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Abstract. In this study, combining the definition of asymptotically equivalence of sequences and deferred
density, the concepts of asymptotically deferred statistical equivalence and strong deferred asymptotically
equivalence of nonnegative sequences are introduced. Besides, the main properties of asymptotically
deferred statistical equivalence and strong deferred asymptotically equivalence, some inclusion and equiv-
alence results are given.

1. Introduction and Some Definitions

The idea of statistical convergence was given by Zygmund [33] in the first edition of his monograph
published in Warsaw in 1935. Later on the concept of statistical convergence was introduced by Steinhaus
[30] and Fast [14] and later reintroduced by Schoenberg [31], independently. Over the years and under
different names statistical convergence has been discussed different areas of mathematics such as Fourier
analysis, Ergodic theory, Number theory, Measure theory, Trigonometric series, Turnpike theory and Banach
spaces. Later on it was further investigated from the sequence space point of view and linked with
summability theory by Çakalli ([4],[5]), Caserta and Kočinac [6], Connor ([8],[9]), Esi [10], Et [11], Et and
Şengül [12], Erdös and Tenenbaum [13], Fridy [15], Fridy and Miller [16], Işık [20], Mursaleen [24], Šalat
[28] and many others.

Marouf in [23] introduced definition of asymptotically equivalent sequences and asymptotic regular
matrices. Patterson [25] extend these concepts by presenting an asymptotically statistically equivalent ana-
log of these definitions and natural regularity conditions for nonnegative summability matrices. Recently
asymptotically equivalent sequences have been studied in ([2],[3],[27]).

In this work, we shall give a generalization of definition of asymptotically statistical equivalence of non
negative sequences by considering deferred statistical density which is given and studied in ([22],[32]). The
main goal of this work is to examine the relation between asymptotically deferred statistical convergence
and strongly r−deferred Cesàro summability.

Let K be a subset of positive natural numbers N and K(n) denotes the set {k ≤ n : k ∈ K} . Asymptotic
(or natural) density of the subset K is defined by

δ(K) := lim
n→∞

1
n
|K(n)| ,
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where |K(n)| denotes the cardinality of the set K(n), if this limit exists.

Definition 1.1. A real valued sequence x = (xk) is said to be statistically convergent to L, if for every ε > 0,
the set K(ε) := {k ∈N : |xk − L| ≥ ε} has zero asymptotic density. In symbol, we will write st − lim x = L.

Definition 1.2. ([23]) Two nonnegative sequences x = (xk) and y =
(
yk

)
are said to be asymptotically

equivalent if

lim
k

xk

yk
= 1. (1)

It is denoted by x ∼ y . If the limit in (1) is L, we are going to use x L
∼ y.

By combination of Definition 1.1 and Definition 1.2 asymtotically statistical equivalence of nonnegative
sequences of multiple L is defined by Patterson in [25] as follows:

Definition 1.3. ([25]) Two nonnegative sequence x = (xk) and y =
(
yk

)
are said to be asymptotically

equivalent if

lim
n→∞

1
n

∣∣∣∣∣∣
{

k ≤ n :
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ > ε}
∣∣∣∣∣∣ = 0 (2)

and it is denoted by x SL
∼ y . If L = 1 in (2), then the sequences x and y are simply called asymptotically

statistical equivalent and it is denoted by x S
∼ y .

The concept of asymptotically regular matrices which preserve the asymptotic equivalence of two non-
negative number sequences has been investigated by Pobyvanets in [26]. Later on Marouf [23] continued
this subject and gave some necessary and sufficient conditions for to be asymptotic regular matrices. The
same problem in [23] is considered and under weak conditions some further results is given by Jinlu Li
[21]. Recently, by considering different kind of convergence methods such as statistical convergence, ideal
convergence, etc. this subject is studied by many different names in ([3],[7],[17],[19],[25], [29]).

