The Drazin Inverse of the Sum of Two Matrices and its Applications

Lingling Xia ${ }^{\text {a }}$, Bin Deng ${ }^{\text {a }}$
${ }^{a}$ School of Mathematics, Hefei University of Technology, Hefei, 230009,China

Abstract

In this paper, we give the results for the Drazin inverse of $P+Q$, then derive a representation for the Drazin inverse of a block matrix $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ under some conditions. Moreover, some alternative representations for the Drazin inverse of M^{D} where the generalized Schur complement $S=D-C A^{D} B$ is nonsingular. Finally, the numerical example is given to illustrate our results.

1. Introduction and preliminaries

Let $\mathbb{C}^{n \times n}$ denote the set of $n \times n$ complex matrix. By $\mathcal{R}(A), \mathcal{N}(A)$ and $\operatorname{rank}(A)$ we denote the range, the null space and the rank of matrix A. The Drazin inverse of A is the unique matrix A^{D} satisfying

$$
\begin{equation*}
A^{D} A A^{D}=A^{D}, \quad A A^{D}=A^{D} A, \quad A^{k+1} A^{D}=A^{k} \tag{1}
\end{equation*}
$$

where $k=\operatorname{ind}(A)$ is the index of A, the smallest nonnegative integer k which satisfies $\operatorname{rank}\left(A^{k+1}\right)=\operatorname{rank}\left(A^{k}\right)$. If $\operatorname{ind}(A)=0$, then we call A^{D} is the group inverse of A and denote it by A^{\sharp}. If ind $(A)=0$, then $A^{D}=A^{-1}$. In addition, we denote $A^{\pi}=I-A A^{D}$, and define $A^{0}=I$, where I is the identity matrix with proper sizes[1].

For $A \in \mathbb{C}^{n \times n}, k$ is the index of A, there exists unique matrices C and N, such that $A=C+N, C N=N C=0$, N is the nilpotent of index k , and $\operatorname{ind}(C)=0$ or 1 . We shall always use C, N in this context and will refer to $A=C+N$ as the core-nilpotent decomposition of A, Note that $A^{D}=C^{D}$.

The Drazin inverse of a square matrix is widely applied in many fields, such as singular differential or difference equations, Markov chains, iterative method, cryptography and numerical analysis,which can be found in[2,3]. The Drazin inverse in perturbation bounds for the relative eigenvalue problem has an important application value [4]. Accordingly, the Drazin inverse of 2×2 block matrix and its applications can be found in [3].

Suppose $P, Q \in \mathbb{C}^{n \times n}$ such that $P Q=Q P=0$, then $(P+Q)^{D}=P^{D}+Q^{D}$. This result was firstly proved by Drazin [5] in 1958. In 2001, Hartwig et al. [6] gave a formula for $(P+Q)^{D}$ under the one side condition $P Q=0$. In 2005, Castro-González [7] derived a result under the conditions $P^{D} Q=0, P Q^{D}=0$ and $Q^{\pi} P Q P^{\pi}=0$. In 2009, Martínez-Serrano and Castro-González [8] extended these results to the case $P^{2} Q=0, Q^{2}=0$ and gave the formula for $(P+Q)^{D}$. Hartwig and Patricio [9] under the condition $P^{2} Q+P Q^{2}=0$. In 2010, Wei and Deng [10] studied the additive result for generalized Drazin inverse under the commutative condition of $P Q=Q P$ on a Banach space. Liu et al. [11] gave the representations of the Drazin inverse of $(P \pm Q)^{D}$ with $P^{3} Q=Q P$ and $Q^{3} P=P Q$ satisfied. In 2011, Liu et al. [12] extended the results to the case $P^{2} Q=0, Q P Q=0$. In 2012, Bu et al. [13] gave the representations of the Drazin inverse of $(P+Q)^{D}$ under the following conditions:

$$
\text { (i) } P^{2} Q=0, Q^{2} P=0 ; \text { (ii) } Q P Q=0, Q P^{2} Q=0, P^{3} Q=0
$$

[^0]The results about the representation of $(P+Q)^{D}$ are useful in computing the representations of the Drazin inverse for block matrices, analyzing a class of perturbation and iteration theory. The general questions of how to express $(P+Q)^{D}$ by P, Q, P^{D}, Q^{D} and $\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)^{D}$ by A, B, C, D without side condition are very difficult and have not been solved.

