f(0)-|f(0)|=f(0)-f(0)=0
$$

and

$$
\gamma^{\prime}(1)=f(1)-|f(1)|=f(1)-f(1)=0 .
$$

Then

$$
f-T_{n}(q, \alpha)(f) \in X_{0}, \quad f \in X
$$

Applying Theorem 2.1 (or Corollary 2.2), we deduce that

$$
\left(f+X_{0}\right) \cap \operatorname{Fix}\left(T_{n}(q, \alpha)\right)=\left\{\lim _{N \rightarrow \infty}\left[T_{n}(q, \alpha)\right]^{N}(f)\right\}, \quad f \in X
$$

Let $f \in X$. It is not difficult to observe that the function $\omega:[0,1] \rightarrow \mathbb{R}$ defined by

$$
\omega(t)=f(0)(1-t)+f(1) t, \quad t \in[0,1]
$$

belongs to $\left(f+X_{0}\right) \cap \operatorname{Fix}\left(T_{n}(q, \alpha)\right)$. As consequence, we get

$$
\lim _{N \rightarrow \infty} d\left(\left[T_{n}(q, \alpha)\right]^{N}(f), \omega\right)=0
$$

which yields the desired result.
Remark 3.6. Note that Theorem 4.1 in [3] cannot be applied in our case since it requires linear operators defined on a certain Banach space X. Observe that in our case, X is not a linear space.

Remark 3.7. The case $(\alpha, q)=(0,1)$ was considered in [12]. The authors claimed that if $n \in \mathbb{N}$, for every $f \in X=C([0,1] ; \mathbb{R})$, the Picard sequence $\left[T_{n}(0,1)\right]^{N}(f)$ converges uniformly to a fixed point of $T_{n}(0,1)$ (see Corollary 4 in [12]). For the proof of this claim, the authors used that $f-T_{n}(0,1)(f) \in X_{0}$ for every $f \in X$, where X_{0} is the set of functions $u \in X$ such that $u(0)=u(1)=0$. Unfortunately, the above property is not true. To observe this fact, we have just to consider a function $f \in X$ such that $f(0)<0$ or $f(1)<0$. Our Theorem 3.5 for the case $(\alpha, q)=(0,1)$ is a corrected version of Corollary 4 in [12].

References

[1] O. Agratini, I. A. Rus, Iterates of a class of discrete linear operators via contraction principle, Commentationes Mathematicae Universitatis Carolinae 44 (2003) 555-563.
[2] O. Agratini, On a q-analogue of Stancu operators, Open Mathematics 8 (1) (2010) 191-198.
[3] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proceedings of the American Mathematical Society 136 (2008) 1359-1373.
[4] M. Jleli, B. Samet, A new generalization of the Banach contraction principle, Journal of Inequalities and Applications 2014:38 (2014).
[5] V. Kac, P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York (2002)
[6] R. P. Kelisky, T. J. Rivlin, Iterates of Bernstein polynomials, Pacific Journal of Mathematics 21 (1967) 511-520.
[7] G. Nowak, Approximation properties for generalized q-Bernstein polynomials, Journal of Mathematical Analysis and Applications 350 (2009) 50-55.
[8] S. Ostrovska, q-Bernstein polynomials and their iterates, Journal of Approximation Theory 123 (2003) 232-255.
[9] G. M. Phillips, A generalization of the Bernstein polynomials based on the q-integers, The ANZIAM Journal 42 (2000) 79-86.
[10] I. A. Rus, Iterates of Bernstein operators, via contraction principle, Journal of Mathematical Analysis and Applications 292 (2004) 259-261.
[11] D. D. Stancu, Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl 13 (1968) 1173-1194.
[12] A. Sultana, V. Vetrivel, Fixed points of Mizoguchi-Takahashi contraction on a metric space with a graph and applications, Journal of Mathematical Analysis and Applications 417 (2014) 336-344.
[13] T. Suzuki, Comments on some recent generalization of the Banach contraction principle, Journal of Inequalities and Applications 2016:111 (2016).
[14] T. Vedi, M. A. Ozarslan, Chlodowsky-type q-Bernstein-Stancu-Kantorovich operators, Journal of Inequalities and Applications 2015:91 (2015).
[15] W. Yali, Z. Yinying, Iterates properties for q-Bernstein-Stancu operators, International Journal of Modeling and Optimization 3 (2013) 362-368.
[16] Li. Zhilong, J. Shujun, Fixed point theorems of JS-quasi-contractions, Fixed Point Theory and Applications 2016:40 (2016).

[^0]: 2010 Mathematics Subject Classification. Primary 47H10; Secondary 41A36
 Keywords. JS-contraction, Picard iteration, q-Bernstein-Stancu operator, nonlinear q-Bernstein-Stancu operator
 Received: 14 August 2016; Accepted: 03 November 2016
 Communicated by Calogero Vetro
 The authors extend their appreciation to Distinguished Scientist Fellowship Program (DSFP) at King Saud University (Saudi Arabia).

 Email addresses: ishakaltun@yahoo.com (Ishak Altun), nalarifi@ksu.edu.sa (Nassir Al Arifi), jleli@ksu. edu. sa (Mohamed Jleli), arlashin@ksu.edu.sa (Aref Lashin), bsamet@ksu.edu. sa (Bessem Samet)

