Characterization of Linear Preservers of Generalized Majorization on c_{0}

Ali Bayati Eshkaftaki ${ }^{\text {a }}$, Noha Eftekhari ${ }^{\text {a }}$
${ }^{a}$ Department of Pure Mathematics, Faculty of Mathematical Sciences, Shahrekord University, P. O. Box 115, Shahrekord, 88186-34141, Iran.

Abstract

In this work we investigate a natural preorder on c_{0}, the Banach space of all real sequences tend to zero with the supremum norm, which is said to be "convex majorization". Some interesting properties of all bounded linear operators $T: c_{0} \rightarrow c_{0}$, preserving the convex majorization, are given and we characterize such operators.

1. Introduction and Preliminaries

For any two vectors $x, y \in \mathbb{R}^{n}$, we say x is majorized by y, denoted by $x<y$, if

$$
\sum_{i=1}^{k} x_{i}^{\downarrow} \leq \sum_{i=1}^{k} y_{i}^{\downarrow} \quad(\text { for } k=1, \ldots, n-1)
$$

and

$$
\sum_{i=1}^{n} x_{i}^{\downarrow}=\sum_{i=1}^{n} y_{i}^{\downarrow}
$$

Here $x_{1}^{\downarrow} \geq x_{2}^{\downarrow} \geq \cdots \geq x_{n}^{\downarrow}$ is the decreasing order of components of a vector x. There are several equivalent conditions of vector majorization. Hardy, Littlewood, and Polya in [4] proved that $x=\left(x_{1}, \ldots, x_{n}\right)<y=$ $\left(y_{1}, \ldots, y_{n}\right)$ is equivalent to

$$
\sum_{i=1}^{n} \phi\left(x_{i}\right) \leq \sum_{i=1}^{n} \phi\left(y_{i}\right)
$$

for all continuous convex function $\phi: \mathbb{R} \rightarrow \mathbb{R}$. In fact, the previous characterization shows that if $x<y$, then the set of the components of x, lies in the convex hull spanned by the components of y, i.e.,

$$
\begin{equation*}
\operatorname{co}(x) \subseteq \operatorname{co}(y) \tag{1}
\end{equation*}
$$

[^0]The topic of linear preservers is of interest to a large group of matrix theorists. For some references on this subject we refer the reader to [1-3,5-8]. On the basis of (1), Khalooei et al. [5, 6], introduced the concept of left matrix majorization and determined all linear operator preserving left matrix majorization on \mathbb{R}^{n}.

Throughout this work, c_{0} is the Banach space of all convergent real sequences tend to zero with the supremum norm. An element $f \in c_{0}$ can be represented by $\sum_{i \in \mathbb{N}} f(i) e_{i}$, where $e_{i}: \mathbb{N} \rightarrow \mathbb{R}$ is defined by $e_{i}(j)=\delta_{i j}$, the Kronecker delta. Let $T: c_{0} \rightarrow c_{0}$, be a bounded linear operator. Then an easy computation shows that, T is represented by a matrix $\left(t_{i j}\right)_{i, j \in \mathbb{N}}$ in the sense that

$$
(T f)(i)=\sum_{j \in \mathbb{N}} t_{i j} f(j), \quad \text { for } f \in c_{0} \text { and } i \in \mathbb{N},
$$

where $t_{i j}=\left(T e_{j}\right)(i)$. To simplify notation, we can incorporate T to its matrix form $\left(t_{i j}\right)_{i, j \in \mathbb{N}}$.
In the following of this paper, by using (1), the notion of the left matrix majorization is extended to c_{0}. Then all of the bounded linear operators, preserving such a majorization, together with some important properties of them, are obtained and determined. We also investigate the linear operators $T: c_{0} \rightarrow c_{0}$, which satisfy $\operatorname{co}(T f)=\operatorname{co}(f)$, for all $f \in c_{0}$. Then we prove that any row sum of them belongs to $[0,1]$.

2. Main Results

First, we define a preorder on c_{0}, as the following.
Definition 2.1. Let $f, g \in c_{0}$. We say that f is convex majorized by g, and denoted by $f<_{c} g$, if $\operatorname{co}(f) \subseteq \operatorname{co}(g)$. Also, f is said to be convex equivalent to g, denoted by $f \sim_{c} g$, whenever $f<_{c} g<_{c} f$, i.e., $\operatorname{co}(f)=\operatorname{co}(g)$, where $\operatorname{co}(f)$ means convex hull spanned by the components of f.

Remark 2.2. For $f, g \in c_{0}$, some consequences of the previous definition are as follows.

- If $f<_{c} g$, then $\|f\| \leq\|g\|$.
- $f<_{c} g$, iff $\lambda f<_{c} \lambda g$, for all $\lambda \in \mathbb{R}$, iff $f<_{c} n g$, for all $n \in \mathbb{N}$.
- If $n f<_{c} g$, for each $n \in \mathbb{N}$, then $f=0$.

Definition 2.3. A bounded linear operator $T: c_{0} \rightarrow c_{0}$ is said to be order preserving, if T preserves $<_{c}$, that is, for $f, g \in c_{0}$, the relation $f<_{c} g$ implies $T f \prec_{c} T g$. The set of all such operators is denoted by $\mathcal{P}_{c m}$.

One of the concepts, appears in the study of order preserver operators, is the generalization of the concept of convex combination, which appears in [2].
Definition 2.4. Let $(X,\|\|$.$) be a normed linear space and A \subseteq X$. The countable convex hull of A, denoted by $\operatorname{cco}(A)$, is defined to be the set

$$
\left\{\sum_{i=1}^{\infty} \lambda_{i} x_{i} ; x_{i} \in A, \lambda_{i} \geq 0, \sum_{i=1}^{\infty} \lambda_{i}=1, \sum_{i=1}^{\infty} \lambda_{i} x_{i} \text { converges }\right\} .
$$

The following assertions come from [2].

