On the Diophantine Equation $x^{2}+5^{a} \cdot p^{b}=y^{n}$

Musa Demırci ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Uludağ University, 16059 Bursa, TURKEY

Abstract

In this paper, all the solutions of the Diophantine equations $x^{2}+5^{a} \cdot p^{b}=y^{n}($ for $p=29,41$) are given for nonnegative integers $a, b, x, y, n \geq 3$ with x and y coprime.

1. Introduction

Recently, there have been many papers dealing with by the generalized Lebesgue-Nagell equation

$$
\begin{equation*}
x^{2}+C=y^{n} \tag{1}
\end{equation*}
$$

where $C>0$ is a fixed integer and x, y, n are positive integer unknowns with $n \geq 3$. In $1850, \mathrm{~V}$. A. Lebesque [14] proved that this equation has no solution for $C=1$. Ljunggren [16] solved for $C=2$ and Nagell [20], [21] solved it for $C=3,4$ and 5. J. H. E. Cohn [10] could solve (1) for 77 values of C between 1 and 100. In [19], Mignotte and de Weger dealt with the cases $C=74$ and 86, which had not been dealt with Cohn. Finally the remaining cases up to 100 were dealt with by Bugeaud, Mignotte and Siksek in [7].

Here we consider the Diophantine equation (1) where $C=q_{1}^{\alpha_{1}} \cdot q_{2}^{\alpha_{2}} \ldots q_{k}^{\alpha_{k}}$ or $C=2^{\alpha_{0}} \cdot q_{1}^{\alpha_{1}} \cdot q_{2}^{\alpha_{2}} \ldots q_{k}^{\alpha_{k}}$ are fixed numbers satisfying the following three conditions:
(I) $q_{i} \equiv 1(\bmod 4)$ are primes for all $i=1,2 \ldots, k$.

Write $C=d \cdot z^{2}$ with d is the square-free part of C. Let $h(-d)$ denote the class number of the imaginary quadratic field $\mathbb{Q}(\sqrt{-d})$. Let $\operatorname{rad}(n)$ denote the radical of the positive integer n (product of all prime divisors of n).
(II) $\operatorname{rad}(h(-d)) \mid 6$ for any decomposition $C=d \cdot z^{2}$ as above.
(III) $\operatorname{rad}\left(q_{i} \pm 1\right) \mid 2 \cdot 3 \cdot 5$ for all $i=1, \ldots, k$.

In such cases we apply the method used in [4]. If we are able to determine all S-integral points (with S is an explicit set of rational primes) on some associated elliptic curve, then we can completely solve such Diophantine equations. Conditions (I)-(III) above were suggested as a result of section 5 in [4].

In [11], all values of C satisfying conditions (I)-(III) are determined (Lemma 2). Radicals of C take exactly 41 values. Some of the equations $x^{2}+C=y^{n}$ with C listed in Lemma 2 were studied in the literature. These include the cases where $\operatorname{rad}(C) \in\{5,13,17,29,41,97,2 \cdot 5,2 \cdot 13,2 \cdot 17,5 \cdot 13,5 \cdot 17,2 \cdot 5 \cdot 13,2 \cdot 5 \cdot 17,2 \cdot 29,2 \cdot 41\}$.

All solutions of the Diophantine equation (1) where found in [17] and [18] for $\operatorname{rad}(\mathrm{C})=10,26$; in [11] for $\operatorname{rad}(C)=34,58,82$; in [4] for $\operatorname{rad}(C)=65$; in [22] for $\operatorname{rad}(C)=85$; and in [12], [13] for $\operatorname{rad}(C)=130,170$.

[^0]In [9], the authors gave the complete solutions (n, a, b, x, y) of the Diophantine equation $x^{2}+5^{a} \cdot 11^{b}=y^{n}$ when $\operatorname{gcd}(x, y)=1$, except for the case when $x \cdot a \cdot b$ is odd.