Let us recall now some background about of deferred Cesàro mean. In 1932, Agnew [1] defined the
deferred Cesàro mean Dp,q of a sequence x = (xn) by

(
Dp,qx

)
n

:=
1

q (n) − p (n)

q(n)∑
k=p(n)+1

xk,

where
{
p (n)

}
n∈N and

{
q (n)

}
n∈N are sequences of non-negative integers satisfying

p (n) < q (n) and lim
n→∞

q (n) = ∞. (3)

Definition 1.4. A sequence x = (xn) is called; (i) deferred Cesàro convergent to L if deferred Cesàro mean
of the sequence {xn − L}n∈N tends to zero,

(ii) strongly deferred Cesàro convergent to L if deferred Cesàro mean of the sequence {|xn − L|}n∈N tends
to zero,

(iii) strongly r−deferred Cesàro convergent to L if deferred Cesàro mean of the sequence
{
|xn − L|r

}
n∈N

tends to zero.

Definition 1.5. (Deferred Density) Let
{
p (n)

}
,
{
q (n)

}
as above and K be an arbitrary subset of N. If the

following limit

δp,q (K) := lim
n−→∞

1
q(n) − p(n)

∣∣∣Kp,q (n)
∣∣∣ (4)

exists, then the limit δp,q (K) is called deferred density of K, where Kp,q (n) :=
{
p (n) < k ≤ q (n) : k ∈ K

}
. If p

and q are well known, then it is denoted by δD (K) .
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Remark 1.6. If q (n) = n and p (n) = 0, then deferred density coincides with asymptotic density of K.

Now, we can give definition of asymptotically deferred statistical equivalence of given two nonnegative
sequences:

Definition 1.7. Two nonnegative sequence x = (xn) and y =
(
yn

)
are said to be; (i) asypmtotically deferred

equivalent with multiple L provided that deferred Cesàro mean of the sequence
(∣∣∣∣ xn

yn
− L

∣∣∣∣)
n∈N

tends to zero.

It is denoted by x DL∼ y and it is called simply asymptotically deferred equivalent ( and denoted by x D
∼ y)

when L = 1.
(ii) strongly r−deferred Cesàro asymptotically equivalent of multiple L provided that deferred Cesàro

mean of the sequence
(∣∣∣∣ xn

yn
− L

∣∣∣∣r)
n∈N

tends to zero and simply strongly r−deferred Cesàro asymptotically

equivalent if L = 1. It is denoted by x
Dr

L
∼ y and x Dr

∼ y if L = 1. The case q(n) = n, p(n) = 0 will be denoted by

x
Cr

L
∼ y and it is called strongly r−Cesàro asymptotically equivalence of sequences.

(iii) asymptotically deferred statistical equivalent with multiple L provided that for every ε > 0, the limit

lim
n→∞

1
q (n) − p (n)

∣∣∣∣∣∣
{

p (n) < k ≤ q (n) :
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ > ε}
∣∣∣∣∣∣ = 0 (5)

holds. It is denoted by x DSL∼ y and if L = 1, it is called simply asymptotically deferred statistically equivalent

( and denoted by x DS
∼ y).

Remark 1.8. It is clear that; (i) If q (n) = n and p (n) = n − 1, then (5) coincides with (1),
(ii) If q (n) = n and p (n) = 0, then (5) coincides with (2),
(iii) If we consider q (n) = kn and p (n) = kn−1, where (kn) is a lacunary sequence of nonnegative integers

with kn − kn−1 → ∞ as n → ∞, then (5) coincides with the definition of asymptotically lacunary statistical
equivalence which is given by Patterson-Savaş in [29] and Braha in [3],

(iv) If we consider q(n) = λn and p(n) = 0 when λn is a strictly increasing sequence of natural numbers
such that lim

n→∞
λn = ∞, then (5) coincides with λ−statistical equivalence of sequences,

(v) If we consider q(n) = n and p (n) = n − λn where (λn) is a nondecrasing sequence of natural numbers
such that λ0 = 1 and λn+1 ≤ λn + 1 satisfied then (5) coincides with the λ−density defined by Mursaleen in
[24].