In this paper, we first give the formulas of $(P+Q)^{D}$ under the conditions $P^{2} Q=0, P Q+Q P=0$ and $P^{D} Q=0, P Q-Q P=0, \mathcal{N}(P) \bigcap \mathcal{N}(Q)=0$. And similar reasoning is presented. In the second, we use the formulas of $(P+Q)^{D}$ to give some representations for the Drazin inverse of block matrix $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ (A and D are square) under some conditions. Then we give the representation of M^{D} in which the generalized Schur complement $S=D-C A^{D} B$ is nonsingular under new conditions. Finally, we take some numerical examples to illustrate our results.

Before giving the main results, we first introduce several lemmas as follows.

Lemma 1.1. ([14]) Let

$$
M_{1}=\left(\begin{array}{cc}
A & 0 \\
C & B
\end{array}\right), \quad M_{2}=\left(\begin{array}{cc}
B & C \\
0 & A
\end{array}\right)
$$

where A and B are square matrices with ind $(A)=r$ and ind $(B)=s$. Then

$$
M_{1}^{D}=\left(\begin{array}{cc}
A^{D} & 0 \\
X & B^{D}
\end{array}\right), \quad M_{2}^{D}=\left(\begin{array}{cc}
B^{D} & X \\
0 & A^{D}
\end{array}\right)
$$

where $X=\sum_{i=0}^{r-1}\left(B^{D}\right)^{i+2} C A^{i} A^{\pi}+B^{\pi} \sum_{i=0}^{s-1} B^{i} C\left(A^{D}\right)^{i+2}-B^{D} C A^{D}$.

Lemma 1.2. ([6]) Let $P, Q \in C^{n \times n}$ be such that $\operatorname{ind}(P)=r, \operatorname{ind}(Q)=s$ and $P Q=0$. Then

$$
(P+Q)^{D}=Q^{\pi} \sum_{i=0}^{s-1} Q^{i}\left(P^{D}\right)^{i+1}+\sum_{i=0}^{r-1}\left(Q^{D}\right)^{i+1} P^{i} P^{\pi}
$$

Lemma 1.3. ([8]) Let $A, B \in C^{n \times n}$,
(i) If R is nonsingular and $B=R A R^{-1}$, then $B^{D}=R A^{D} R^{-1}$.
(ii) If $\operatorname{ind}(A)=k \geq 0$, then exists a nonsingular matrix R such that $A=R\left(\begin{array}{cc}A_{1} & 0 \\ 0 & A_{2}\end{array}\right) R^{-1}$, where $A_{1} \in C^{r \times r}$ is nonsingular and $A_{2} \in C^{(n-r) \times(n-r)}$ is k-nilpotent. Relative to the above form, A^{D} and $A^{\pi}=I-A A^{D}$, are given by

$$
A^{D}=R\left(\begin{array}{cc}
A_{1}^{-1} & 0 \\
0 & 0
\end{array}\right) R^{-1}, \quad A^{\pi}=R\left(\begin{array}{cc}
0 & 0 \\
0 & I
\end{array}\right) R^{-1}
$$

Lemma 1.4. ([5]) Let $P, Q \in C^{n \times n}$ be such that $P Q=Q P=0$, then $(P+Q)^{D}=P^{D}+Q^{D}$.

Lemma 1.5. ([1]) Let $A \in C^{m \times n}, B \in C^{n \times m}$, then $(A B)^{D}=A\left((B A)^{2}\right)^{D} B$.

Lemma 1.6. ([1]) Let $A, B \in C^{n \times n}$, if $A B=B A$, then
(i) $(A B)^{D}=B^{D} A^{D}=A^{D} B^{D}$.
(ii) $A^{D} B=B A^{D}$ and $A B^{D}=B^{D} A$.

Lemma 1.7. ([20]) Let $A, B \in C^{n \times n}$, suppose that c is such that $(c A+B)$ is invertible, then
(i) $(c A+B)^{-1} A$ and $(c A+B)^{-1} B$ commute;
(ii) $\mathcal{N}(A) \cap \mathcal{N}(B)=\{0\}$ and $\mathcal{N}(A)=\mathcal{N}\left((c A+B)^{-1} A\right), \mathcal{N}(B)=\mathcal{N}\left((c A+B)^{-1} B\right)$.

2. Additive Results

In [10], Wei and Deng studied the additive result for generalized Drazin inverse under the commutative condition of $P Q=Q P$ on a Banach space. In this section, we will give the Drazin inverse of $P+Q$ under the conditions that $P^{2} Q=0, P Q+Q P=0$ and $P^{D} Q=0, P Q-Q P=0, \mathcal{N}(P) \cap \mathcal{N}(Q)=\{0\}$, which will be the main tool in our following development.

