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Abstract. This paper is concerned with a more general model of multi-group models with multiple dis-
persal and stochastic perturbation, in which dispersal among multiple groups and stochastic perturbation
are considered at the same time. By combining graph theory with Lyapunov method, we derive two types
of sufficient criteria which are in the form of Lyapunov-type and coefficient-type respectively, to guarantee
the global exponential stability of the model. Furthermore, coefficient-type criterion is successfully applied
to stochastic coupled oscillators system. Finally, we offer a numerical example to illustrate the effectiveness
and feasibility of the main results.

1. Introduction

In recent years, multi-group models (MGM) have been extensively researched due to their potential
applications in various areas, among which ecology and epidemiology are the most active ones (see [1–10]).
However, as the communication between people from different regions becomes more and more frequent,
there is no absolutely independent place any more. In order to be more realistic, the dispersal among
groups should be included into MGM. As a result, MGM considering dispersal have started to become
a hot research topic. For instance, in [11–14], the dispersal of a single component in each group (we call
it single dispersal) was considered in some kinds of MGM to research infectious diseases, which is of
great importance in disease control. Furthermore, in [15], multi-group models with multiple dispersal
(MGMMD), in which the dispersal of every component in each group was allowed, were researched and
applied to n-patch predator-prey systems successfully.

In the real world, stochastic perturbation exists everywhere, which has been mentioned in [16–19]. In
addition, a system could be stable or unstable in response to stochastic perturbation. As a consequence,
stochastic perturbation should not be ignored when we research the stability of MGM. From the application
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point of view, it is of great practical significance to take stochastic perturbation into account in MGM.
In the past few years, MGM with stochastic perturbation have attracted many researchers’ attention and
many results, which can supply a theoretical basis for investigating ecology, epidemiology, and so on, have
been reported in the literature (see [20–24]). However, to the best of the authors’ knowledge, stochastic
perturbation has rarely been considered in MGM with single dispersal, let alone MGMMD. To fill this gap,
we shall focus on multi-group models with multiple dispersal and stochastic perturbation (MGMMDS) in
this paper.

It is widely accepted that most applications of MGM mainly depend on their dynamic properties,
especially their stability. Currently, criteria on the stability of MGM are obtained mainly based on Lyapunov
method. However, a well-known disadvantage of Lyapunov method is how to construct a proper Lyapunov
function for the complicated MGM. Fortunately, Li et al. proposed a new method to build global Lyapunov
functions for a complex system by including graph theory into Lyapunov method in [25]. Therein, a system
can be described by a digraph, in which each vertex represents an individual subsystem called vertex
system and the directed arcs stand for the inter-connections and interactions among vertex systems. Until
now, lots of results based on this approach have arisen. Here, we only refer the reader to [26–31].

Inspired by the above discussion, we propose a class of more general MGMMDS in this paper. Based
on graph theory and Lyapunov method, two kinds of sufficient criteria which are expressed in forms of
Lyapunov-type and coefficient-type respectively, are derived to assure the global exponential stability of
the model. Moreover, we apply the coefficient-type criterion to stochastic coupled oscillators system suc-
cessfully and give a numerical example to support our theoretical results. The main contributions of this
paper are in the following aspects:

1. We first propose the model of MGMMDS via drawing dispersal and stochastic perturbation into
MGM. Compared with the MGM in [1, 3, 4, 8], the dispersal of every component in each group and
stochastic perturbation are both considered in the model.

2. The approach we use to discuss MGMMDS is combined graph theory with Lyapunov method, which
is motivated by [25]. The novel sufficient conditions are obtained to guarantee the global exponential sta-
bility of MGMMDS. The results of this paper also show that the global exponential stability of MGMMDS
is closely related to the topological structure of n digraphs.

The rest of this paper is structured as follows. In Section 2, some preliminaries are presented and our
model is constructed. In Section 3, sufficient criteria that guarantee the global exponential stability of
MGMMDS are derived. Stochastic coupled oscillators system is employed to show the applicability of our
main results in Section 4. To test the validity and effectiveness of the main results, in section 5, we give a
numerical example. Finally, we put the paper to an end with concluding remarks in Section 6.

2. Preliminaries and Model Formulation

In this section, first of all, some necessary notations are given and some knowledge on graph theory is
also introduced. Then, the structure of MGMMDS is described, after which an example is offered to make
the model more understandable.

2.1. Notations and graph theory

In this paper, unless otherwise specified, we use the following notations. Write R, Rn for the set of
real numbers and n-dimensional Euclidean space, respectively. Let Rn

+ = {x ∈ Rn : xi > 0, i = 1, 2, ...,n},
Z+ = {1, 2, . . .}, L = {1, 2, ..., l}, and N = {1, 2, ...,n}. Denote R1

+ = [0,∞) and | · | be the Euclidean norm
for vectors in Rn. If A is a matrix, its trace norm is denoted by |A| =

√
trace(ATA), where AT denotes the

transpose of A. We use C2,1(Rm
× R1

+;R1
+) for the family of all nonnegative functions V(x, t) on Rm

× R1
+

that are continuously twice differentiable in x and once in t. Let (Ω,F ,F,P) be a complete probability
space with filtration F = {Ft}t≥0 satisfying the usual conditions (i.e., it is increasing and right continuous
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and F0-contains all P-null sets) and W(·) be a Brownian motion defined on the space. The mathematical
expectation with respect to the given probability measure P is denoted by E(·).