- $\operatorname{co}(A) \subseteq \operatorname{cco}(A) \subseteq \overline{\operatorname{co}(A)}$, so $\operatorname{cco}(A)$ is a convex set.
- If X is a Banach space and $A \subseteq X$ is bounded, then in the definition of $\operatorname{cco}(A), \sum_{i=1}^{\infty} \lambda_{i} x_{i}$ is always a convergent series.
- If $A \subseteq \mathbb{R}$, then $\operatorname{cco}(A)=\operatorname{co}(A)$.

It can be proved that, for $f \in c_{0}$ if $0 \in \operatorname{co}(f)$, then $\operatorname{co}(f)=[a, b]$, for some $a, b \in \mathbb{R}$ with $a \leq 0 \leq b$, and if $0 \notin \operatorname{co}(f)$, then $\operatorname{co}(f)$ is equal to either an interval $[a, 0)$, for some $a<0$, or $(0, b]$, for some $b>0$.

In this section, we characterize all linear operators $T: c_{0} \rightarrow c_{0}$ which preserve $<_{c}$.

Some elementary properties of $\mathcal{P}_{c m}$

- $0, \mathrm{id} \in \mathcal{P}_{c m}$.
- If $T_{1}, T_{2} \in \mathcal{P}_{c m}$, then $T_{1} \circ T_{2} \in \mathcal{P}_{c m}$. In particular, $\lambda T \in \mathcal{P}_{c m}$ for $\lambda \in \mathbb{R}$ and $T \in \mathcal{P}_{c m}$.
- Any constant coefficient of a permutation lies in $\mathcal{P}_{c m}$.

Example 2.5. Let $a, b \in \mathbb{R}$ and $S: c_{0} \rightarrow c_{0}$ be defined by

$$
S f=\left(a f_{1}, b f_{1}, a f_{2}, b f_{2}, \ldots\right),
$$

for $f=\left(f_{1}, f_{2}, \ldots\right) \in c_{0}$. It is obvious that $S \in \mathcal{P}_{c m}$.
In general case, let $\left(n_{k}\right)$ be a sequence of natural numbers. Then the bounded linear operator $T: c_{0} \rightarrow c_{0}$, defined by

$$
T f=(\underbrace{a f_{1}, \ldots, a f_{1}}_{n_{1}}, \underbrace{b f_{1}, \ldots, b f_{1}}_{n_{2}}, \underbrace{a f_{2}, \ldots, a f_{2}}_{n_{3}}, \underbrace{b f_{2}, \ldots, b f_{2}}_{n_{4}}, \underbrace{a f_{3}, \ldots, a f_{3}}_{n_{5}}, \underbrace{b f_{3}, \ldots, b f_{3}}_{n_{6}}, \ldots),
$$

for $f=\left(f_{1}, f_{2}, \ldots\right) \in c_{0}$, belongs to $\mathcal{P}_{c m}$.
Lemma 2.6. Let $f \in c_{0}, \lambda_{i} \geq 0$ and $0<\sum_{i=1}^{\infty} \lambda_{i} \leq 1$. Then $\sum_{i=1}^{\infty} \lambda_{i} f(i) \in \operatorname{co}(f)$.
Proof. Put $\lambda=\sum_{i=1}^{\infty} \lambda_{i}$. We consider two cases. If $0 \in \operatorname{co}(f)$, then

$$
\sum_{i=1}^{\infty} \lambda_{i} f(i)=\sum_{i=1}^{\infty} \lambda_{i} f(i)+(1-\lambda) 0 \in \operatorname{cco}(f)=\operatorname{co}(f) .
$$

But if $0 \notin \operatorname{co}(f)$, then $\operatorname{co}(f)$ has one of the forms $[a, 0) \operatorname{or}(0, b]$, where $a<0<b$. If $\operatorname{co}(f)=(0, b]$, then for all $i \in \mathbb{N}$, we have $0<f(i) \leq b$. This implies $0<\sum_{i=1}^{\infty} \lambda_{i} f(i) \leq \sum_{i=1}^{\infty} \lambda_{i} b \leq b$, i.e., $\sum_{i=1}^{\infty} \lambda_{i} f(i) \in \operatorname{co}(f)$. Similarly, the result follows for the case $\operatorname{co}(f)=[a, 0)$.

In Lemma 2.6, if all the λ_{i} are equal to zero, then $\sum_{i=1}^{\infty} \lambda_{i} f(i)=0$, but it may be $0 \notin \operatorname{co}(f)$. For example suppose that $f=\left(1, \frac{1}{2}, \frac{1}{3}, \ldots\right)$.