2. DSL-Equivalence of Sequences

Let x = (xn) and y =
(
yn

)
be sequences of real numbers. The notation ”x ≺ y” will be used if ”xn ≤ yn”

holds for all n ∈N.

Theorem 2.1. Let x = (xn) , y =
(
yn

)
and z = (zn) be sequences of non-negative real numbers. If x DSL∼ y and z ≺ x,

then z DSL∼ y.

Proof. Assume that x DSL∼ y and z ≺ x. Since the inequality
∣∣∣∣ zk

yk
− L

∣∣∣∣ ≤ ∣∣∣∣ xk
yk
− L

∣∣∣∣ holds for all k ∈ N, then the
inclusion{

p (n) < k ≤ q (n) :
∣∣∣∣∣ zk

yk
− L

∣∣∣∣∣ ≥ ε} ⊆ {
p (n) < k ≤ q (n) :

∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε}
is satisfied. Hence, for any ε > 0, following inequality

1
q (n) − p (n)

∣∣∣∣∣∣
{

p (n) < k ≤ q (n) :
∣∣∣∣∣ zk

yk
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣
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≤
1

q (n) − p (n)

∣∣∣∣∣∣
{

p (n) < k ≤ q (n) :
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣

holds. If we take limit when n→∞, desired results is obtained.

Theorem 2.2. Let x = (xn), y =
(
yn

)
and z = (zn) be sequences of nonnegative real numbers. If x DSL∼ y and y ≺ z,

then x DSL∼ z.

Proof. The proof can be obtained by following the proof of Theorem 2.1. So, it is omitted here.

Let us define x∧ y :=
(
min

{
xn, yn

})
and x∨ y :=

(
max

{
xn, yn

})
for any real valued sequences x = (xn) and

y =
(
yn

)
.

Corollary 2.3. Let x = (xn), y =
(
yn

)
and z = (zn) be sequence of nonnegative real numbers. If x DSL∼ y then

x ∧ z DSL∼ z and x DSL∼ y ∨ z hold.

Definition 2.4. If x = (xn) satisfies a property P for all n ∈N except a set which has zero deferred density ,
then it is said that x = (xn) has the property P deferred almost all n ∈N and it is denoted by ”d.a.a.e.”.

Following theorems are weak version of Theorem 2.1 and Theorem 2.2 .

Theorem 2.5. Let x = (xn) , y =
(
yn

)
and z = (zn) be any sequences of non negative real numbers. If x DSL∼ y and

z ≺ x (d.a.a.e.), then z DSL∼ y.

Proof. Let A := {n : zn > xn} .From the assumption δp,q (A) = 0 holds. That is, the inequality
∣∣∣∣ zk

yk
− L

∣∣∣∣ ≤ ∣∣∣∣ xk
yk
− L

∣∣∣∣
holds (d.a.a.e.). Then, we have

1
q (n) − p (n)

∣∣∣∣∣∣
{

p (n) < k ≤ q (n) :
∣∣∣∣∣ zk

yk
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣

≤
1

q (n) − p (n)

∣∣∣∣∣∣
{

p (n) < k ≤ q (n) :
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣ +

1
q (n) − p (n)

|A| .

By taking limit when n→∞, we obtained z DSL∼ y.

Theorem 2.6. Let x = (xn) , y =
(
yn

)
and z = (zn) be sequence of non negative real numbers. If x DSL∼ y and y ≺ z

(d.a.a.e.), then x DSL∼ z.

Proof. The proof can be obtain easily by considering the proof of Theorem 2.5. So it is omitted here.

Theorem 2.7. Let x = (xn) , y =
(
yn

)
and z = (zn) be sequence of non negative real numbers. If x DSL∼ y and x = z

(d.a.a.e.), then z DSL∼ y.