In the sequel, we recall some basic concepts and a lemma on graph theory which can be found in [32]
and [27], respectively. A digraph G = (L,E) contains a set L = {1, 2, ..., l} of vertices and a set E of arcs (k, h)
leading from initial vertex k to terminal vertex h. A subgraphL of G is said to be spanning ifL and G have
the same vertex set. A digraphG is weighted if each arc (h, k) is assigned a positive weight akh, where akh > 0
if and only if there exists an arc from vertex h to vertex k in G. The weight W(G) of G is the product of the
weights on all its arcs. A directed path P in G is a subgraph with distinct vertices {k1, k2, ..., ks} such that its
set of arcs is {(ki, ki+1) : i = 1, 2, ..., s − 1}. We call C a directed cycle, if ks = k1. A connected subgraph T is
a tree if it contains no cycles. A tree T is rooted at vertex k, called the root, if k is not a terminal vertex of
any arcs, and each of the remaining vertices is a terminal vertex of exactly one arc. A digraph G is strongly
connected if there exists a directed path from one to the other for any pair of distinct vertices. Denote the
digraph with weight matrix A as (G,A). A weighted digraph (G,A) is said to be balanced if W(C) = W(−C)
for all directed cycles C. Here, −C denotes the reverse of C and is constructed by reversing the direction of
all arcs in C. For a unicyclic graph Q with cycle CQ, let Q̃ be the unicyclic graph obtained by replacing CQ
with −CQ. Suppose that (G,A) is balanced, then W(Q) = W(Q̃). The Laplacian matrix of (G,A) is defined as

L =


∑

k,1 a1k −a12 · · · −a1l
−a21

∑
k,2 a2k · · · −a2l

...
...

. . .
...

−al1 −al2 · · ·
∑

k,l alk

 .
Lemma 2.1. [27] Assume n ≥ 2. Then the following identity holds:

n∑
k,h=1

ckakhFkh(xk, xh) =
∑
Q∈Q

W(Q)
∑

(k,h)∈E(CQ)

Fkh(xh, xh).

Here ck denotes the cofactor of the k-th diagonal element of Laplacian matrix of (G,A) and Fkh(xk, xh), where k, h ∈ L,
are arbitrary functions, Q is the set of all spanning unicyclic graphs of (G,A), W(Q) is the weight of Q, and CQ
denotes the directed cycle of Q. In particular, if (G,A) is strongly connected, then ck > 0 for k ∈ L.

2.2. Model formulation
For our model, we first assume that n dynamical systems in the k-th group (k ∈ L) are described by

dx(i)
k (t)

dt
= f (i)

k (xk(t), t), t ≥ 0, i ∈N, (1)

where f (i)
k = f (i)

k (xk(t), t) : Rm
× R1

+ → Rmi and xk(t) = (x(1)
k (t), x(2)

k (t), . . . , x(n)
k (t))T

∈ Rm, represents the
performance of the i-th component in the k-th group and state of the k-th group, respectively. Hereafter,
m =

∑n
i=1 mi for mi ∈ Z+.

Secondly, to be more realistic, we introduce the dispersal and stochastic perturbation into system (1).
The form of MGMMDS can be described as below.

dx(i)
k (t) =

 f (i)
k (xk(t), t) +

l∑
h=1

H(i)
kh(x(i)

k (t), x(i)
h (t))

 dt + 1(i)
k (x(i)

k (t), t)dW(t), t ≥ 0, i ∈N, k ∈ L, (2)

in which W(t) is the one-dimensional Brownian motion and 1(i)
k = 1(i)

k (x(i)
k (t), t) : Rmi ×R1

+ → R
mi reflects the

intense of stochastic perturbation, function H(i)
kh = H(i)

kh(x(i)
k (t), x(i)

h (t)) : Rmi ×Rmi → Rmi is the dispersal of the
i-th component from the h-th group to the k-th group. H(i)

kh = 0 if and only if there is no dispersal from the
h-th group to the k-th group for the i-th component. In addition, the initial condition for system (2) is given
by ((x1(t0))T, (x2(t0))T, . . . , (xl(t0))T)T = x0, where xk(t0), k ∈ L is a vector in Rm.
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We now construct n digraphs (G,Ai) for system (2). In each digraph, there is l vertices. Let the k-th
vertex in the i-th digraph (G,Ai) represent the i-th component in the k-th group and call it a vertex system.
Each dispersal function H(i)

kh is described by the arc from the h-th vertex to the k-th vertex in (G,Ai). Then
MGMMDS (2) can be described as a system on multi-digraph in this paper.

For the aim of this paper, functions f (i)
k , H(i)

kh and 1(i)
k are supposed to guarantee that initial value problem

(2) has a unique trivial solution

x(t) = ((x1(t))T, ..., (xl(t))T)T = (x(1)
1 (t), x(2)

1 (t), ..., x(n)
1 (t), ..., x(1)

l (t), x(2)
l (t), ..., x(n)

l (t))T = 0.