Theorem 2.1. Let $P, Q \in C^{n \times n}$ be such that $P^{2} Q=0, P Q+Q P=0$, then

$$
\begin{equation*}
(P+Q)^{D}=P^{D}+(P+Q)\left(Q^{D}\right)^{2} . \tag{2}
\end{equation*}
$$

Proof. From the conditions of theorem, we can know $P^{2} Q=-P Q P=Q P^{2}=0$.
Let $P=R\left(\begin{array}{cc}P_{1} & 0 \\ 0 & P_{2}\end{array}\right) R^{-1}$, where P_{1} is nonsingular and P_{2} is nilpotent. Write $Q=R\left(\begin{array}{cc}Q_{1} & Q_{12} \\ Q_{21} & Q_{2}\end{array}\right) R^{-1}$. Form $P^{2} Q=0$ it follows

$$
\begin{equation*}
Q_{1}=0, Q_{12}=0, P_{2}^{2} Q_{21}=0, P_{2}^{2} Q_{2}=0 \tag{3}
\end{equation*}
$$

Form $Q P^{2}=0$ it follows

$$
\begin{equation*}
Q_{21}=0, Q_{2} P_{2}^{2}=0 \tag{4}
\end{equation*}
$$

Form $P Q+Q P=0$ it follows $P_{2} Q_{2}+Q_{2} P_{2}=0$.
Now, using Lemma 1.1 we obtain

$$
(P+Q)^{D}=R\left(\begin{array}{cc}
P_{1} & 0 \tag{5}\\
0 & P_{2}+Q_{2}
\end{array}\right)^{D} R^{-1}=R\left(\begin{array}{cc}
P_{1}^{-1} & 0 \\
0 & \left(P_{2}+Q_{2}\right)^{D}
\end{array}\right)^{D} R^{-1}
$$

Now, we need compute $\left(P_{2}+Q_{2}\right)^{D}$.

$$
\left(P_{2}+Q_{2}\right)^{2}=P_{2}^{2}+Q_{2}^{2}+P_{2} Q_{2}+Q_{2} P_{2}=P_{2}^{2}+Q_{2}^{2}, \quad\left(P_{2}^{2}\right)^{D}=\left(P_{2}^{D}\right)^{2}=0
$$

Applying (3) and (4) and Lemma 1.4, we get

$$
\left(\left(P_{2}+Q_{2}\right)^{2}\right)^{D}=\left(P_{2}^{2}+Q_{2}^{2}\right)^{D}=\left(Q_{2}^{2}\right)^{D}
$$

Further,

$$
\begin{equation*}
\left(P_{2}+Q_{2}\right)^{D}=\left(P_{2}+Q_{2}\right)\left(\left(P_{2}+Q_{2}\right)^{2}\right)^{D}=\left(P_{2}+Q_{2}\right)\left(Q_{2}^{2}\right)^{D} \tag{6}
\end{equation*}
$$

By substituting (6) in (5), we get

$$
(P+Q)^{D}=R\left(\begin{array}{cc}
P_{1} & 0 \\
0 & 0
\end{array}\right) R^{-1}+R\left(\begin{array}{cc}
0 & 0 \\
0 & \left(P_{2}+Q_{2}\right)^{D}
\end{array}\right) R^{-1}=P^{D}+(P+Q)\left(Q^{D}\right)^{2}
$$

Using the similar method as in the proof of Theorem 2.1, We get the following two results.
Theorem 2.2. Let $P, Q \in C^{n \times n}$ be such that $P^{2} Q=0, Q P^{\pi}=0$, then

$$
\begin{equation*}
(P+Q)^{D}=P^{D}+Q\left(P^{D}\right)^{2}+P Q\left(P^{D}\right)^{3} . \tag{7}
\end{equation*}
$$

Theorem 2.3. Let $P, Q \in C^{n \times n}$ be such that $P^{D} Q=0, Q P^{\pi}=0, s=$ indP, then

$$
\begin{equation*}
(P+Q)^{D}=P^{D}+\sum_{i=0}^{s-1} P^{i} Q\left(P^{D}\right)^{i+2} \tag{8}
\end{equation*}
$$

Theorem 2.4. Let $P, Q \in C^{n \times n}$ be such that $P Q=Q P, P^{D} Q=0, \mathcal{N}(P) \cap \mathcal{N}(Q)=\{0\}$, then

$$
\begin{equation*}
(P+Q)^{D}=P^{D}+\sum_{n=0}^{k-1}\left(Q^{D}\right)^{n+1}(-P)^{n} \tag{9}
\end{equation*}
$$

where $k=\operatorname{ind}(P)$.