Proof. Take A := {n : xn , zn} . From the assumption we have δp,q (A) = 0. So, for any ε > 0, the following
inclusion{

p (n) < k ≤ q (n) :
∣∣∣∣∣ zk

yk
− L

∣∣∣∣∣ ≥ ε}
=

{
p (n) < k ≤ q (n) :

∣∣∣∣∣ zk

yk
− L

∣∣∣∣∣ ≥ ε} ∩ (
AC
∪ A

)
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⊆

({
p (n) < k ≤ q (n) :

∣∣∣∣∣ zk

yk
− L

∣∣∣∣∣ ≥ ε} ∩ AC
)

∪

({
p (n) < k ≤ q (n) :

∣∣∣∣∣ zk

yk
− L

∣∣∣∣∣ ≥ ε} ∩ A
)

⊆

{
p (n) < k ≤ q (n) :

∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε} ∪ A

holds. Hence,

1
q (n) − p (n)

∣∣∣∣∣∣
{

p (n) < k ≤ q (n) :
∣∣∣∣∣ zk

yk
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣

≤
1

q (n) − p (n)

{
p (n) < k ≤ q (n) :

∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε} +
1

q (n) − p (n)
|A|

holds. After taking limit when n→∞, desired result is obtained.

3. Comparison of Dr
L

with Cr
L

and DSL−Equivalence

In this section we give the relation between strongly r−deferred Cesàro asymptotically equivalence of
sequences and asymptotically deferred statistical equivalence of sequences.

Theorem 3.1. Let x = (xn) and y =
(
yn

)
be non negative real valued sequences. Then, x

Dr
L∼ y implies x DSL∼ y.

Proof. Assume that x
Dr

L∼ y such that lim
n→∞

1
q(n)−p(n)

q(n)∑
k=p(n)

∣∣∣∣ xk
yk
− L

∣∣∣∣r = 0. For an arbitrary ε > 0, we have

qn∑
k=p(n)+1

∣∣∣∣∣xk

yk
− L

∣∣∣∣∣r =


q(n)∑

k=p(n)+1∣∣∣∣∣ xk
yk
−L

∣∣∣∣∣≥ε
+

q(n)∑
k=p(n)+1∣∣∣∣∣ xk

yk
−L

∣∣∣∣∣<ε


∣∣∣∣∣xk

yk
− L

∣∣∣∣∣r

≥

q(n)∑
k=p(n)+1∣∣∣∣∣ xk

yk
−L

∣∣∣∣∣≥ε

∣∣∣∣∣xk

yk
− L

∣∣∣∣∣r ≥ εr.

∣∣∣∣∣∣
{

p (n) < k ≤ q (n) :
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣

and

1
q (n) − p (n)

qn∑
k=p(n)+1

∣∣∣∣∣xk

yk
− L

∣∣∣∣∣r

≥ εr.
1

q (n) − p (n)

∣∣∣∣∣∣
{

p (n) < k ≤ q (n) :
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣ .

So, if we take limit when n→∞, the proof is obtained.

Corollary 3.2. Let x = (xn) and y =
(
yn

)
be non negative real valued sequences. Then, x L

∼ y implies x DSL
∼ y.

Remark 3.3. The converse of Theorem 3.1 and Corollary 3.2 are not true, in general.
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To see, this let us consider nonnegative two sequences x = (xn) and y =
(
yn

)
as follows:

xn :=
{

n,
[√

q (k)
]
−m0 < n ≤

[√
q (k)

]
, k = 1, 2, 3, ..,

L, otherwise,

and

yn :=
{

1
n ,

[√
q (k)

]
−m0 < n ≤

[√
q (k)

]
, k = 1, 2, 3, ...,

L, otherwise,

where q (n) is a strictly monotone increasing sequence and m0 is an arbitrary fixed natural number and [x]
denotes the Gauss bracket of x, the largest integer not exceeding x.

If we also consider a method D
[
p, q

]
for any p (n) satisfying 0 < p (n) <

[√
q (k)

]
−m0, then for an arbitrary

ε > 0 we have

1
q (n) − p (n)

∣∣∣∣∣∣
{

p (n) < k ≤ q (n) :
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣ =

m0

q (n) − p (n)
→ 0,

when n→∞. On the other hand,

1
q (n) − p (n)

qn∑
k=p(n)+1

∣∣∣∣∣xk

yk
− L

∣∣∣∣∣r ≥ m0

([√
q (k)

]
−m0

)2

q (n) − p (n)
→ m0

holds, when n→∞. That is, x DSL∼ y but
Dr

Lx / y. It is also clear that x
L
/ y.