In this paper, we obtain all solutions of the Diophantine equations

$$
\begin{equation*}
x^{2}+5^{a} \cdot p^{b}=y^{n} \quad(p=29,41) \tag{2}
\end{equation*}
$$

in integers unknowns x, y, a, b, n under the conditions;

$$
x \geq 1, y>1, n \geq 3, a \geq 0, b \geq 0 \quad x \text { and } y \text { are coprime. }
$$

We apply the method from [4]. For $n=3$ and $n=4$, the problem is reduced to finding all $\{5, p\}$-integral points on some elliptic curves. For $n \geq 5$, we shall use the primitive divisors of Lucas sequences as in [6] to deduce that only cases $n \in\{5,7\}$ are possible. In these cases, we again reduce our problem to the computation of all $\{5, p\}$-integral points on some elliptic curves. The calculations were done using MAGMA, [5]. We now state the two main results of this paper:

Theorem 1.1. The only solutions of the equation

$$
\begin{equation*}
x^{2}+5^{a} \cdot 29^{b}=y^{n}, x, y \geq 1, \operatorname{gcd}(x, y)=1, n \geq 3, a, b \geq 0 \tag{3}
\end{equation*}
$$

are

$$
(x, y, a, b)=(2,9,2,1) \quad \text { when } \quad n=3
$$

and

$$
(x, y, a, b)=(2,3,2,1) \quad \text { when } \quad n=6 \text {. }
$$

Theorem 1.2. The only solutions of the equation

$$
\begin{equation*}
x^{2}+5^{a} \cdot 41^{b}=y^{n}, x, y \geq 1, \operatorname{gcd}(x, y)=1, n \geq 3, a, b \geq 0 \tag{4}
\end{equation*}
$$

are

$$
\begin{gathered}
(x, y, a, b)=(840,29,0,2) \quad \text { when } \quad n=4 ; \\
(x, y, a, b)=(38,5,0,2) \quad \text { when } \quad n=5
\end{gathered}
$$

and

$$
(x, y, a, b)=(278,5,0,2) \quad \text { when } \quad n=7
$$

Note that when $a=0$, (3) becomes $x^{2}+29^{b}=y^{n}$ and $x^{2}+41^{b}=y^{n}$, respectively, all solutions of which are already known (see [11]), while when $b=0$, our equation becomes $x^{2}+5^{a}=y^{n}$ and all solutions of which have been found in [2], [3] and [15]. Thus, from now on we shall assume that $a \cdot b>0$ in (2).

2. Preliminaries

We will determine all the primes $p \equiv 1(\bmod 4)$ satisfying the condition (III). First we recall some results:
Lemma 2.1. ([11]) There are exactly eight primes $p \equiv 1(\bmod 4)$ satisfying the condition (III): 5,13,17,29,41, 97,449, 4801 .

Now we are ready to determine all values of C satisfying (I)-(III).

Lemma 2.2. ([11]) (i) The prime power p^{a} satisfies the conditions (I)-(III) iff $p \in\{5,13,17,29,41,97\}$.
(ii) The number $C=2^{a_{0}} \cdot p^{a}$ satisfies (I)-(III) iff $p \in\{5,13,17,29,41\}$.
(iii) The odd number $C=p^{a} \cdot q^{b}$ with p, q are different odd primes, satisfies (I)-(III) iff $p \cdot q \in\{5 \cdot 13,5 \cdot 17$, $5 \cdot 29,5 \cdot 41,13 \cdot 17,13 \cdot 29,13 \cdot 41,17 \cdot 29,17 \cdot 41,17 \cdot 97,29 \cdot 41\}$.
(iv) The number $C=2^{a_{0}} \cdot p^{a} \cdot q^{b}$ where p, q are different odd primes satisfies (I)-(III) iff $p \cdot q \in\{5 \cdot 13,5 \cdot 17$, $5 \cdot 41,13 \cdot 17,17 \cdot 41\}$.
(v) The odd number $C=p_{1}^{a_{1}} \cdot p_{2}^{a_{2}} \cdot p_{3}^{a_{3}}$ with p_{1}, p_{2} and p_{3} are different odd primes satisfies (I)-(III) iff $p_{1} \cdot p_{2} \cdot p_{3} \in\{5 \cdot 13 \cdot 17,5 \cdot 13 \cdot 29,5 \cdot 13 \cdot 41,5 \cdot 17 \cdot 29,5 \cdot 17 \cdot 41,5 \cdot 29 \cdot 41,13 \cdot 17 \cdot 29$, $13 \cdot 17 \cdot 41,13 \cdot 29 \cdot 41\}$.
(vi) The number $C=2^{a_{0}} \cdot p_{1}^{a_{1}} \cdot p_{2}^{a_{2}} \cdot p_{3}^{a_{3}}$ where p_{1}, p_{2} and p_{3} are different odd primes satisfies (I)-(III) iff $p_{1} \cdot p_{2} \cdot p_{3} \in\{5 \cdot 13 \cdot 29,5 \cdot 17 \cdot 29,13 \cdot 17 \cdot 29,13 \cdot 29 \cdot 41\}$.
(vii) The number C with ≥ 4 different odd prime factors satisfies (I)-(III) iff $C=5^{a} \cdot 13^{b} \cdot 17^{c} \cdot 41^{d}$.