Proof. Let $P=R\left(\begin{array}{cc}P_{1} & 0 \\ 0 & P_{2}\end{array}\right) R^{-1}$, where P_{1} and R is nonsingular, and P_{2} is nilpotent, then exists a positive real number k, satisfy $P_{2}^{k}=0$, and we can easy know $k=\operatorname{ind}(P)$. Write $Q=R\left(\begin{array}{cc}Q_{1} & Q_{12} \\ Q_{21} & Q_{2}\end{array}\right) R^{-1}$. From $P^{D} Q=0$ it follows $Q_{1}=0, Q_{2}=0$.

Now, from $P Q=Q P$ it follows $P_{2} Q_{3}=Q_{3} P_{1}, P_{2} Q_{4}=Q_{4} P_{2}$.
Then $P_{2}^{k} Q_{3}=Q_{3} P_{1}^{k}=0$. Thus $Q_{3}=0$ since P_{1}^{k} is invertible. Next we will show that Q_{4} is invertible.
If $P_{2}=0$, the assumption $\mathcal{N}(P) \cap \mathcal{N}(Q)=\{0\}$ implies $\mathcal{N}\left(Q_{4}\right)=\{0\}$, and we are done. If $P_{2} \neq 0$, suppose there exists a $v \neq 0$ such that $v \in \mathcal{N}\left(Q_{4}\right)$. Then

$$
P_{2}^{q} v \in \mathcal{N}\left(Q_{4}\right) \text { for all integers } q \geq 0 \text {, since } P_{2} Q_{4}=Q_{4} P_{2} \text {. }
$$

Since P_{2} is nilpotent, there exists a nonnegative integer m such that $P_{2}^{m} v \neq\{0\}$, which is a contradiction. So we can know Q_{4} is invertible.

Since P_{2} is nilpotent, the eigenvalue of P_{2} is 0 , so the eigenvalue of $P_{2} Q_{4}^{-1}$ is 0 , then $P_{2} Q_{4}^{-1}$ is nilpotent, then $I+P_{2} Q_{4}^{-1}$ is invertible. From $P_{2} Q_{4}=Q_{4} P_{2}$ it follows $P_{2}+Q_{4}=\left(I+P_{2} Q_{4}^{-1}\right) Q_{4}=Q_{4}\left(I+P_{2} Q_{4}^{-1}\right)$.

By lemma1.6 we obtain

$$
\left(P_{2}+Q_{4}\right)^{D}=\left(I+P_{2} Q_{4}^{-1}\right)^{D} Q_{4}^{D}=\sum_{n=0}^{\infty} Q_{4}^{-n}\left(-P_{2}\right)^{n} Q_{4}^{-1}=\sum_{n=0}^{k-1} Q_{4}^{-(n+1)}\left(-P_{2}\right)^{n}
$$

Then we compute $(P+Q)^{D}$.

$$
\begin{align*}
(P+Q)^{D} & =R\left(\begin{array}{cc}
P_{1}^{-1} & 0 \\
0 & \left(P_{2}+Q_{4}\right)^{D}
\end{array}\right) R^{-1}=R\left(\begin{array}{cc}
P_{1}^{-1} & 0 \\
0 & 0
\end{array}\right) R^{-1}+R\left(\begin{array}{cc}
0 & 0 \\
0 & \left(P_{2}+Q_{4}\right)^{D}
\end{array}\right) R^{-1} \\
& =P^{D}+\sum_{n=0}^{k-1}\left(Q^{D}\right)^{n+1}(-P)^{n} . \tag{10}
\end{align*}
$$

From the conclusion of theorem 2.4, we can know the representation of $(P+Q)^{D}$ are similarity, when $P, Q \in C^{n \times n}$ be such that $P Q=Q P$ and $P Q=-Q P$. We can choose the correspondingly conclusion to solve questions in a different case. Choose the different conclusion which could simplify the process of proof.

According to lemma 1.7, we can change theorem 2.4 to the following theorem:

Theorem 2.5. Let $P, Q \in C^{n \times n}$ be such that $P Q=Q P, P^{D} Q=0$, suppose c is such that $(c P+Q)$ is invertible, $k=$ ind (P), then

$$
\begin{equation*}
(P+Q)^{D}=P^{D}+\sum_{n=0}^{k-1}\left(Q^{D}\right)^{n+1}(-P)^{n} \tag{11}
\end{equation*}
$$

To find a c such that $(c P+Q)$ is invertible, such that $|c P+Q| \neq 0$, one must find a number which is not the root of a certain polynomial. That is a problem which most will agree is considerably simpler than finding a root. We find the conclusion in [33], so we have no introduced here.