The previous lemma gives a different example of order preserver operators.
Example 2.7. Let $\left(\lambda_{i}\right)$ be a sequence of nonnegative real numbers such that $\sum_{i=1}^{\infty} \lambda_{i} \leq 1$. Then the bounded linear operator $T: c_{0} \rightarrow c_{0}$ defined by

$$
T x=\left(\sum_{i=1}^{\infty} \lambda_{i} x_{i}, x_{1}, x_{2}, x_{3}, \ldots\right), \quad \text { for } x=\left(x_{i}\right) \in c_{0}
$$

belongs to $\mathcal{P}_{c m}$. To see this, suppose that $f<_{c} g$, for some $f, g \in c_{0}$. Now in the case $\sum_{i=1}^{\infty} \lambda_{i}=0$, that is, for all $i \in \mathbb{N}$, $\lambda_{i}=0$, then

$$
\operatorname{co}(T f)=\operatorname{co}\{0, f(1), f(2), f(3), \ldots\}
$$

which leads to

$$
\operatorname{co}(T f)=\operatorname{co}\{0, f(1), f(2), \ldots\} \subseteq \operatorname{co}\{0, g(1), g(2), \ldots\}=\operatorname{co}(T g) .
$$

But whenever $\sum_{i=1}^{\infty} \lambda_{i}>0$, then by Lemma 2.6, $\sum_{i=1}^{\infty} \lambda_{i} f(i) \in \operatorname{co}(f)$, and so

$$
\operatorname{co}(T f)=\operatorname{co}\left\{\sum_{i=1}^{\infty} \lambda_{i} f(i), f(1), f(2), f(3), \ldots\right\}=\operatorname{co}(f)
$$

This implies $\operatorname{co}(T f)=\operatorname{co}(f) \subseteq \operatorname{co}(g)=\operatorname{co}(T g)$.
Now, in the next theorem, we obtain an important property of order preserving linear operators on c_{0}, that is, their rows belong to ℓ^{1}.

Theorem 2.8. For $T \in \mathcal{P}_{c m}$, all rows of T lie in ℓ^{1}. Moreover for any fixed $i \in \mathbb{N}$, we have $\sum_{j \in \mathbb{N}}\left|T e_{j}(i)\right| \leq\|T\|$.
Proof. Let $i \in \mathbb{N}$ be fixed. For any $j, n \in \mathbb{N}$, we set $\delta_{j}=\operatorname{sgn}\left(T e_{j}\right)(i)$ and $x_{n}=\sum_{j=1}^{n} \delta_{j} e_{j} \in c_{0}$. Then $T x_{n}=\sum_{j=1}^{n} \delta_{j} T e_{j}$, which implies

$$
\left(T x_{n}\right)(i)=\sum_{j=1}^{n} \delta_{j}\left(T e_{j}\right)(i)=\sum_{j=1}^{n}\left|\left(T e_{j}\right)(i)\right| .
$$

Since $\left\|x_{n}\right\| \leq 1$, we have $\sum_{j=1}^{n}\left|\left(T e_{j}\right)(i)\right|=\left(T x_{n}\right)(i)=\left|\left(T x_{n}\right)(i)\right| \leq\|T\|$. Letting $n \rightarrow \infty$, this completes the proof.
Corollary 2.9. Let the bounded linear operator $T: c_{0} \rightarrow c_{0}$ be in $\mathcal{P}_{c m}$. Then for $j_{1}, j_{2} \in \mathbb{N}$, where $j_{1} \neq j_{2}$, we have $\left\|T e_{j_{1}}-T e_{j_{2}}\right\|=\|T\|$, independent of chosen j_{1}, j_{2}.

Proof. Let $x \in c_{0}$, such that $\|x\| \leq 1$. Then $x<_{c} e_{1}-e_{2}$, and since $T \in \mathcal{P}_{c m}$, we have $T x<_{c} T e_{1}-T e_{2}$. Remark 2.2 implies that $\|T x\| \leq\left\|T e_{1}-T e_{2}\right\|$, which follows that

$$
\|T\|=\sup _{\|x\| \leq 1}\|T x\| \leq\left\|T e_{1}-T e_{2}\right\| .
$$

On the other hand, $\left\|T e_{1}-T e_{2}\right\|=\left\|T\left(e_{1}-e_{2}\right)\right\| \leq\|T\|$. This completes the proof.
Remark 2.10. Note that for $T \in \mathcal{P}_{c m}$ and $j_{1}, j_{2} \in \mathbb{N}$, as $\operatorname{co}\left(T e_{j_{1}}\right)=\operatorname{co}\left(T e_{j_{2}}\right)$, the following equalities hold

$$
\inf _{i \in \mathbb{N}}\left\{T e_{j_{1}}(i)\right\}=\inf _{i \in \mathbb{N}}\left\{T e_{j_{2}}(i)\right\}, \sup _{i \in \mathbb{N}}\left\{T e_{j_{1}}(i)\right\}=\sup _{i \in \mathbb{N}}\left\{T e_{j_{2}}(i)\right\} .
$$

Hence both the values of $\inf _{i \in \mathbb{N}}\left\{T e_{j}(i)\right\}$ and $\sup _{i \in \mathbb{N}}\left\{T e_{j}(i)\right\}$ are independent of the choice of $j \in \mathbb{N}$. In what follows, for brevity we denote them by a and b, respectively. That is, for $T \in \mathcal{P}_{c m}$, there is a bounded real interval I, such that

$$
\operatorname{co}\left(T e_{j}\right)=I,
$$

for all $j \in \mathbb{N}$. Thus $a=\inf I$, and $b=\sup I$, for each $T \in \mathcal{P}_{c m}$.
Lemma 2.11. Assume that $T \in \mathcal{P}_{c m}$ and $i \in \mathbb{N}$. Then

$$
\begin{equation*}
a \leq \sum_{j \in I^{-}} T e_{j}(i) \leq 0 \leq \sum_{j \in I^{+}} T e_{j}(i) \leq b, \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
I^{+}=\left\{j \in \mathbb{N} ; T e_{j}(i)>0\right\}, I^{-}=\left\{j \in \mathbb{N} ; T e_{j}(i)<0\right\} . \tag{3}
\end{equation*}
$$