Let α, β be two algebraic integers. If $\alpha+\beta$ and $\alpha \cdot \beta$ are nonzero coprime integers and α / β is not a root of unity, then (α, β) is called a Lucas pair. Further, let $k=\alpha+\beta$ and $l=\alpha \cdot \beta$. Then we have

$$
\alpha=\frac{1}{2}(k+\lambda \sqrt{d}), \beta=\frac{1}{2}(k-\lambda \sqrt{d}) \text { with } \lambda \in\{\mp 1\},
$$

where $d=k^{2}-4 l$. We call (k, l) the parameters of the Lucas pair (α, β). Two Lucas pairs $\left(\alpha_{1}, \beta_{1}\right)$ and $\left(\alpha_{2}, \beta_{2}\right)$ are called equivalent if $\alpha_{1} / \alpha_{2}=\beta_{1} / \beta_{2}=\mp 1$. Given a Lucas pair (α, β), one defines the corresponding sequence of Lucas numbers by

$$
\begin{equation*}
L_{n}(\alpha, \beta)=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \quad n=0,1,2, \ldots \tag{5}
\end{equation*}
$$

For two equivalent Lucas pairs $\left(\alpha_{1}, \beta_{1}\right)$ and $\left(\alpha_{2}, \beta_{2}\right)$, we have $L_{n}\left(\alpha_{1}, \beta_{1}\right)= \pm L_{n}\left(\alpha_{2}, \beta_{2}\right)$ for all $n \geq 0$.
A prime r is called a primitive divisor of $L_{n}(\alpha, \beta),(n>1)$ if

$$
r \mid L_{n}(\alpha, \beta) \text { and } r \nmid d \cdot L_{1}(\alpha, \beta) \cdots L_{n-1}(\alpha, \beta) .
$$

Lemma 2.3. ([8]) If r is a primitive divisor of $L_{n}(\alpha, \beta)$, then

$$
r \equiv e(\bmod n), \text { where } e=\left(\frac{-4 d}{r}\right) .
$$

Now we give an important result of Bilu, Hanrot and Voutier [6] concerning the existence of primitive divisors of Lucas sequence :

Lemma 2.4. Let $L_{n}=L_{n}(\alpha, \beta)$ be a Lucas sequence. If $n \geq 5$ is a prime, then L_{n} has a primitive divisor except for finitely many pairs (α, β) which are explicitly determined in Table 1 in [6].
Proof. Follows by Theorem 1.4 in [6] and Theorem 1 in [1].