To make our model more intelligible, an example is included here.
Example. It is common that a oscillator system can be described by a differential equation

ẍ(t) + ϕ(x(t))ẋ(t) + x(t) = 0, t ≥ 0, (3)

in which ϕ(x) is a damping coefficient. To match the system that we propose, l oscillator systems are taken
into account and the k-th oscillator system can be described as

ẍk(t) + ϕk(xk(t))ẋk(t) + xk(t) = 0, t ≥ 0. (4)

Let yk(t) = ẋk(t) + ηxk(t), in which η is a constant. Then system (4) can be rewritten as dxk(t) =(yk(t) − ηxk(t))dt,

dyk(t) =
(
(η − ϕk(xk(t)))yk(t) + (ηϕk(xk(t)) − η2

− 1)xk(t)
)

dt, t ≥ 0.

To explicate our system, we construct a stochastic coupled oscillators system by introducing coupling
terms as well as stochastic perturbation into the above oscillators system. The form of stochastic coupled
oscillators system is in the following:

dxk(t) =

yk(t) − ηxk(t) +

l∑
h=1

akh(xh(t) − xk(t))

 dt + 1(1)
k (xk(t), t)dW(t),

dyk(t) =

(η − ϕk(xk(t)))yk(t) + (ηϕk(xk(t)) − η2
− 1)xk(t) +

l∑
h=1

bkh(yh(t) − yk(t))

 dt + 1(2)
k (yk(t), t)dW(t),

t ≥ 0, k ∈ L,
(5)

in which coupled matrix A = (akh)l×l, B = (bkh)l×l, the intensity of stochastic perturbation on x-component
and y-component are denoted by 1(1)

k and 1(2)
k , respectively.

Then, following system (2), we can construct two digraphs (G,A) and (G,B) for system (5).

Remark 2.2. Compared with system (2), it is easy to find that there are only two parts x-component and y-component,
i.e., n = 2 in each group. In fact, stochastic coupled oscillators system has been applied in [26], but the coupling terms
are on y-component alone. In this paper, we investigate stochastic coupled oscillator systems with coupling terms both
on x-component and y-component.

Let Xk(t) = (xk(t), yk(t))T, then
f (1)
k (Xk(t), t) = yk(t) − ηxk(t)

and
f (2)
k (Xk(t), t) = (η − ϕk(xk(t)))yk(t) + (ηϕk(xk(t)) − η2

− 1)xk(t).

Meanwhile, x(1)
k = xk, x(2)

k = yk, H(1)
kh (x(1)

k , x
(1)
h ) = akh(xh − xk), H(2)

kh (x(2)
k , x

(2)
h ) = bkh(yh − yk), akh ≥ 0 and bkh ≥ 0. It

should be pointed out that akh = 0 if and only if there is no influence from xh to xk and bkh = 0 if and only if
there is no influence from yh to yk. For better understanding, we draw a figure for system (5) when l = 5, see
Figure 1. In this case, a11 = a14 = a15 = a24 = a25 = a35 = a41 = a42 = a51 = a52 = a53 = a22 = a33 = a44 = a55 = 0
and b11 = b13 = b14 = b15 = b24 = b25 = b31 = b41 = b42 = b42 = b51 = b52 = b22 = b33 = b44 = b55 = 0. The
details to prove that system (5) is exponentially stable are given in Section 4.



Y. Guo et al. / Filomat 31:16 (2017), 5125–5138 5129

x1

y1 y2

x2 x3

y3

x4

y4 y5

x5

Group 1 Group 2 Group 3 Group 4 Group 5

a21

a31

a12

a32

a23

a43

a34

a13

a54

a45

b21

b12

b32

b23

b43

b34

b53

b45

b54

b35

Figure 1: A sample description of the structure of system (5) with l = 5.

To be more precise, we now give two definitions here.

Definition 2.3. [33] The trivial solution to system (2) is said to be p-th moment exponentially stable (ME-stable) if
the p-th moment Lyapunov exponent

lim sup
t→∞

1
t

ln(E|x(t, x0)|p) < 0

for some p > 0 and x0 ∈ Rm×l. When p = 2, it is said to be exponentially stable in mean square.

Definition 2.4. For V(i)
k (x(i)

k , t) ∈ C2,1(Rmi ×R1
+;R1

+), i ∈ N, k ∈ L, differential operator LV(i)
k (x(i)

k , t) related to the
i-th system in the k-th group is defined by

LV(i)
k (x(i)

k , t) ,
∂V(i)

k (x(i)
k , t)

∂t
+
∂V(i)

k (x(i)
k , t)

∂x(i)
k

 f (i)
k +

l∑
h=1

H(i)
kh

 +
1
2

trace
( (
1

(i)
k

)T ∂2V(i)
k (x(i)

k , t)

∂(x(i)
k )2

1
(i)
k

)
,

where
∂V(i)

k (x(i)
k , t)

∂x(i)
k

=

∂V(i)
k (x(i)

k , t)

∂x(i1)
k

, ...,
∂V(i)

k (x(i)
k , t)

∂x
(imi )
k

 , ∂2V(i)
k (x(i)

k , t)

∂(x(i)
k )2

=

∂2V(i)
k (x(i)

k , t)

∂x(i j)
k ∂x(is)

k


mi×mi

.