Proof. Let $i \in \mathbb{N}$, and F be a nonempty finite subset of I^{+}. As $\operatorname{co}\left(\sum_{j \in F} T e_{j}\right)=\operatorname{co}\left(T e_{j_{0}}\right)$, for $j_{0} \in \mathbb{N}$, we have

$$
0 \leq \sum_{j \in F} T e_{j}(i) \in \operatorname{Im}\left(\sum_{j \in F} T e_{j}\right) \subseteq \operatorname{co}\left(\sum_{j \in F} T e_{j}\right) .
$$

Thus

$$
0 \leq \sum_{j \in F} T e_{j}(i) \leq \sup _{i \in \mathbb{N}} T e_{j_{0}}(i)=b
$$

Since the last inequality holds for all finite subset $F \subseteq I^{+}$, we conclude that

$$
0 \leq \sum_{j \in I^{+}} T e_{j}(i) \leq b
$$

The rest of the proof runs as before.
In what follows, we assume that I^{+}and I^{-}, is defined as in (3).
Corollary 2.12. Let $T \in \mathcal{P}_{c m}$. Then each row sums of T, lies in $[a, b]$.
Proof. By adding both inequalities in (2), the assertion follows.
Theorem 2.13. Let $T \in \mathcal{P}_{c m}$. Then $\|T\|=\left\|T e_{j}\right\|$, for all $j \in \mathbb{N}$.
Proof. It follows from Corollary 2.9, that for distinct $j, j^{\prime} \in \mathbb{N}$, we have

$$
\|T\|=\left\|T e_{j}-T e_{j^{\prime}}\right\|
$$

Also, as $e_{j} \sim_{c} e_{j^{\prime}}$, we have $T e_{j} \sim_{c} T e_{j^{\prime}}$, which follows that $\left\|T e_{j}\right\|=\left\|T e_{j^{\prime}}\right\|$, (Remark 2.2). Assume that $\alpha=\left\|T e_{j}\right\|$, for $j \in \mathbb{N}$, and $\varepsilon>0$. As $T e_{j} \in c_{0}$, we have $\lim _{i \rightarrow \infty}\left(T e_{j}\right)(i)=0$, so there is $k \in \mathbb{N}$, such that for $i>k$, we have

$$
\begin{equation*}
\left|\left(T e_{j}\right)(i)\right|<\varepsilon \tag{4}
\end{equation*}
$$

On the other hand, Theorem 2.8 implies that the rows of T belong to ℓ^{1}, and so all the following sequences

$$
\left(\left(T e_{j}\right)(1)\right)_{j \in \mathbb{N}}, \ldots,\left(\left(T e_{j}\right)(k)\right)_{j \in \mathbb{N}^{\prime}}
$$

converge to zero, and so there is $k^{\prime} \in \mathbb{N}$, such that for $j^{\prime}>k^{\prime}$, we have

$$
\begin{equation*}
\left|\left(T e_{j^{\prime}}\right)(1)\right|<\varepsilon, \ldots,\left|\left(T e_{j^{\prime}}\right)(k)\right|<\varepsilon . \tag{5}
\end{equation*}
$$

The relations (4) and (5) imply that, for $j^{\prime}>k^{\prime}$, we have

$$
\begin{aligned}
\left|\left(T e_{j}\right)(i)-\left(T e_{j^{\prime}}\right)(i)\right| & \leq\left|\left(T e_{j}\right)(i)\right|+\left|\left(T e_{j^{\prime}}\right)(i)\right| \\
& \leq\left\{\begin{array}{c}
\left.\mid T e_{j}\right)(i) \mid+\varepsilon \quad \text { if } 1 \leq i \leq k, \\
\varepsilon+\left|\left(T e_{j^{\prime}}\right)(i)\right| \\
\\
\end{array} \quad \text { if } i>k,\right.
\end{aligned},
$$

for any $i \in \mathbb{N}$. Therefore for $\varepsilon>0$, it follows that

$$
\|T\|=\left\|T e_{j}-T e_{j^{\prime}}\right\|=\sup _{i \in \mathbb{N}}\left|\left(T e_{j}\right)(i)-\left(T e_{j^{\prime}}\right)(i)\right| \leq \alpha+\varepsilon .
$$

As $\varepsilon>0$ is arbitrary, we have

$$
\|T\|=\left\|T e_{j}-T e_{j^{\prime}}\right\| \leq \alpha
$$

Also, $\alpha=\left\|T e_{j}\right\| \leq\|T\|$. Therefore $\|T\|=\alpha=\left\|T e_{j}\right\|$, for all $j \in \mathbb{N}$.

Lemma 2.14. If $T \in \mathcal{P}_{c m}$, and $j_{0} \in \mathbb{N}$, then $0 \in \operatorname{Im}\left(T e_{j_{0}}\right)$.
Proof. Assume that $j_{0}, j_{1} \in \mathbb{N}$ with $j_{0} \neq j_{1}$. If $a=b=0$, then $T e_{j_{0}}=0$ and we are done. Otherwise, if $a<0$ or $b>0$, then $\left\|T e_{j_{1}}\right\|=\max \{b,-a\}>0$. Now if $\left\|T e_{j_{1}}\right\|=b>0$, then there is $i_{0} \in \mathbb{N}$ such that $T e_{j_{1}}\left(i_{0}\right)=b$. Applying Theorems 2.8 and 2.13, we can assert that $b=\left|T e_{j_{1}}\left(i_{0}\right)\right| \leq \sum_{j \in \mathbb{N}}\left|T e_{j}\left(i_{0}\right)\right| \leq\|T\|=\left\|T e_{j_{1}}\right\|=b$. The latter relation yields $\left|T e_{j}\left(i_{0}\right)\right|=0$ for all $j \neq j_{1}$. Thus $T e_{j_{0}}\left(i_{0}\right)=0$, which follows $0 \in \operatorname{Im}\left(T e_{j_{0}}\right)$. In case $\left\|T e_{j_{1}}\right\|=-a>0$, the result follows by a similar argument.