3. The Case $n=4$

We now consider the special case of $n=4$. The situation is rather easy in this case:
Lemma 3.1. The equation (2) has no solution with $n=4$ and $a \cdot b>0$.
Proof. Let $p \in\{29,41\}$. Let us rewrite the equation $x^{2}+5^{a} \cdot p^{b}=y^{4}$ in the form $\left(x / z^{2}\right)^{2}+A=(y / z)^{4}$ where A is a 4 th power-free positive integer, defined by. $5^{a} \cdot p^{b}=A \cdot z^{4}$ for some integer z. Under these conditions, we can write, $A=5^{\alpha} \cdot p^{\beta}$ with $\alpha, \beta \in\{0,1,2,3\}$ and we obtain the equation

$$
V^{2}=U^{4}-5^{\alpha} \cdot p^{\beta}
$$

with $U=y / z, V=x / z^{2}$. We now have to determine all $\{5, p\}$-integral points on these 16 elliptic curves.
Recall that if S is a finite set of prime numbers, then an S-integer is a rational number a / b with coprime integers a and $b>0$, where the prime factors of b are in S. We can always use MAGMA to determine the $\{5, p\}$-integral points on the above elliptic curves (see [4], p. 176).

Now we give the results of our with MAGMA calculations:
(i) The only $\{5,29\}$-integral point on $V^{2}=U^{4}-5^{\alpha} \cdot 29^{\beta}$ is $(U, V, \alpha, \beta)=(1,0,0,0)$ with the conditions on x, y and the definition of U, V one can see that there is no solution for this equation.
(ii) The only $\{5,41\}$-integral point on $V^{2}=U^{4}-5^{\alpha} \cdot 41^{\beta}$ is $(U, V, \alpha, \beta)=(1,0,0,0),(29,840,0,2)$. Under the conditions on x, y the definition of U, V which are not convenient for us since they $a=0$ or $a=b=0$. This concludes the proof.

4. The Case $n=3$

Now we deal with the second separate case of $n=3$:
Lemma 4.1. (i) The only solution of the equation (3) with $n=3$ and $a b>0$ is $(x, y, a, b)=(2,9,2,1)$. In particular, if $n \geq 3$ is a multiple of 3 and the Diophantine equation (2) has an integer valuation (x, y, a, b), then $n=6$. Furthermore when $n=6$, the only solution (x, y, a, b) is $(2,3,2,1)$.
(ii) The equation (4) has no solution with $n=3$ and $a b>0$.

Proof. Let $p \in\{29,41\}$. Rewrite the equation $x^{2}+5^{a} \cdot p^{b}=y^{3}$ in the form $\left(x / z^{3}\right)^{2}+A=\left(y / z^{2}\right)^{3}$, where A is a 6th power-free positive integer, defined by $5^{a} \cdot p^{b}=A z^{6}$, with some integer z. Of course, $A=5^{\alpha} \cdot p^{\beta}$ with $\alpha, \beta \in\{0,1,2,3,4,5\}$ and we obtain the equations:

$$
V^{2}=U^{3}-5^{\alpha} \cdot p^{\beta}
$$

with $U=y / z^{2}, V=x / z^{3}$. We now have to determine the $\{5, p\}$-integral points on these 36 elliptic curves, and to do that, we use again MAGMA.
(i) The only $\{5,29\}$-integral points on $V^{2}=U^{3}-5^{\alpha} \cdot 29^{\beta}$ are $(U, V, \alpha, \beta) \in\{(1,0,0,0),(29,0,0,3),(5,10,2,0)$, $(9,2,2,1),(29,58,2,2),(125,1390,2,2),(145,1740,2,2),(865,25440,2,2),(145,0,3,3)\}$. As the numbers x and y are coprime positive integers, the above solutions lead to only one solution of the original equation, which is $(x, y, a, b)=(2,9,2,1)$.

When $n=6$, replace n by 3 and y by y^{2} to get a solution of equation (3) with $n=3$ where the value of y being a perfect square. We have only the possibility $(2,9,2,1)$ for (x, y, a, b). Therefore, the only solution of equation (3) with $n=6$ is $(2,3,2,1)$.
(ii) The only $\{5,41\}$-integral points (u, v, α, β) on the curve $V^{2}=U^{3}-5^{\alpha} \cdot 41^{\beta}$ are $(1,0,0,0),(41,0,0,3)$, $(41,246,1,2),(5,10,2,0),(41,164,2,2),(5,0,3,0),(205,0,3,3),(125,950,4,2)$ and $(1025,32800,4,2)$ with the conditions on x, y and the definition of U, V one can easily see that none of these leads to a solution of the equation in (1) in the case $n=3$. This is the required result.