3. Stability Analysis

In this section, based on graph theory and Lyapunov method, a theoretical framework for constructing
Lyapunov functions for system (2) is established. As main results in this paper, two kinds of sufficient
criteria are gotten to guarantee the p-th moment exponential stability of the trivial solution to system (2).

Theorem 3.1. Let p ≥ 2. Assume that the following conditions hold.
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A1. For each k, h ∈ L, i ∈N, there exists positive-definite function V(i)
k (x(i)

k , t) ∈ C2,1(Rmi ×R1
+;R1

+) and positive
constants α(i)

k , β(i)
k and σ(i)

k satisfying

α(i)
k |x

(i)
k |

p
≤ V(i)

k (x(i)
k , t) ≤ β

(i)
k |x

(i)
k |

p (6)

and
n∑

i=1

c(i)
k LV(i)

k (x(i)
k , t) ≤ −

n∑
i=1

c(i)
k σ

(i)
k |x

(i)
k |

p +

n∑
i=1

c(i)
k

l∑
h=1

a(i)
khF(i)

kh(x(i)
k , x

(i)
h ), (7)

where F(i)
kh : Rmi ×Rmi → R, a(i)

kh ≥ 0, and c(i)
k is the cofactor of the k-th diagonal element of Laplacian matrix of digraph

(G,Ai).
A2. For every i ∈N, let digraph (G,Ai) be strongly connected, where matrix Ai = (a(i)

kh)l×l, and along each directed
cycle CQi of digraph (G,Ai), there is∑

(k,h)∈E(CQi )

F(i)
kh(x(i)

k , x
(i)
h ) ≤ 0. (8)

Then the trivial solution to system (2) is ME-stable.

Proof. Set V(x, t) =
∑l

k=1
∑n

i=1 c(i)
k V(i)

k (x(i)
k , t). From (6) we can obtain that

V(x, t) =

l∑
k=1

n∑
i=1

c(i)
k V(i)

k (x(i)
k , t) ≤

l∑
k=1

n∑
i=1

c(i)
k β

(i)
k |x

(i)
k |

p

and

V(x, t) =

l∑
k=1

n∑
i=1

c(i)
k V(i)

k (x(i)
k , t)

≥

l∑
k=1

n∑
i=1

c(i)
k α

(i)
k |x

(i)
k |

p

=

l∑
k=1

n∑
i=1

c(i)
k α

(i)
k

n∑
i=1

 c(i)
k α

(i)
k∑n

i=1 c(i)
k α

(i)
k

(|x(i)
k |

2)
p
2


≥

l∑
k=1

n∑
i=1

c(i)
k α

(i)
k

 n∑
i=1

c(i)
k α

(i)
k∑n

i=1 c(i)
k α

(i)
k

(|x(i)
k |

2)


p
2

=

l∑
k=1

n∑
i=1

c(i)
k α

(i)
k


l∑

k=1

c(i)
k α

(i)
k∑l

k=1 c(i)
k α

(i)
k

 n∑
i=1

c(i)
k α

(i)
k∑n

i=1 c(i)
k α

(i)
k

(|x(i)
k |

2)


p
2


≥

l∑
k=1

n∑
i=1

c(i)
k α

(i)
k

 l∑
k=1

c(i)
k α

(i)
k∑l

k=1 c(i)
k α

(i)
k

n∑
i=1

c(i)
k α

(i)
k∑n

i=1 c(i)
k α

(i)
k

(|x(i)
k |

2)


p
2

≥

l∑
k=1

n∑
i=1

c(i)
k α

(i)
k

 min
k∈L,i∈N

 c(i)
k α

(i)
k∑l

k=1 c(i)
k α

(i)
k

 min
k∈L,i∈N

 c(i)
k α

(i)
k∑n

i=1 c(i)
k α

(i)
k

 l∑
k=1

n∑
i=1

|x(i)
k |

2


p
2

=

l∑
k=1

n∑
i=1

c(i)
k α

(i)
k

 min
k∈L,i∈N

 c(i)
k α

(i)
k∑l

k=1 c(i)
k α

(i)
k

 min
k∈L,i∈N

 c(i)
k α

(i)
k∑n

i=1 c(i)
k α

(i)
k




p
2

|x|p.
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Write

α ,
l∑

k=1

n∑
i=1

c(i)
k α

(i)
k

 min
k∈L,i∈N

 c(i)
k α

(i)
k∑l

k=1 c(i)
k α

(i)
k

 min
k∈L,i∈N

 c(i)
k α

(i)
k∑n

i=1 c(i)
k α

(i)
k




p
2

and β ,
∑l

k=1
∑n

i=1 c(i)
k β

(i)
k . Then we obtain

α|x|p ≤ V(x, t) ≤ β|x|p. (9)