Theorem 3.4. If x = (xn) and y =
(
yn

)
∈ l∞, then x DSL∼ y implies x

Dr
L∼ y, where l∞ denotes the set of all bounded

sequences.

Proof. Assume that the sequences x = (xn) and y =
(
yn

)
from `∞ and they are satisfying x DSL∼ y. Then,

there exists a positive real number M > 0 such that
∣∣∣∣ xk

yk
− L

∣∣∣∣ ≤ M holds for all k ∈ N. So, for any ε > 0, the
following inequality

1
q (n) − p (n)

qn∑
k=p(n)+1

∣∣∣∣∣xk

yk
− L

∣∣∣∣∣r =
1

q (n) − p (n)

∑
k∈A

+
∑
k∈B

 ∣∣∣∣∣xk

yk
− L

∣∣∣∣∣r

≤
Mr

q (n) − p (n)

∣∣∣∣∣∣
{

p (n) < k ≤ q (n) :
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣ + εr

is satisfied where A and B denote the following sets{
p (n) < k ≤ q (n) :

∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε} and
{

p (n) < k ≤ q (n) :
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ < ε}
respectively. Hence, after taking limit when n→∞ desired result is obtained.

Definition 3.5. A method D
[
p, q

]
is called properly deferred when

{
p (n)

}
and

{
q (n)

}
satisfy in addition to

(3), the sequence{
p (n)

q (n) − p (n)

}
n∈N

is bounded for all n ∈N.
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Theorem 3.6. In order that x SL∼ y implies x DSL∼ y if and only if the method D
(
p, q

)
is properly deferred.

Before proof of Theorem 3.6, let us recall a simple result for sequences of positive real numbers:

Lemma 3.7. Let a = (an) and b = (bn) be sequences of positive real numbers. If lim
n→∞

an = a and lim
n→∞

bn = ∞, then
lim
n→∞

abn = a.

Proof. (proof of Theorem 3.6) Since x SL∼ y, then we have

lim
n→∞

1
n

∣∣∣∣∣∣
{

k ≤ n :
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣ = 0.

If we consider an := 1
n

∣∣∣∣∣{k ≤ n :
∣∣∣∣ xk

yk
− L

∣∣∣∣ ≥ ε}∣∣∣∣∣ and bn := q (n), then from Lemma 3.7 we have

lim
n→∞

1
q (n)

∣∣∣∣∣∣
{

k ≤ q (n) :
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣ = 0.

Also, by set comparison the following inequality{
p (n) < k ≤ q (n) :

∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε} ⊆ {
k ≤ q (n) :

∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε} .
holds for every ε > 0. Therefore, we have

1
q (n) − p (n)

∣∣∣∣∣∣
{

p (n) < k ≤ q (n) :
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣

≤
q (n)

q (n) − p (n)
1

q (n)

∣∣∣∣∣∣
{

k ≤ q (n) :
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣

=

(
1 +

p (n)
q (n) − p (n)

)
1

q (n)

∣∣∣∣∣∣
{

k ≤ q (n) :
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣ .

After taking limit when n→∞, we obtain desired result.

Remark 3.8. The converse of Theorem 3.6 does not hold even if D
(
p, q

)
is properly deferred.

For to see this, let us consider x = (xk) and y =
(
yk

)
as follows:

xk =

{
k+1

2 , k is odd,
−

k
2 , k is even,

and yk = 1, for all k ∈N.

Take p (n) = 2n and q (n) = 4n. It is clear that x DSL
∼ y (by Theorem 3.1), but x

SL
/ y.

Theorem 3.9. If x DSL∼ y with respect to q (n) = n and arbitrary p(n), then x SL∼ y hold.