3. Applications to the Drazin Inverse of Block Matrix

In this section, we consider the $n \times n$ block matrices of the form

$$
M=\left(\begin{array}{cc}
A & B \tag{12}\\
C & D
\end{array}\right)
$$

where A and D are square, B is $p \times(n-p), \mathrm{C}$ is $(n-p) \times p$.
Some results have been provided for the Drazin inverse of M under certain conditions. Djordjevic and Stanimirovic [28] gave explicit representation for M^{D} under conditions $B C=0, B D=0$ and $D C=0$. This result was extended to a case $B C=0, B D=0$ (see[29]). The case $B C A=0, B C B=0, D C A=0, D C B=0$ has been studied in [12], the case $B C A=0, B C B=0, A B D=0, C B D=0$ in [30], the case $A B C=0, D C=0$ or $A B C=0, B D=0$ in [31], and so on.

In the following, we illustrate an application of our result obtained in the previous section to establish representations for M^{D} under some conditions.

Lemma 3.1. ([15]) Let $T \in C^{n \times n}$ be such that $T=\left(\begin{array}{ll}0 & B \\ C & 0\end{array}\right), B \in C^{p \times(n-p)}, C \in C^{(n-p) \times p}$. Then

$$
T^{D}=\left(\begin{array}{cc}
0 & B(C B)^{D} \\
(C B)^{D} C & 0
\end{array}\right)
$$

Theorem 3.2. Let M be as in (12) such that $A^{2} B=0, D^{2} C=0, B D^{\pi}=0, C A^{\pi}=0$. Then

$$
M^{D}=\left(\begin{array}{cc}
A^{D} & B\left(D^{D}\right)^{2}+A B\left(D^{D}\right)^{3} \tag{13}\\
C\left(A^{D}\right)^{2}+D C\left(A^{D}\right)^{3} & D^{D}
\end{array}\right)
$$

Proof. Consider the splitting of matrix M

$$
M=\left(\begin{array}{cc}
A & 0 \\
0 & D
\end{array}\right)+\left(\begin{array}{cc}
0 & B \\
C & 0
\end{array}\right) \triangleq P+Q
$$

Since the conditions we can obtain $P^{2} Q=0, Q P^{\pi}=0$. Hence matrices P and Q satisfy the conditions of Theorem2.3 and

$$
\begin{equation*}
M^{D}=(P+Q)^{D}=P^{D}+Q\left(P^{D}\right)^{2}+P Q\left(P^{D}\right)^{3} . \tag{14}
\end{equation*}
$$

So we can compute M^{D}.
Theorem 3.3. Let M be as in (12) such that $B C A=0, C B D=0, A(B C)^{\pi}=0, D(C B)^{\pi}=0$, then

$$
M^{D}=\left(\begin{array}{cc}
A(B C)^{D}+B D\left((C B)^{D}\right)^{2} C & B(C B)^{D} \tag{15}\\
(C B)^{D} C & D(C B)^{D}+C A(B C)^{D} B C(C B)^{D}
\end{array}\right)
$$

Proof. Consider the splitting $M=\left(\begin{array}{cc}0 & B \\ C & 0\end{array}\right)+\left(\begin{array}{cc}A & 0 \\ 0 & D\end{array}\right) \triangleq P+Q$. By applying lemma 3.1, we get $P^{D}=$ $\left(\begin{array}{cc}0 & B(C B)^{D} \\ (C B)^{D} C & 0\end{array}\right), P^{\pi}=\left(\begin{array}{cc}(B C)^{\pi} & 0 \\ 0 & (C B)^{\pi}\end{array}\right)$.

The remaining proof is similar to that of Theorem 3.2. Hence, we omit the details.
As we known, M is nonsingular such that A and the generalized Schur complement $S=D-C A^{-1} B$ are nonsingular, and

$$
M^{-1}=\left(\begin{array}{cc}
A^{-1}+A^{-1} B S^{-1} C A^{-1} & -A^{-1} B S^{-1} \\
-S^{-1} C A^{-1} & S^{-1}
\end{array}\right)
$$

The generalized Schur complement of A in M denoted by $S=D-C A^{D} B$ piays an important role in the representations for M^{D}. When S is nonsingular, Wei[21] gave the representation of M^{D}. Our purpose is to explore the case in which the generalized Schur complement S is nonsingular under new conditions.