Lemma 2.15. Let $T \in \mathcal{P}_{c m}$ and $j \in \mathbb{N}$. Then $a, b \in \operatorname{Im}\left(T e_{j}\right)$ and $\operatorname{co}\left(T e_{j}\right)=[a, b]$.
Proof. Remark 2.10 yields that $\operatorname{co}\left(T e_{j}\right)=I$, where I is a bounded real interval and $a=\inf I$ and $b=\sup I$. The zero at most can be a limit point of $\operatorname{Im}\left(T e_{j}\right)$ and $a \leq 0 \leq b$. If $a<0$, then a will not be a limit point of $\operatorname{Im}\left(T e_{j}\right)$. Since $a=\inf _{i \in \mathbb{N}}\left\{T e_{j}(i)\right\}$, we see that $a \in \operatorname{Im}\left(T e_{j}\right)$. But if $a=0$, then Lemma 2.14, yields $a=0 \in \operatorname{Im}\left(T e_{j}\right)$. For b, we can use a similar argument.

Lemma 2.16. If $T \in \mathcal{P}_{c m}$ and $a<0<b$, then for any $j_{1}, j_{2} \in \mathbb{N}$, where $j_{1} \neq j_{2}$, we have

$$
\max _{i \in \mathbb{N}}\left\{\frac{1}{a} T e_{j_{1}}(i)+\frac{1}{b} T e_{j_{2}}(i)\right\}=1
$$

Proof. If $j_{1}, j_{2} \in \mathbb{N}\left(j_{1} \neq j_{2}\right)$, then obviously

$$
\begin{equation*}
\max _{i \in \mathbb{N}}\left\{\frac{1}{a} T e_{j_{1}}(i)\right\}=\max _{i \in \mathbb{N}}\left\{\frac{1}{b} T e_{j_{2}}(i)\right\}=1 . \tag{6}
\end{equation*}
$$

Now, assume that $0<\varepsilon<1$ is arbitrary and we choose finite subset $F \subseteq \mathbb{N}$ such that

$$
\begin{equation*}
\forall i \in \mathbb{N} \backslash F, \quad\left|\frac{1}{a} T e_{j_{1}}(i)\right|<\varepsilon, \tag{7}
\end{equation*}
$$

such an F exists, because $T e_{j_{1}} \in c_{0}$.
Theorem 2.8 implies that for all $i \in F, \sum_{j \in \mathbb{N}}\left|T e_{j}(i)\right|<\infty$. So there is a finite set $G \subseteq \mathbb{N}$ such that

$$
\begin{equation*}
\forall i \in F, \quad \forall j \in \mathbb{N} \backslash G, \quad\left|\frac{1}{b} T e_{j}(i)\right|<\varepsilon . \tag{8}
\end{equation*}
$$

Let $j^{*} \in \mathbb{N} \backslash G$ and $j^{*} \neq j_{1}$. Then for all $i \in \mathbb{N}$; if $i \in F$, then

$$
\begin{equation*}
\frac{1}{a} T e_{j_{1}}(i)+\frac{1}{b} T e_{j^{*}}(i) \leq 1+\varepsilon, \tag{9}
\end{equation*}
$$

and if $i \in \mathbb{N} \backslash F$, then

$$
\begin{equation*}
\frac{1}{a} T e_{j_{1}}(i)+\frac{1}{b} T e_{j^{*}}(i) \leq \varepsilon+1 \tag{10}
\end{equation*}
$$

Since $\frac{1}{a} T e_{j_{1}}+\frac{1}{b} T e_{j_{2}} \sim_{c} \frac{1}{a} T e_{j_{1}}+\frac{1}{b} T e_{j^{*}}$, the relations (9) and (10) follow that for all $\varepsilon>0$ we have

$$
\sup _{i \in \mathbb{N}}\left\{\frac{1}{a} T e_{j_{1}}(i)+\frac{1}{b} T e_{j_{2}}(i)\right\}=\sup _{i \in \mathbb{N}}\left\{\frac{1}{a} T e_{j_{1}}(i)+\frac{1}{b} T e_{j^{*}}(i)\right\} \leq \varepsilon+1,
$$

since $\varepsilon>0$ is arbitrary, we have

$$
\begin{equation*}
\sup _{i \in \mathbb{N}}\left\{\frac{1}{a} T e_{j_{1}}(i)+\frac{1}{b} T e_{j_{2}}(i)\right\}=\sup _{i \in \mathbb{N}}\left\{\frac{1}{a} T e_{j_{1}}(i)+\frac{1}{b} T e_{j^{*}}(i)\right\} \leq 1 . \tag{11}
\end{equation*}
$$