Proof. Let us assume that x DSL∼ y with respect to q (n) = n and arbitrary p (n) . For any n ∈N, there exists an
h ∈N such that nh+1 = 0 and the inequality

p (n) = n(1) > p
(
n(1)

)
= n(2) > p

(
n(2)

)
= n(3) > ... > p

(
n(h−1)

)
= n(h)

≥ 1
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holds. Therefore, the set
{
k ≤ n :

∣∣∣∣ xk
yk
− L

∣∣∣∣ ≥ ε} can be represented as

=

{
k ≤ n(1) :

∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε} ∪ {
n(1) < k ≤ n :

∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε}
by the same way the first set in the union can be represented as{

k ≤ n(2) :
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε} ∪ {
n(2) < k ≤ n(1) :

∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε} .
After finite step ( at most h step){

k ≤ n(h−1) :
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε}
=

{
k ≤ n(h) :

∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε} ∪ {
n(h) < k ≤ n(h−1) :

∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε}
is obtained. Therefore;

1
n

∣∣∣∣∣∣
{

k ≤ n :
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣ =

h∑
m=0

n(m)
− n(m+1)

n
Tm,

where

Tm :=
1

n(m) − n(m+1)

∣∣∣∣∣∣
{

n(m+1) < k ≤ n(m) :
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣ .

If we consider a matrix A := (an,m) as

an,m :=
{

n(m)
−n(m+1)

n , m = 0, 1, 2, ..., h,
0, otherwise,

then the sequence
{

1
n

∣∣∣∣∣{k ≤ n :
∣∣∣∣ xk

yk
− L

∣∣∣∣ ≥ ε}∣∣∣∣∣}
n∈N

is the
(
an,m

)
transformation of the sequence (Tm) .Since the

matrix A =
(
an,m

)
satisfies Silverman -Toeplitz Theorem (see in [18]) and from assumption on x = (xn) and

y =
(
yn

)
then we have desired result.

Combining Theorem 3.6 and Theorem 3.9 the following theorem is obtained:

Theorem 3.10. An DSL−equivalence with respect to any p (n) and q (n) = n is equivalent to SL−equivalence if and
only if

{ p(n)
n−p(n)

}
n∈N

is bounded.

Also, as a corollary of Theorem 3.10, the following result can be given: If we consider the method as

Dθ
n :=

S[θn]+1 + S[θn]+2 + ... + Sn

n − [θn]

where θ is a constant 0 ≤ θ < 1 and [θn] is the greatest integer of ≤ θn. Then, we have following result:

Corollary 3.11. x
Dθ

n SL
∼ y if and only if x SL

∼ y.

Theorem 3.12. If the method D
[
p, q

]
is properly deferred, then x

Cr
L
∼ y implies x

Dr
L
∼ y.
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Proof. Let us assume that x
Cr

L
∼ y and the sequences

(
p (n)

q (n) − p (n)

)
is bounded. Then, we have

1
q (n) − p (n)

q(n)∑
p(n)+1

∣∣∣∣∣xk

yk
− L

∣∣∣∣∣r =
1

q (n) − p (n)

 q(n)∑
k=1

−

p(n)∑
k=1


∣∣∣∣∣xk

yk
− L

∣∣∣∣∣r

=
−p (n)

q (n) − p (n)
1

p (n)

p(n)∑
k=1

∣∣∣∣∣xk

yk
− L

∣∣∣∣∣r +
q (n)

q (n) − p (n)
1

q (n)

q(n)∑
k=1

∣∣∣∣∣xk

yk
− L

∣∣∣∣∣r .
By taking limit when n→∞ desired result is obtained.

4. Comparison of DSL-Equivalence for any p(n) and q(n)

Let us consider p′ =
{
p′ (n)

}
and q′ =

{
q′ (n)

}
which are satisfying

p(n) ≤ p
′

(n) < q
′

(n) ≤ q (n) (6)

for all nεN besides (3). Denote by the associated set E :=
{
p (n) : n ∈N

}
, E′ :=

{
p′ (n) : n ∈N

}
, F :=

{
q (n) : n ∈N

}
and F′ :=

{
q′ (n) : n ∈N

}
.