For the sake of simplicity, fix any x0, and write x(t) , x(t, x0). From (7) and Lemma 2.1, it follows that

LV(x, t) =

l∑
k=1

n∑
i=1

c(i)
k LV(i)

k (x(i)
k , t)

≤

l∑
k=1

− n∑
i=1

c(i)
k σ

(i)
k |x

(i)
k |

p +

n∑
i=1

c(i)
k

l∑
h=1

a(i)
khF(i)

kh(x(i)
k , x

(i)
h )


= −

l∑
k=1

n∑
i=1

c(i)
k σ

(i)
k |x

(i)
k |

p +

l∑
k=1

n∑
i=1

c(i)
k

l∑
h=1

a(i)
khF(i)

kh(x(i)
k , x

(i)
h )

≤ −σ|x|p +

l∑
k=1

n∑
i=1

l∑
h=1

c(i)
k a(i)

khF(i)
kh(x(i)

k , x
(i)
h )

= −σ|x|p +

n∑
i=1

∑
Qi∈Qi

W(Qi)
∑

(k,h)∈E(CQi )

F(i)
kh(x(i)

k , x
(i)
h ),

(10)

where

σ =

l∑
k=1

n∑
i=1

c(i)
k σ

(i)
k

 min
k∈L,i∈N

 c(i)
k σ

(i)
k∑l

k=1 c(i)
k σ

(i)
k

 min
k∈L,i∈N

 c(i)
k σ

(i)
k∑n

i=1 c(i)
k σ

(i)
k




p
2

.

In view of (10), condition A2 and the fact W(Qi) ≥ 0, we derive

LV(x, t) ≤ −σ|x|p. (11)

It is easy to check that there exists a constant γ > 0, which assures that γβ ≤ σ. Write x0 , x(0). Then from
(9) and (11) we can see

E[eγtV(x(t), t)] = V(x(0), 0) + E

∫ t

0
eγs(γV(x(s), s) +LV(x(s), s))ds

≤ V(x(0), 0) + E

∫ t

0
eγs(γV(x(s), s) − σ|x(s)|p)ds

≤ V(x(0), 0) + E

∫ t

0
eγs(γβ|x(s)|p − σ|x(s)|p)ds

≤ V(x(0), 0)
≤ β|x0|

p.

(12)

So we have

E[eγtα|x(t)|p] ≤ E[eγtV(x(t), t)] ≤ β|x0|
p,

which means that

E|x(t)|p ≤
β

α
|x0|

pe−γt.
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Then it yields that

lim sup
t→∞

1
t

ln(E|x(t)|p) ≤ −γ < 0.

That is, the trivial solution to system (2) is ME-stable and the p-th moment Lyapunov exponent is not greater
than −γ. The proof is complete.

Remark 3.2. It is not difficult to see that constructing a global Lyapunov function V(x, t) for system (2) directly
is a challenging task. However, Theorem 3.1 offers a method of constructing a global Lyapunov function V(x, t) for
system (2) by using the Lyapunov function V(i)

k (x(i)
k , t) of each vertex system (see the definition of V(x, t) in the proof

of Theorem 3.1), in which V(i)
k (x(i)

k , t) is supposed to be available in practical applications. This method is effective,
which can be seen from the proof of Theorem 3.1, and can be used in the stability analysis of many complex systems.
What’s more, Theorem 3.1 shows that there is a close relationship between the exponential stability of system (2) and
the topological structure of n digraphs (G,Ai), i ∈ L.

Remark 3.3. It has been mentioned that the dispersal was considered in MGM in the literature [11–14], but the
dispersal was along a single component in each group. In other words, the dispersal was allowed only on a single
digraph. Though the dispersal was allowed on multiple digraphs, the model in [15] did not contain stochastic
perturbation. More widely, we first introduce stochastic perturbation into MGMMD in our paper, and our model can
be regarded as a stochastic model on multi-graph.

The method that Theorem 3.1 offers is powerful, but the conditions of Theorem 3.1 cannot be verified
easily. As a result, this method is not adaptive enough in actual applications, which inspires us to consider
some simple and easy-verifiable conditions for the exponential stability of system (2). Suppose that for
every i ∈N, (G,Ai) is balanced. Then we have

n∑
k,h=1

c(i)
k a(i)

khF(i)
kh(x(i)

k , x
(i)
h ) =

1
2

∑
Qi∈Qi

W(Qi)
∑

(k,h)∈E(CQi )

[F(i)
kh(x(i)

k , x
(i)
h ) + F(i)

hk(x(i)
h , x

(i)
k )].

As a result, we can put the following inequality in the place of condition A2.∑
(k,h)∈E(CQi )

[F(i)
kh(x(i)

k , x
(i)
h ) + F(i)

hk(x(i)
h , x

(i)
k )] ≤ 0. (13)

Consequently, an easier stability criterion is derived as below.

Corollary 3.4. Assume that (G,Ai), i ∈ N, is balanced. Then the conclusion of Theorem 3.1 holds with inequality
(8) replaced by inequality (13).