On the other hand, (6) shows that there is $i^{*} \in \mathbb{N}$ such that $\frac{1}{a} T e_{j_{1}}\left(i^{*}\right)=1$. But $\varepsilon<1$, thus (7) implies $i^{*} \in F$ and by (8) we deduce that

$$
\frac{1}{a} T e_{j_{1}}\left(i^{*}\right)+\frac{1}{b} T e_{j^{*}}\left(i^{*}\right) \geq 1-\varepsilon,
$$

thus for all $\varepsilon>0$,

$$
\sup _{i \in \mathbb{N}}\left\{\frac{1}{a} T e_{j_{1}}(i)+\frac{1}{b} T e_{j_{2}}(i)\right\}=\sup _{i \in \mathbb{N}}\left\{\frac{1}{a} T e_{j_{1}}(i)+\frac{1}{b} T e_{j^{*}}(i)\right\} \geq 1-\varepsilon,
$$

and hence

$$
\sup _{i \in \mathbb{N}}\left\{\frac{1}{a} T e_{j_{1}}(i)+\frac{1}{b} T e_{j_{2}}(i)\right\}=\sup _{i \in \mathbb{N}}\left\{\frac{1}{a} T e_{j_{1}}(i)+\frac{1}{b} T e_{j^{*}}(i)\right\} \geq 1,
$$

the last inequality and (11) follow that $\sup _{i \in \mathbb{N}}\left\{\frac{1}{a} T e_{j_{1}}(i)+\frac{1}{b} T e_{j_{2}}(i)\right\}=1$. But one is not a limit point of $\operatorname{Im}\left\{\frac{1}{a} T e_{j_{1}}+\frac{1}{b} T e_{j_{2}}\right\}$, so $1 \in \operatorname{Im}\left\{\frac{1}{a} T e_{j_{1}}+\frac{1}{b} T e_{j_{2}}\right\}$, that is $\max _{i \in \mathbb{N}}\left\{\frac{1}{a} T e_{j_{1}}(i)+\frac{1}{b} T e_{j_{2}}(i)\right\}=1$.

Theorem 2.17. If $T \in \mathcal{P}_{c m}$, and $a<0<b$, then for any $i \in \mathbb{N}$, we have

$$
\frac{1}{a} \sum_{j \in I^{-}} T e_{j}(i)+\frac{1}{b} \sum_{j \in I^{+}} T e_{j}(i) \leq 1
$$

Proof. Let $j_{1}, j_{2} \in \mathbb{N}\left(j_{1} \neq j_{2}\right)$. If $I^{+}=\emptyset$, then by Lemma 2.11 , we have

$$
a \leq \sum_{j \in I^{-}} T e_{j}(i) \leq 0 .
$$

By multiplying $\frac{1}{a}$ to the latter inequalities, the assertion follows. Similar arguments apply to the case $I^{-}=\emptyset$.
Now, suppose that I^{+}and I^{-}are both nonempty. Then Theorem 2.8 yields

$$
\sum_{j \in I^{+}}\left|T e_{j}(i)\right|+\sum_{j \in I^{-}}\left|T e_{j}(i)\right|=\sum_{j \in \mathbb{N}}\left|T e_{j}(i)\right|<\infty,
$$

that implies I^{+}and I^{-}are countable. For $F \subseteq I^{-}$and $G \subseteq I^{+}$, where F and G are nonempty finite sets, since $\frac{1}{a} \sum_{j \in F} e_{j}+\frac{1}{b} \sum_{j \in G} e_{j} \sim_{c} \frac{1}{a} e_{j_{1}}+\frac{1}{b} e_{j_{2}}$, it follows that

$$
\frac{1}{a} \sum_{j \in F} T e_{j}+\frac{1}{b} \sum_{j \in G} T e_{j} \sim_{c} \frac{1}{a} T e_{j_{1}}+\frac{1}{b} T e_{j_{2}}
$$

According to Lemma 2.16 and the latter relation, we have

$$
\frac{1}{a} \sum_{j \in F} T e_{j}(i)+\frac{1}{b} \sum_{j \in G} T e_{j}(i) \leq \max _{i \in \mathbb{N}}\left\{\frac{1}{a} T e_{j_{1}}(i)+\frac{1}{b} T e_{j_{2}}(i)\right\}=1
$$

Since the latter inequality holds for any finite subsets $F \subseteq I^{-}$and $G \subseteq I^{+}$, we have
$\frac{1}{a} \sum_{j \in I^{-}} T e_{j}(i)+\frac{1}{b} \sum_{j \in I^{+}} T e_{j}(i) \leq 1$.
Corollary 2.18. Let $T \in \mathcal{P}_{c m}$ and consider the matrix form of T. Then the following conditions hold.
(i) If $a<0$, then in any row which appears a, the other entries are equal to zero.
(ii) If $b>0$, then in any row which appears b, the other entries are equal to zero.

Proof. (i) In the matrix form of T, suppose that $a<0$ and it appears in the row $i \in I$. If $b=0$, then $I^{+}=\emptyset$ and $I^{-} \neq \emptyset$. According to Lemma 2.11, $a \leq \sum_{j \in I^{-}} T e_{j}(i)$. Since $T e_{j}(i) \leq 0$, for each $j \in I^{-}$, and one of them equals a,we have $\sum_{j \in I^{-}} T e_{j}(i)=a$. Now, let $j_{0} \in I^{-}$be such that $T e_{j_{0}}(i)=a$. Thus

$$
a=\sum_{\substack{j \in I^{-} \\ j \neq j_{0}}} T e_{j}(i)+a,
$$

and so $T e_{j}(i)=0$, for all $j \in I^{-}$with $j \neq j_{0}$.
Now if $b>0$, then by Theorem 2.17, we have $\sum_{j \in I^{-}} \frac{T e_{j}(i)}{a}+\sum_{j \in I^{+}} \frac{T e_{j}(i)}{b} \leq 1$. Since the elements of both series are nonnegative and there is $j_{0} \in I^{-}$such that $T e_{j_{0}}(i)=a$, that is, $\frac{T e_{j_{0}}(i)}{a}=1$, we conclude that for all $j \in \mathbb{N}$, where $j \neq j_{0}, T e_{j}(i)=0$.