Theorem 4.1. If the set F′ \ F is finite and lim
n→∞

q(n)−q′ (n)
q′ (n)−p(n) < ∞ holds. Then, x DSLv y w.r.t. p and q implies x DSLv y

w.r.t. p and q′ .

Proof. Since F′ \ F is finite, then there is an n0 ∈ N such that the inclusion
{
q′ (n) : n > n0

}
⊂

{
q (n) : n ∈N

}
holds. So, there is a strictly increasing sequence j =

{
j (n)

}
such that q′ (n) = q

(
j (n)

)
for all n ≥ n0. Therefore,

sufficiently large n ∈N, following inequality

1
q′ (n) − p (n)

∣∣∣∣∣∣
{

p (n) < k ≤ q
′

(n) :
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣

=
1

q
(
j (n)

)
− p (n)

∣∣∣∣∣∣
{

p (n) < k ≤ q
(
j (n)

)
:
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε }∣∣∣∣∣∣
≤

q (n) − p (n)
q′ (n) − p (n)

.
1

q (n) − p (n)

∣∣∣∣∣∣
{

p (n) < k ≤ q (n) :
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε }∣∣∣∣∣∣
=

(
q (n) − q′ (n)
q′ (n) − p (n)

+ 1
)

1
q (n) − p (n)

∣∣∣∣∣∣
{

p (n) < k ≤ q (n) :
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε }∣∣∣∣∣∣
holds. Under the assumption we have desired result.

Theorem 4.2. If the set F \ F′ is finite and lim inf
n→∞

q′ (n)−p(n)
q(n)−p(n) > 0 hold. Then, x DS

v y w.r.t. p and q′ implies x DSLv y
w.r.t. p and q.

Proof. It can be proved by following above Theorem 4.1. So, it is omitted here.

Corollary 4.3. If F 4 F′ is finite, then x DSLv y w.r.t. p and q if and only if x DSLv y w.r.t. p and q′ .
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Theorem 4.4. If E′ \E is a finite set and lim inf
n→∞

q(n)−p′ (n)
q(n)−p(n) > 0 hold. Then, x DSLv y w.r.t. p and q implies x DSLv y w.r.t.

p′ and q.

Proof. It can be proved by using the same idea in Theorem 4.1. So, it is omitted here.

Theorem 4.5. The sequence p′(n) and q′(n) are satisfying (6) such that the set
{
k : p(n) < k ≤ p′(n)

}
and

{
k : q′(n) < k ≤ q(n)

}
are finite. Then, x DSL∼ y w.r.t. p′ and q′ implies x DSL∼ y w.r.t. p and q.

Proof. Assume that x DSL∼ y w.r.t. p′ and q′. So, for an arbitrary ε > 0, we have the following inequality

1
q (n) − p (n)

∣∣∣∣∣∣
{

p (n) < k ≤ q (n) :
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣

≤
1

q′ (n) − p′ (n)

∣∣∣∣∣∣
{

p (n) < k ≤ p′ (n) :
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣

+
1

q′ (n) − p′ (n)

∣∣∣∣∣∣
{

p′ (n) < k ≤ q′ (n) :
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣

+
1

q′ (n) − p′ (n)

∣∣∣∣∣∣
{

q′ (n) < k ≤ q (n) :
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣ ≤ m1

q′ (n) − p′ (n)

+
1

q′ (n) − p′ (n)

∣∣∣∣∣∣
{

p′ (n) < k ≤ q′ (n) :
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣ +

m2

q′ (n) − p′ (n)

where m1 :=
∣∣∣{k : p(n) < k ≤ p′(n)

}∣∣∣ and m2 :=
∣∣∣{k : q′(n) < k ≤ q(n)

}∣∣∣ . On taking limit when n→∞ we have

lim
n→∞

1
q (n) − p (n)

∣∣∣∣∣∣
{

p (n) < k ≤ q (n) :
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣ = 0,

thus x DSL∼ y (w.r.t. p and q).