Further, it is noted that if for every k, h ∈ L, there exist functions Q(i)
k (x(i)

k ) and Q(i)
h (x(i)

h ), such that

F(i)
kh(x(i)

k , x
(i)
h ) ≤ Q(i)

k (x(i)
k ) −Q(i)

h (x(i)
h ), (14)

then one has inequality (8) naturally. In this case, we obtain another corollary.

Corollary 3.5. The conclusion of Theorem 3.1 holds if inequality (8) is replaced by inequality (14).

Since the results obtained above are based on Lyapunov function of each vertex of system (2), it is not very
convenient to verify whether a given system satisfies the exponential stability criteria. We now derive some
sufficient conditions for the exponential stability of system (2) by using its coefficients.

Theorem 3.6. Suppose that the following conditions hold for each k, h ∈ L, i ∈N.
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B1. There are constants (β(i)
k ) j and δ(i)

k , 1 ≤ j ≤ n, such that

(x(i)
k )T f (i)

k (xk, t) ≤
n∑

j=1

(β(i)
k ) j|x

( j)
k |

2, |1(i)
k (x(i)

k , t)|
2
≤ δ(i)

k |x
(i)
k |

2.

B2. There exists a constant A(i)
kh > 0, such that

|H(i)
kh(x(i)

k , x
(i)
h )| ≤ A(i)

kh(|x(i)
k | + |x

(i)
h |).

B3. Let p ≥ 2 and

(p − 2)
n∑

j=1

(β(i)
k ) j + 2p

l∑
h=1

A(i)
kh +

1
2

p(p − 1)δ(i)
k +

2

c(i)
k

n∑
j=1

c( j)
k (β( j)

k )i < 0.

B4. Digraph (G,Ai), in which Ai = (A(i)
kh)l×l, is strongly connected.

Then the trivial solution to system (2) is ME-stable.

Proof. For every k ∈ L, i ∈ N, define a function V(i)
k (x(i)

k , t) = |x(i)
k |

p. Making use of condition B1, we can get
that

LV(i)
k (x(i)

k , t) = p|x(i)
k |

p−2(x(i)
k )T

 f (i)
k (xk, t) +

l∑
h=1

H(i)
kh

 +
1
2

trace
[(
1

(i)
k

)T
(p|x(i)

k |
p−2I + p(p − 2)|x(i)

k |
p−4x(i)

k (x(i)
k )T)1(i)

k

]

≤ p

|x(i)
k |

p−2

 n∑
j=1

(β(i)
k ) j|x

( j)
k |

2

 +

l∑
h=1

|x(i)
k |

p−1
|H(i)

kh |

 +
1
2

p(p − 1)|x(i)
k |

p−2
|1

(i)
k |

2

≤ p

|x(i)
k |

p−2

 n∑
j=1

(β(i)
k ) j|x

( j)
k |

2

 +

l∑
h=1

|x(i)
k |

p−1
|H(i)

kh |

 +
1
2

p(p − 1)δ(i)
k |x

(i)
k |

p (15)

= p

 n∑
j=1

(β(i)
k ) j|x

( j)
k |

2
|x(i)

k |
p−2 +

l∑
h=1

|x(i)
k |

p−1
|H(i)

kh |

 +
1
2

p(p − 1)δ(i)
k |x

(i)
k |

p.

By using inequality (see [33, p.52])

|a|r|b|w ≤
r

r + w
|a|r+w +

w
r + w

|b|r+w, (16)

where a, b ∈ R, r,w > 0, we can obtain

n∑
j=1

(β(i)
k ) j|x

( j)
k |

2
|x(i)

k |
p−2
≤

p − 2
p

n∑
j=1

(β(i)
k ) j|x

(i)
k |

p +
2
p

n∑
j=1

(β(i)
k ) j|x

( j)
k |

p. (17)

Meanwhile, from condition B2 and inequality (16), we derive

l∑
h=1

|x(i)
k |

p−1
|H(i)

kh | ≤

l∑
h=1

|x(i)
k |

p−1A(i)
kh(|x(i)

k | + |x
(i)
h |) ≤

2p − 1
p

l∑
h=1

A(i)
kh|x

(i)
k |

p +
1
p

l∑
h=1

A(i)
kh|x

(i)
h |

p. (18)
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Substituting (17) and (18) into (15), one has

LV(i)
k (x(i)

k , t) ≤p

 n∑
j=1

(β(i)
k ) j|x

( j)
k |

2
|x(i)

k |
p−2 +

l∑
h=1

|x(i)
k |

p−1
|H(i)

kh(x(i)
k , x

(i)
h )|

 +
1
2

p(p − 1)δ(i)
k |x

(i)
k |

p

≤

(p − 2)
n∑

j=1

(β(i)
k ) j + (2p − 1)

l∑
h=1

A(i)
kh +

1
2

p(p − 1)δ(i)
k

 |x(i)
k |

p +

l∑
h=1

A(i)
kh|x

(i)
h |

p +

n∑
j=1

2(β(i)
k ) j|x

( j)
k |

p

=

(p − 2)
n∑

j=1

(β(i)
k ) j + 2p

l∑
h=1

A(i)
kh +

1
2

p(p − 1)δ(i)
k

 |x(i)
k |

p +

n∑
j=1

2(β(i)
k ) j|x

( j)
k |

p +

l∑
h=1

A(i)
khF(i)

kh(x(i)
k , x

(i)
h ),

(19)

where
F(i)

kh(x(i)
k , x

(i)
h ) = |x(i)

h |
p
− |x(i)

k |
p.