5. The Case $n \geq 5$ is prime

Lemma 5.1. Equations (4) and (5) have no solution with $n \geq 5$ prime and $a . b>0$.
Proof. Suppose that (1) holds with $n \geq 5$, prime. We first rewrite the Diophantine equation $x^{2}+5^{a} \cdot p^{b}=y^{n}$ as $x^{2}+d \cdot z^{2}=y^{n}$, where $d \in\{1,5, p, 5 p\}, p=29,41, z=5^{\alpha} \cdot p^{\beta}$ and the relation between α and β with a and b, respectively, is clear.

If in (4) and (5), $y>1$ is taken as an even number, we obviously have that x is odd. Since for any odd integer t, we have $t^{2} \equiv 1(\bmod 8)$ we get that $1+d \equiv 0(\bmod 8)$ by reducing (4) and (5) modulo 8 . This leads to $d \equiv 7(\bmod 8)$ for $d \in\{1,5,29,145\}$ or $d \in\{1,5,41,205\}$ which gives a contradiction. Hence in what follows we may assume $y>1$ is odd in (4) and (5) (and hence $x \geq 1$ is even).

We work with the field $K=\mathbb{Q}(\sqrt{-d})$. Since x is even, both factors on the left hand side of the equation $(x+z \sqrt{-d})(x-z \sqrt{-d})=y^{n}$ are relatively prime. Hence, the ideal $x+z \sqrt{-d}$ is a q-th power of some element
in \mathbb{Q}_{K}, for a prime q. The cardinality of the group of units of \mathbb{Q}_{K} is 2 or 6 , both coprime to q. Furthermore $\{1,(1+\sqrt{-d}) / 2\}$ is always an integral base for \mathbb{Q}_{K}. Thus, we can finally write the relations

$$
\begin{equation*}
x+z \sqrt{-d}=\varphi^{q}, \quad \varphi=u+v \sqrt{-d} \tag{6}
\end{equation*}
$$

where $u, v \in \mathbb{Z}$.
Conjugating (7) and subtracting the two relations, we get

$$
\begin{equation*}
2 \sqrt{-d} \cdot 5^{\alpha} \cdot p^{\beta}=\varphi^{q}-\bar{\varphi}^{q} \tag{7}
\end{equation*}
$$

5.1. The Diophantine equation $x^{2}+5^{a} \cdot 29^{b}=y^{n}$

Since $n \geq 5,29$ is primitive for L_{n} by Lemma 3 (n is prime). Thus, $29 \equiv \pm 1(\bmod n)$ and we conclude that the only possibilities are $n=7$ and $d=1$ or $n=5$ and $d=2$.

5.1.1. The Case $n=7$

By means of (8) with $n=7$ and $d=1$, we obtain the relation

$$
\begin{equation*}
v\left(7 u^{6}-35 u^{4} v^{2}+21 u^{2} v^{4}-v^{6}\right)=5^{\alpha} .29^{\beta} \tag{8}
\end{equation*}
$$

Since u and v are coprime, we have the following possibilities:
(a) $v= \pm 5^{\alpha} \cdot 29^{\beta}$,
(b) $v= \pm 29^{\beta}$,
(c) $v= \pm 5^{\alpha}$,
(d) $v= \pm 1$.