Lemma 3.4. ([21]) Let M be as in (12) such that S is nonsingular. If $A^{\pi} B=0$ and $C A^{\pi}=0$, then

$$
M^{D}=\left(\begin{array}{cc}
A^{D}+A^{D} B S^{-1} C A^{D} & -A^{D} B S^{-1} \\
-S^{-1} C A^{D} & S^{-1}
\end{array}\right)
$$

Theorem 3.5. Let M be as in (12) such that S is nonsingular. If $A^{\pi} B C=0, C A^{\pi} B=0, B D+A B=0$, then

$$
M^{D}=\left(\begin{array}{cc}
A & B \tag{16}\\
C & D
\end{array}\right)\left[\sum_{i=1}^{k}\left(Q_{2}^{D}\right)^{i+2}\left(\begin{array}{cc}
A^{i} A^{\pi} & 0 \\
C A^{i-1} A^{\pi} & 0
\end{array}\right)+\left(Q_{2}^{D}\right)^{2}\right]
$$

where $Q_{2}^{D}=\left(\begin{array}{cc}A^{D}+A^{D} B S^{-1} C A^{D} & -A^{D} B S^{-1} \\ -S^{-1} C A^{D} & S^{-1}\end{array}\right), k=\operatorname{ind}(A)$.
Proof. We rewrite M as

$$
M=\left(\begin{array}{cc}
0 & A^{\pi} B \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
A & A A^{D} B \\
C & D
\end{array}\right) \triangleq P+Q
$$

From the conditions, we have $P Q+Q P=0$, moreover $P^{2}=0, P^{D}=0$. By Theorem 2.1, we get $M^{D}=$ $(P+Q)\left(Q^{D}\right)^{2}$, now just need calculate Q^{D}.

We consider the splitting $Q=Q_{1}+Q_{2}$, where $Q_{1}=\left(\begin{array}{cc}A A^{\pi} & 0 \\ C A^{\pi} & 0\end{array}\right), Q_{2}=\left(\begin{array}{cc}A^{2} A^{D} & A A^{D} B \\ C A A^{D} & D\end{array}\right)$. We notice that $Q_{1} Q_{2}=0$, moreover Q_{1} satisfy the conditions of Lemma 1.2 and Q_{1} is $k+1$-nilpotent. By Lemma 1.2,

$$
Q^{D}=\sum_{i=0}^{k}\left(Q_{2}^{D}\right)^{i+1} Q_{1}^{i}=Q_{2}^{D}+\sum_{i=1}^{k}\left(Q_{2}^{D}\right)^{i+1} Q_{1}^{i}
$$

By induction, we get $\left(Q^{D}\right)^{j}=\sum_{i=0}^{k}\left(Q_{2}^{D}\right)^{i+j} Q_{1}^{i}, \forall j \geq 1$.
For Q_{2}, the generalized Schur complement of $A^{2} A^{D}$ is nonsingular, and Q_{2} satisfy the conditions of Lemma 3.2 , so we know Q_{2}^{D}. Hence we could compute M^{D}.

Theorem 3.6. Let M be as in (12) such that S is nonsingular. If $B C A^{\pi}=0, C A^{\pi} B=0, C A+D C=0$, then

$$
M^{D}=\sum_{i=1}^{k}\left(\begin{array}{cc}
A^{i+1} A^{\pi} & A^{i} A^{\pi} B \tag{17}\\
0 & C A^{i-1} A^{\pi} B
\end{array}\right)\left(Q_{2}^{D}\right)^{i+2}+\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)\left(Q_{2}^{D}\right)^{2}
$$

where $Q_{2}^{D}=\left(\begin{array}{cc}A^{D}+A^{D} B S^{-1} C A^{D} & -A^{D} B S^{-1} \\ -S^{-1} C A^{D} & S^{-1}\end{array}\right), k=\operatorname{ind}(A)$.

Proof. Consider the splitting of M

$$
M=\left(\begin{array}{cc}
0 & 0 \\
C A^{\pi} & 0
\end{array}\right)+\left(\begin{array}{cc}
A & B \\
C A A^{D} & D
\end{array}\right) \triangleq P+Q .
$$

The remaining proof is similar to that of Theorem 3.5. Hence, we omit the details.

4. Numerical Example

We give the following example to illustrate the application of the representation given in Theorem 2.1.

Example 4.1. Consider the block matrix $M \in C^{8 \times 8}$,

$$
M=\left(\begin{array}{cccccccc}
0.6024 & 0.5793 & 0.7203 & -0.1819 & -0.5055 & -0.5310 & 0.0448 & 0.5580 \\
0.0382 & 0.8535 & 1.0953 & -0.2901 & -0.1723 & -0.1960 & -0.2015 & 0.2748 \\
0.0015 & 0.8127 & 0.9551 & 0.1958 & -0.5880 & -0.8991 & 0.0871 & 0.1239 \\
-0.6484 & 1.1865 & 3.7065 & 0.6480 & -0.5028 & -2.2071 & -0.1799 & 0.2024 \\
0.2111 & 0.1855 & 1.3421 & -0.1598 & 0.6033 & -0.8221 & -0.2392 & 0.1312 \\
0.6602 & 0.4984 & 1.1177 & 0.2857 & -0.3202 & -0.5843 & -0.2467 & -0.6442 \\
1.1049 & -0.9367 & 0.5185 & -0.0839 & 0.0210 & 0.0387 & 0.5035 & -0.3400 \\
0.7542 & -0.0112 & 0.6711 & 0.1958 & -0.1133 & -0.8857 & -0.2795 & 0.4185
\end{array}\right),
$$