In view of (19) and condition B4, we have
n∑

i=1

c(i)
k LV(i)

k (x(i)
k , t)

≤

n∑
i=1

c(i)
k

[ (p − 2)
n∑

j=1

(β(i)
k ) j + 2p

l∑
h=1

A(i)
kh +

1
2

p(p − 1)δ(i)
k

 |x(i)
k |

p +

n∑
j=1

2(β(i)
k ) j|x

( j)
k |

p +

l∑
h=1

A(i)
khF(i)

kh(x(i)
k , x

(i)
h )

]

=

n∑
i=1

c(i)
k

(p − 2)
n∑

j=1

(β(i)
k ) j + 2p

l∑
h=1

A(i)
kh +

1
2

p(p − 1)δ(i)
k

 |x(i)
k |

p +

n∑
j=1

c( j)
k

n∑
i=1

2(β( j)
k )i|x

(i)
k |

p

+

n∑
i=1

c(i)
k

l∑
h=1

A(i)
khF(i)

kh(x(i)
k , x

(i)
h )

=

n∑
i=1

c(i)
k

(p − 2)
n∑

j=1

(β(i)
k ) j + 2p

l∑
h=1

A(i)
kh +

1
2

p(p − 1)δ(i)
k +

2

c(i)
k

n∑
j=1

c( j)
k (β( j)

k )i

 |x(i)
k |

p +

n∑
i=1

l∑
h=1

c(i)
k A(i)

khF(i)
kh(x(i)

k , x
(i)
h )

(20)

Note that B3 holds. Then we can easily check that there exists a constant λ(i)
k > 0, i ∈N, k ∈ L, such that

n∑
i=1

c(i)
k LV(i)

k (x(i)
k , t) ≤ −

n∑
i=1

c(i)
k λ

(i)
k |x

(i)
k |

p +

n∑
i=1

l∑
h=1

c(i)
k A(i)

khF(i)
kh(x(i)

k , x
(i)
h ).

Let α(i)
k = β(i)

k ≡ 1, σ(i)
k = λ(i)

k , a(i)
kh = A(i)

kh and F(i)
kh(x(i)

k , x
(i)
h ) = |x(i)

h |
p
− |x(i)

k |
p. From Corollary 3.5, we can see that the

trivial solution to system (2) is ME-stable. This completes the proof.

Remark 3.7. The conditions in Theorem 3.6 are more convenient to be verified compared with those in Theorem 3.1.
This is because the conditions in Theorem 3.6 are established in terms of coefficients, instead of the Lyapunov functions
of vertex systems. Besides, in view of conditions B2, B3 and B4, we can see that the exponential stability of system
(2) is closely related with the topological structure of n digraphs (G,Ai), i ∈N.

4. Application

In this section, the example mentioned in Section 2 is employed to show the applicability of our
theoretical results.

Theorem 4.1. The trivial solution to system (5) is exponentially stable in mean square if the following conditions
hold.
C1. For each k ∈ L, there are constants Mk ≥ mk > 0 such that mk ≤ ϕk(xk) ≤ Mk. Functions |1(1)

k |
2
≤ θ(1)

k |xk|
2
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and |1(2)
k |

2
≤ θ(2)

k |yk|
2, in which θ(1)

k and θ(2)
k are positive constants. Scalar η > 1 satisfies η(mk − η) ≥ 1.

C2. For any k ∈ L, i = 1, 2,

4
l∑

h=1

d(i)
kh + θ(i)

k +
2
∑2

j=1 z( j)
k (ε( j)

k )i

z(i)
k

< 0,

in which d(1)
kh = akh, d(2)

kh = bkh, (ε(1)
k )1 = 1

2 − η, (ε(1)
k )2 = 1

2 , (ε(2)
k )1 =

Mkη−η2
−1

2 , and (ε(2)
k )2 =

Mkη−η2
−1

2 −mk + η.
C3. Digraphs (G,A) and (G,B) are strongly connected.

Proof. Let Xk = (xk, yk)T, f (1)
k (Xk, t) = yk − ηxk, and f (2)

k (Xk, t) = (η − ϕk(xk))yk + (ηϕk(xk) − η2
− 1)xk. Then we

have

xT
k f (1)

k (Xk, t) = xk(yk − ηxk) ≤
(1

2
− η

)
x2

k +
1
2

y2
k

and

yT
k f (2)

k (Xk, t) ≤ (η − ϕk(xk))y2
k + |ϕk(xk)η − η2

− 1||xkyk|

≤
|η(ϕk(xk) − η) − 1|

2
x2

k +

(
|η(ϕk(xk) − η) − 1|

2
− ϕk(xk) + η

)
y2

k

≤
Mkη − η2

− 1
2

x2
k +

(
Mkη − η2

− 1
2

−mk + η

)
y2

k .