Theorem 4.6. If the sequence p′ (n) and q′ (n) are satisfying ( 6) such that

lim
n→∞

q (n) − p (n)
q′ (n) − p′ (n)

= 0, (7)

then, x DSL∼ y w.r.t. p and q implies x DSL∼ y w.r.t. p′ and q′.

Proof. It is clear from (6) that the inclusion{
p′ (n) < k ≤ q′ (n) :

∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε} ⊂ {
p (n) < k ≤ q (n) :

∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε}
and the inequality

1
q′ (n) − p′ (n)

∣∣∣∣∣∣
{

p′ (n) < k ≤ q′ (n) :
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣

≤
q (n) − p (n)

q′ (n) − p′ (n)
.

1
q (n) − p (n)

∣∣∣∣∣∣
{

p (n) < k ≤ q (n) :
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣

hold. After taking limit when n→∞ and (7) the desired result is obtained.
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Theorem 4.7. Under the assumption of Theorem 4.5, x
Dr

L
∼ y w.r.t. p′ and q′ implies x

Dr
L
∼ y w.r.t. p and q for any

bounded x and y.

Proof. Let x and y are bounded sequences, then there exists a positive real numbers M such that
∣∣∣∣ xk

yk
− L

∣∣∣∣ ≤M.
Then, we can write

1
q (n) − p (n)

q(n)∑
p(n)+1

∣∣∣∣∣xk

yk
− L

∣∣∣∣∣r =
1

q (n) − p (n)



p′ (n)∑
p(n)+1

∣∣∣∣ xk
yk
− L

∣∣∣∣r +

+
q′ (n)∑

p′ (n)+1

∣∣∣∣ xk
yk
− L

∣∣∣∣r +

+
q(n)∑

q′ (n)+1

∣∣∣∣ xk
yk
− L

∣∣∣∣r


≤

2
q′ (n) − p′ (n)

MrO (1) +
1

q′ (n) − p′ (n)

q(n)∑
q′ (n)+1

∣∣∣∣∣xk

yk
− L

∣∣∣∣∣r
So, we have x

Dr
L[p,q]
∼ y.

Theorem 4.8. Let
{
p (n)

}
,
{
q (n)

}
,
{
p′ (n)

}
and

{
q′ (n)

}
be sequences of non-negative integers satisfying (6) and (7),

then x
Dr

L
∼ y w.r.t. p and q implies x

Dr
L
∼ y w.r.t. p′ and q′.

Proof. It is easy to see that the inequality

1
q (n) − p (n)

q(n)∑
p(n)+1

∣∣∣∣∣xk

yk
− L

∣∣∣∣∣r ≥ 1
q (n) − p (n)

q′ (n)∑
p′ (n)+1

∣∣∣∣∣xk

yk
− L

∣∣∣∣∣r

≥
q′ (n) − p′ (n)
q (n) − p (n)

1
q′ (n) − p′ (n)

q′ (n)∑
p′ (n)+1

∣∣∣∣∣xk

yk
− L

∣∣∣∣∣r
holds. So, by taking limit when n→∞, desired result is obtained.
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[22] M. Küçükaslan, M. Yılmaztürk, On deferred statistical convergence of sequences, Kyungpook Math. J. 56 (2016) 357–366.
[23] M. Marouf, Asymtotic equivalence and summability, Intern. J. Math. Math. Sci. 16 (1993) 755–762.
[24] M. Mursaleen, λ−statistical convergence, Math. Slovaca 50 (2000) 111–115.
[25] R. F. Patterson, On asymototically statistically equivalent sequence, Demon. Math. 36 (2003) 149–153.
[26] J. P. Pobyvanets, Asymptotic equivalence of some linear transformation defined by a nonnegative matrix and reduced to

generalized equivalence in the sense of Cesaro and Abel, Matem. Fizika 28(123) (1980) 83–87.
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