we can easy know $\operatorname{ind}(M)=4$. Consider the splitting $M=P+Q$, where

$$
\begin{aligned}
& P=\left(\begin{array}{cccccccc}
0.5934 & 0.4427 & 0.4715 & -0.2610 & -0.5740 & -0.2310 & 0.0465 & 0.7766 \\
0.6936 & 0.1383 & 0.1764 & -0.2822 & -0.1957 & 0.4997 & -0.3672 & 0.2907 \\
-0.6612 & 1.2641 & 1.3993 & 0.0414 & -0.6918 & -1.0287 & 0.2536 & 0.5133 \\
0.3416 & -0.0345 & 2.0672 & 0.5841 & -0.6043 & -0.8588 & -0.4308 & 0.4368 \\
0.6830 & -0.4529 & 0.4602 & -0.2206 & 0.5286 & -0.0606 & -0.3590 & 0.3269 \\
0.6523 & 0.2908 & 0.7429 & 0.1691 & 0.4214 & -0.1360 & -0.2456 & 0.3216 \\
1.8787 & -1.7617 & -0.5318 & -0.0641 & 0.0024 & 0.8191 & 0.3079 & -0.3502 \\
0.9200 & -0.3006 & 0.2451 & 0.1393 & -0.1701 & -0.4824 & -0.3218 & 0.5844
\end{array}\right), \\
& Q=\left(\begin{array}{cccccccc}
0.0091 & 0.1367 & 0.2488 & 0.0791 & 0.0685 & -0.2999 & -0.0017 & -0.2186 \\
-0.6554 & 0.7151 & 0.9189 & -0.0079 & 0.0234 & -0.6957 & 0.1657 & -0.0160 \\
0.6627 & -0.4514 & -0.4443 & 0.1544 & 0.1038 & 0.1296 & -0.1665 & -0.3894 \\
-0.9900 & 1.2210 & 1.6393 & 0.0640 & 0.1015 & -1.3483 & 0.2509 & -0.2344 \\
-0.4719 & 0.6383 & 0.8818 & 0.0608 & 0.0748 & -0.7615 & 0.1198 & -0.1957 \\
0.0079 & 0.2076 & 1.3748 & 0.1166 & 0.1012 & -0.4483 & -0.0011 & -0.3226 \\
-0.7738 & 0.8250 & 1.0503 & -0.0198 & 0.0185 & -0.7804 & 0.1956 & 0.0101 \\
-0.1658 & 0.2893 & 0.4260 & 0.0564 & 0.0568 & -0.4050 & 0.0424 & -0.1659
\end{array}\right),
\end{aligned}
$$

we get $\operatorname{ind}(P)=4, Q$ is 42 -nilpotent matrix, and $P Q+Q P=0, P^{2} Q=0$. From Theorem 2.1 we obtain $M^{D}=P^{D}+(P+Q)\left(Q^{D}\right)^{2}$. Now, we just compute P^{D} and Q^{D}.

$$
P^{D}=\left(\begin{array}{cccccccc}
1.3063 & 0.0867 & -0.6461 & -0.1342 & -0.8956 & 0.0919 & -0.0748 & 0.8500 \\
0.6958 & 0.6547 & -0.3382 & -0.1828 & -0.7677 & 0.1611 & -0.2711 & 0.6482 \\
0.2189 & 0.4163 & 0.1679 & 0.0878 & -0.7830 & -0.2281 & 0.0445 & 0.5230 \\
-0.6483 & 1.6361 & 1.4816 & 0.5109 & -2.0090 & -1.5672 & 0.0211 & 1.9148 \\
0.7858 & -0.0102 & -0.4789 & -0.1442 & -0.2273 & -0.1860 & -0.2653 & 0.9068 \\
0.1909 & 0.8752 & 0.2373 & 0.0446 & -1.1027 & -0.1158 & -0.0432 & 0.5676 \\
1.6551 & -1.00957 & -0.8905 & 0.0090 & -0.6469 & 0.3377 & 0.4704 & 0.1293 \\
0.4753 & 0.2825 & 0.0203 & 0.0585 & -0.6885 & -0.6270 & -0.1417 & 1.2330
\end{array}\right),
$$

Hence, we can compute M^{D}.
From the above calculate process, if we compute M^{D} directly, it needs 0.0160 s. But by applying Theorem 2.1, we first solve P^{D} and Q^{D}, then use them to calculate M^{D}, it will shorten 0.0010 s on the time, and equivalent reduction the calculate process virtually.