The assertion (ii) follows by a similar argument.
Theorem 2.19. (Characterization theorem) Let $T: c_{0} \rightarrow c_{0}$ be a linear operator. Then $T \in \mathcal{P}_{c m}$ if and only if
(i) For any $j \in \mathbb{N}$, the value of $\min _{i \in \mathbb{N}} T e_{j}(i)$ exists and independent of j is equal to a.
(ii) For any $j \in \mathbb{N}$, the value of $\max _{i \in \mathbb{N}} T e_{j}(i)$ exists and independent of j is equal to b.
(iii) If $a<0<b$, we have $\frac{1}{a} \sum_{j \in I^{-}} T e_{j}(i)+\frac{1}{b} \sum_{j \in I^{+}} T e_{j}(i) \leq 1$; if $a<0=b$, then we have $\sum_{j \in \mathbb{N}} T e_{j}(i) \geq a$, and if $a=0<b$, then it implies $\sum_{j \in \mathbb{N}} T e_{j}(i) \leq b$,
where $\left(T e_{j}(i)\right)_{j \in \mathbb{N}}$ is an arbitrary row of the matrix representation of T.
Proof. If $T \in \mathcal{P}_{c m}$, obviously the conditions (i)-(iii) are satisfied. So suppose that the conditions (i)-(iii) are satisfied and $a<0<b$. Then (i), (ii) follow that in any column, the values a and b are appeared. So for $j \in I$, there are $i_{1}, i_{2} \in I$, such that $T e_{j}\left(i_{1}\right)=a, T e_{j}\left(i_{2}\right)=b$, and according to Corollary 2.18, (iii) implies that all of the other entries of the rows i_{1}, i_{2} are zero. That is, for all $s \in I$, where $s \neq j$, we have $T e_{s}\left(i_{1}\right)=0, T e_{s}\left(i_{2}\right)=0$. Thus for, $f \in \mathcal{c}_{0}$ we have

$$
T f\left(i_{1}\right)=\sum_{s \in \mathbb{N}} T e_{s}\left(i_{1}\right) f(s)=\sum_{\substack{s \in \mathbb{N} \\ s \neq j}} T e_{s}\left(i_{1}\right) f(s)+T e_{j}\left(i_{1}\right) f(j)=a f(j)
$$

Similarly, $T f\left(i_{2}\right)=b f(j)$. Thus for $j \in \mathbb{N}$, we have $a f(j), b f(j) \in \operatorname{Im}(T f)$, which implies $\operatorname{co}\{a f, b f\} \subseteq \operatorname{co}(T f)$. For $i \in \mathbb{N}$, we have

$$
\begin{aligned}
(T f)(i) & =\sum_{j \in \mathbb{N}} T e_{j}(i) f(j)=\sum_{j \in I^{-}} T e_{j}(i) f(j)+\sum_{j \in I^{+}} T e_{j}(i) f(j) \\
& =\sum_{j \in I^{-}} \frac{T e_{j}(i)}{a} a f(j)+\sum_{j \in I^{+}} \frac{T e_{j}(i)}{b} b f(j) \\
& \in \operatorname{cco}\{a f, b f\}=\operatorname{co}\{a f, b f\} .
\end{aligned}
$$

Hence $i \in \mathbb{N}$ deduce that $(T f)(i) \in \operatorname{co}\{a f, b f\}$ and $\operatorname{co}(T f) \subseteq \operatorname{co}\{a f, b f\}$. We thus prove that (i)-(iii) imply that for all $f \in c_{0}, \operatorname{co}(T f)=\operatorname{co}\{a f, b f\}$. Now let $f, g \in c_{0}$ and $f<_{c} g$. Thus

$$
\operatorname{co}(T f)=\operatorname{co}\{a f, b f\} \subseteq \operatorname{co}\{a g, b g\}=\operatorname{co}(T g)
$$

that is $T f<{ }_{c} T g$. If $a<0=b$, then we need only consider the following two cases:
(i) The operator T has a zero row, and $\operatorname{so} \operatorname{co}(T f)=\operatorname{co}\{a f, 0\}$.
(ii) The operator T has no zero row, and so $\operatorname{co}(T f)=\operatorname{co}(a f)$.

But (i),(ii) follow that $T \in \mathcal{P}_{c m}$. By a similar argument, the case $a=0<b$ implies the assertion.
Now we investigate the operators $T: c_{0} \rightarrow c_{0}$ which for all $f \in c_{0}$ satisfy the condition $\operatorname{co}(T f)=\operatorname{co}(f)$. Let $\mathcal{P}_{\text {ecm }}$ be the set of such operators.

Some Properties of $\mathcal{P}_{\text {ecm }}$

- $\mathcal{P}_{e c m} \subseteq \mathcal{P}_{c m}$.
- Any permutation lies in $\mathcal{P}_{\text {ecm }}$.
- If $T_{1}, T_{2} \in \mathcal{P}_{\text {ecm }}$, then $T_{1} \circ T_{2} \in \mathcal{P}_{\text {ecm }}$.
- If $T \in \mathcal{P}_{\text {ecm }}$, then for any constant $\lambda \neq 1, \lambda T \notin \mathcal{P}_{\text {ecm }}$.

Proof. Let $T \in \mathcal{P}_{\text {ecm }}$ and $\lambda \in \mathbb{R}$ such that $\lambda T \in \mathcal{P}_{\text {ecm }}$. Since

$$
\lambda[0,1]=\{\lambda x ; x \in[0,1]\}=\lambda \operatorname{co}\left(e_{i}\right)=\lambda \operatorname{co}\left(T e_{i}\right)=\operatorname{co}\left(\lambda T e_{i}\right)=\operatorname{co}\left(e_{i}\right)=[0,1]
$$

we have $\lambda=1 . \square$

- If $T \in \mathcal{P}_{e c m}$, then T is a positive operator (i.e. $T f \geq 0$, for each $f \geq 0$).