Noting that H(1)
kh (x(1)

k , x
(1)
h ) = akh(xh − xk) and H(2)

kh (x(2)
k , x

(2)
h ) = bkh(yh − yk), we have∣∣∣H(1)

kh (xk, xh)
∣∣∣ ≤ akh(|xk| + |xh|)

and ∣∣∣H(2)
kh (yk, yh)

∣∣∣ ≤ bkh(|yk| + |yh|).

Let A(i)
k = d(i)

kh, δ(i)
k = θ(i)

k , c(i)
k = z(i)

k and β(i)
k = ε(i)

k , i = 1, 2. Then the conditions in Theorem 3.6 are satisfied with
p = 2. Hence, the trivial solution to system (5) is exponentially stable in mean square. This completes the
proof.

x1

x2 x4

x3 y1

y2

y4

y3

a21

a13

a32 a43

a24

b14

b21

b23

b32

b43 b34

Figure 2: Two digraphs of system (5) with l = 4: (G,A) (left) and (G,B) (right).
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5. Numerical Simulation

In this section, a numerical example is given to show the validity and effectiveness of our results.
Consider system (5) on two digraphs (G,A) and (G,B), and set l = 4 (see Figure 2). The weighted matrices
A and B are given as follows.

A =


0 0 0.02 0

0.01 0 0 0.02
0 0.02 0 0
0 0 0.02 0

 , B =


0 0 0 0.02

0.02 0 0.01 0
0 0.02 0 0.01
0 0 0.02 0

 .
Let m = mk = 2.5, M = Mk = 2.6, k = 1, 2, 3, 4, and η = 1.5. Choose

ϕ1(x1) =
| sin(x1)|

10
+ 2.5, ϕ2(x2) =

| cos(x2)|
10

+ 2.5,

ϕ3(x3) =
sin(x3)

20
+ 2.55, ϕ4(x4) =

cos(x4)
20

+ 2.55.

Set θ(1)
1 = 0.01, θ(2)

1 = 0.02, θ(1)
2 = 0.03, θ(2)

2 = 0.02, θ(1)
3 = 0.01, θ(2)

3 = 0.02, θ(1)
4 = 0.03, θ(2)

4 = 0.02. With l = 4,
the trivial solution to system (5) is γ∗ = (0, 0, 0, 0, 0, 0, 0, 0)T. From the offered conditions, we can see that
η(mk − η) > 1, mk ≤ ϕk(xk) ≤ Mk, k = 1, 2, 3, 4. Let ρ(i)

k , k = 1, 2, 3, 4, i = 1, 2, stand for the results of the
algebraic expression in C2 of Theorem 4.1 respectively. For example,

ρ(1)
1 = 4

4∑
h=1

a1h + θ(1)
1 +

2
∑2

j=1 z( j)
1 (ε( j)

1 )1

z(1)
1

and

ρ(2)
1 = 4

4∑
h=1

b1h + θ(2)
1 +

2
∑2

j=1 z( j)
1 (ε( j)

1 )2

z(2)
1

.

Then we can obtain that ρ(1)
1 = −0.69, ρ(2)

1 = −1.26, ρ(1)
2 = −0.85, ρ(2)

2 = −0.21, ρ(1)
3 = −1.2, ρ(2)

3 = −0.75,
ρ(1)

4 = −0.21, and ρ(2)
4 = −0.67, which means that the condition C2 in Theorem 4.1 is successfully checked.

In view of Figure 2, we can easily find that digraphs (G,A) and (G,B) are both strongly connected. To sum
up, all conditions in Theorem 4.1 are satisfied. As a result, the trivial solution to system (5) with l = 4 is
exponentially stable in mean square. Here, we take (0.32, 0.45, 0.7, 0.6, 0.4, 0.4, 0.3, 0.8)T as the initial value
and simulation results are showed in Figures 3 and 4.

6. Conclusions and further discussions

In this paper, the exponential stability of MGMMDS was discussed and a systematic method of construct-
ing global Lyapunov functions for the considered model was provided by combining graph theory with
Lyapunov method. Also, we derived two types of sufficient criteria to determine the exponential stability
of the model. One is Lyapunov-type theorem, and the other is coefficient-type theorem. Coefficient-type
theorem was applied to stochastic coupled oscillators system and a numerical example was given, which
demonstrated the applicability and effectiveness of our main results. What’s more, the results of this pa-
per also showed that there is a close relationship between the exponential stability of our model and the
topology structure of n digraphs.

In our model, dispersal is only taken into account in the drift coefficients. In fact, following this idea,
we can also introduce the dispersal to the diffusion coefficients. On the other hand, as another important
factor, time delays can also be included in our model in the near future. In addition, our main results
hold required that digraph (G,Ai)(i ∈ N) is strongly connected. However, if digraph (G,Ai)(i ∈ N) is not
strongly connected, then we cannot guarantee the stability of MGMMDS. Without the connectedness of
(G,Ai)(i ∈N), analyzing the stability of MGMMDS will be an interesting and challenging topic.
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Figure 3: A sample path of the solution to system (5) with l = 4.
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Figure 4: The 2-th moment of the solution to system (5) with l = 4.
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