If a square matrix with a large order, we can also use the method to calculate the Drazin inverse of a square matrix, it needs find a suitable nonsingular matrix R, and applying the core-nilpotent method to solve the Drazin inverse.

Remark 4.2. The above example is generated randomly,so there exist some errors,but these errors do not affect the results.

5. Acknowledgement

The authors would like to thank the editors and the reviewers for their comments and helpful suggestions, which improved the paper.

References

[1] A. Ben-Israel, T. N. E. Greville, Generalized Inverses:Theory and Applications, (2nd edition), Springer-Verlag, New York, 2003.
[2] S. L. Campbell, C. D. Meyer, Generalized of Linear Transformations. Dover, New York, 1991.
[3] R. E. Hartwig, X. Li, Y. Wei, Representations for the Drazin inverse of a 2×2 block matrix, SIAMJ. Matrix Arial. Appl., 27(2006)757-771.
[4] N. Castro-González, J. Y. Velez-Gerrada, On the perturbation of the group generalized inverse for a class of bounded operators in banach spaces, J. Math. Anal. Appl., 341(2008)1213-1223.
[5] M. P. Drazin, Pseudoinverses in associative rings and semigroups, Amer. Math. Monthly, 65(1958)506-514.
[6] R. E. Hartwig, G. Wang, Y. Wei, Some additive results on Drazin inverse, Linear Algebra Appl. 322(2001)207-217.
[7] N. Castro-González, Additive perturbation results for Drazin inverse, Linear Algebra Appl., 397(2005)279-297.
[8] M. F. Martínez-Serrano, N. Castro-González, On the Drazin inverse of block matrices and generalized Schur complement, Appl. Math. Comput., 215(2009)2733-2740.
[9] P. Patricio, R. E. Hartwig, Some additive results on Drazin inverses, Appl. Math. Comput., 215(2009)530-538.
[10] C. Deng, Y. Wei, New additive results for the generalized Drazin inverse, J. Math. Anal. Appl., 370(2010)313-321.
[11] X. Liu, L. Xu, Y. Yu, The representation of the Drazin inverse of differences of two matrices, Appl. Math. Comput., 216(2010)3652-3661.
[12] H. Yang, X. Liu, The Drazin inverse of the sum of two matrices and its applications, J. Comput. Appl. Math., 235(2011)1412-1417.
[13] C. Bu, C. Feng, S. Bai, Representations for the Drazin inverses of the sum of two matrices and some block matrices, Appl. Math. Comput., 218(2012)10226-10237.
[14] C. D. Meyer, N. J. Rose, The index and the Drazin inverse of block triangular matrices, SIAMJ. Appl. Math., 33(1977)1-7.
[15] M. Catral., D. D. Olesky, P. Van Den Driessche, Block representations of the Drazin inverse of a bipartite matrix, Electron. J., Linear Algebra, 18(2009)98-107.
[16] D. S. Djordjević, P. S. Staninurovic, on the generalized Drazin inverse and generalized resolved, Czechoslovak Math. J., 51(126)(2001)617-634.
[17] D. S. Cvetković-Ilić, A note on the representation for the Drazin inverse of 2×2 block matrices, Linear Algebra Appl., 429(2008)242-248.
[18] J. Liubisavljevic, D. S. Cvetković-Ilić, Additive results for the Drazin inverse of block matrices and applications, J. Comput. Appl. Math., 235(2011)3683-3690.
[19] D. S. Cvetković-Ilić, New additive results on Drazin inverse and its applications, Appl. Math. Comput., 218(7)(2011)3019-3024.
[20] S. L. Campbell, C.D. Meyer, JR. Rose, N. J. Rose, Applications of the Drazin inverse to linear systems of differential equations singular constant coefficients. SIAM J. Appl. Math. 31 (3)(1976)411-425.
[21] Y. Wei, Expressions for the Drazin inverse of a 2×2 block matrix, Linear Multilinear Algebra. 45(1998)131-146.

[^0]: 2010 Mathematics Subject Classification. 15A09
 Keywords. Drazin inverse,Block matrix,Generalized Schur complement,Index
 Received: 25 September 2014; Revised: 07 January 2015; Accepted: 21 January 2015
 Communicated by Dragana Cvetković - Ilić
 This work was supported by the Fundamental Research Funds for the Central Universities(J2014HGXJ0068)
 Email address: dengbin@hfut.edu.cn (Bin Deng)