Proof. For any $i, j \in \mathbb{N}$, we have $T e_{j}(i) \in \operatorname{Im}\left(T e_{j}\right) \subseteq \operatorname{co}\left(T e_{j}\right)=\operatorname{co}\left(e_{j}\right)=[0,1]$. Thus $0 \leq T e_{j}(i) \leq 1$. Now suppose that $f \in c_{0}$ and $f \geq 0$. As for all $i, j \in \mathbb{N}, 0 \leq T e_{j}(i)$ and $f(j) \geq 0$, we have $0 \leq(T f)(i)=$ $\sum_{j \in \mathbb{N}} T e_{j}(i) f(j)$. Since $i \in \mathbb{N}$ is arbitrary, it follows that $T f \geq 0$.

Theorem 2.20. If $T \in \mathcal{P}_{\text {ecm }}$, then
(i) for all $j \in \mathbb{N}, \max _{i \in \mathbb{N}}\left\{T e_{j}(i)\right\}=1, \min _{i \in \mathbb{N}}\left\{T e_{j}(i)\right\}=0$.
(ii) if $\left(T e_{j}(i)\right)_{j \in \mathbb{N}}$ is the ith row of the matrix form of T, then $\sum_{j \in \mathbb{N}} T e_{j}(i) \leq 1$.

Proof. The definition of $\mathcal{P}_{\text {ecm }}$ follows (i) and since $T \in \mathcal{P}_{\text {ecm }} \subseteq \mathcal{P}_{c m}$, Theorem 2.19 and (i) imply (ii).
In the following example, we show that the conditions (i) and (ii) in Theorem $2.20 \operatorname{donot}$ follow $T \in \mathcal{P}_{\text {ecm }}$.
Example 2.21. Let $T: c_{0} \rightarrow c_{0}$ be a bounded linear operator defined by

$$
T x=\left(0, x_{1}, x_{2}, x_{3}, \ldots\right), \quad \text { for } x=\left(x_{i}\right) \in c_{0}
$$

Then for $f=\left(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\right) \in c_{0}$, we have $T f=\left(0,1, \frac{1}{2}, \frac{1}{4}, \ldots\right)$. So, $\operatorname{co}(T f)=[0,1] \neq \operatorname{co}(f)=(0,1]$, which leads to $T \notin \mathcal{P}_{\text {ecm }}$. However, by Theorem 2.19, $T \in \mathcal{P}_{c m}$.

Theorem 2.22. If $T \in \mathcal{P}_{\text {ecm, }}$, then the matrix form of T has no zero row.
Proof. On the contrary, suppose that the matrix form of the operator T has a zero row. Thus, for all $f \in c_{0}$, $0 \in \operatorname{Im}(T f) \subseteq \operatorname{co}(T f)$. On the other hand, there is $f \in c_{0}$, such that $f>0$, and $0 \notin \operatorname{co}(f)$. Hence $\operatorname{co}(T f) \neq \operatorname{co}(f)$ which contradicts our assumption.

Remark 2.23. Example 2.21 shows that although $\mathcal{P}_{\text {ecm }} \subseteq \mathcal{P}_{c m}$, but $\mathcal{P}_{c m} \nsubseteq \mathcal{P}_{\text {ecm }}$. Also, Theorem 2.20 implies that any row sum of the elements of $\mathcal{P}_{\text {ecm }}$ belongs to $[0,1]$.

Acknowledgments The authors would like to thank Shahrekord University for financial support.

References

[1] F. Bahrami, A. Bayati Eshkaftaki, S. M. Manjegani, Linear preservers of majorization on $\ell^{p}(I)$, Linear Algebra and its Applications 436 (2012) 3177-3195.
[2] A. Bayati Eshkaftaki, N. Eftekhari, Convex majorization on discrete ℓ^{p} spaces, Linear Algebra and its Applications 474 (2015) 124-140.
[3] N. Eftekhari, A. Bayati Eshkaftaki, Isotonic linear operators on the space of all convergent real sequences, Linear Algebra and its Applications 506 (2016) 535-550.
[4] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, (2nd edition), London and New York, Cambridge University Press, 1952.
[5] F. Khalooei, M. Radjabalipour, P. Torabian, Linear preservers of left matrix majorization, Electronic Journal of Linear Algebra 17 (2008) 304-315.
[6] F. Khalooei, A. Salemi, The structure of linear preservers of left matrix majorizations on \mathbb{R}^{p}, Electronic Journal of Linear Algebra 18 (2009) 88-97.
[7] A. W. Marshall, I. Olkin, B.C. Arnold, Inequalities; Theory of Majorization and Its Applications, (2nd edition), Springer, New York, 2011.
[8] S. Pierce, A survey of linear preserver problems, Linear and Multilinear Algebra 33 (1992) Nos. 1-2.

[^0]: 2010 Mathematics Subject Classification. Primary 47B37; Secondary 47B65, 47L25
 Keywords. Generalized majorization, Convex equivalent, Order preserver, Permutation
 Received: 22 August 2016; Accepted: 05 February 2017
 Communicated by Dragan S. Djordjević
 Research supported by Shahrekord University.
 Email addresses: bayati.ali@sci.sku.ac.ir, a.bayati@math.iut.ac.ir (Ali Bayati Eshkaftaki), eftekharinoha@yahoo.com, eftekhari-n@sci.sku.ac.ir (Noha Eftekhari)