We need only look at the last two possibilities.
Case 1: $v= \pm 5^{\alpha}$.
In this case, equation (9) becomes

$$
7 u^{6}-35 u^{4} v^{2}+21 u^{2} v^{4}-v^{6}= \pm 29^{\beta}
$$

Dividing both sides by v^{6}, we obtain

$$
\begin{equation*}
7 U^{3}-35 U^{2}+21 U-1=D_{1} \cdot V^{2} \tag{9}
\end{equation*}
$$

where $U=u^{2} / v^{2}, \quad V=29^{\beta_{1}} / v^{3}, \quad \beta_{1}=[\beta / 2], \quad D_{1}= \pm 1, \pm 29$. In this case, as $D_{1}= \pm 1$, we have to find the $\{5\}$-integral points on the elliptic curves:

$$
\begin{equation*}
7 U^{3}-35 \gamma U^{2}+21 U-\gamma=D_{1} \cdot V^{2}, \quad \gamma= \pm 1 \tag{10}
\end{equation*}
$$

We multiply both sides of (10) by 7^{2} to obtain

$$
X^{3}-35 \gamma \cdot X^{2}+147 X-49 \gamma=Y^{2}
$$

where $(X, Y)=(7 \gamma U, 7 V)$ are $\{5\}$-integral points on the above elliptic curves.
Using MAGMA, we find $(X, Y) \in\{(1,8),(58,-293)\}$ (hence $(U, V) \in\{(1 / 7,8 / 7),(58 / 7,-293 / 7)\}$ for $\gamma=1)$. These do not lead to any solutions of the equation (4), either.

Consider the case $D_{1}= \pm 29$. The unique $\{5\}$-integral point $(2349,-87464)$ on the elliptic curve

$$
X^{3}-35 \cdot 29 X^{2}+21 \cdot 7 \cdot 29^{2} X-7^{2} \cdot 29^{3}=Y^{2}
$$

does not lead us to a solution of (4). With MAGMA, we find the following \{5\}-integral points $(-812,5887),(-377,6728),(-5,-776),(91,4648),(1015,47096),(-340103561 / 390625,420852069512 / 244140625)$ on the elliptic curve

$$
X^{3}+35 \cdot 29 x^{2}+21 \cdot 7 \cdot 29^{2} X+7^{2} \cdot 29^{3}=Y^{2}
$$

Only the point $(-812,5887)$ leads to the solution $(x, y, a, b)=(278,5,0,2)$ of our original equation (4), which is not convenient for us since it has $a=0$.

Case 2:. $v= \pm 1$.
We have to find the integral points on

$$
\begin{equation*}
7 U^{3}-35 U^{2}+21 U-1=D_{1} \cdot V^{2} \tag{11}
\end{equation*}
$$

where $D_{1}= \pm 1, \pm 5, \pm 29, \pm 145$.
The cases $D_{1}= \pm 1, \pm 29$ where treated above.
Consider the case $D_{1}= \pm 5$. Using MAGMA, we find two solutions $(21,-56),(574,-11557)$ on the curve

$$
X^{3}-35 \cdot 5 \cdot X^{2}+21 \cdot 7 \cdot 5^{2} X-7^{2} \cdot 5^{3}=Y^{2}
$$

and there exists no integral points on the curve

$$
X^{3}-35 \cdot 5 \cdot X^{2}+21 \cdot 7 \cdot 5^{2} X+7^{2} \cdot 5^{3}=Y^{2}
$$

These do not lead to any solutions of our original equation (4).
Consider the case $D= \pm 145$. Using MAGMA, we only find the solution $(25201,-3586024)$ on the curve

$$
X^{3}-35 \cdot 5 \cdot 29 X^{2}+21 \cdot 7 \cdot 5^{2} \cdot 29^{2} X-7^{2} \cdot 5^{3} \cdot 29^{3}=Y^{2}
$$

and we find another solution $(696,10933)$ on the curve

$$
X^{3}-35 \cdot 5 \cdot 29 X^{2}+21 \cdot 7 \cdot 5^{2} \cdot 29^{2} X+7^{2} \cdot 5^{3} \cdot 29^{3}=Y^{2}
$$

These also do not lead to any solutions of (4).

5.1.2. Case $n=5$

Using (8) with $n=5, d=2$, we obtain the relation

$$
\begin{equation*}
v\left(5 u^{4}-20 u^{2} v^{2}+4 v^{4}\right)=5^{\alpha} \cdot 29^{\beta} \tag{12}
\end{equation*}
$$

As in the case $n=7$, we only need to check the values $v= \pm 5^{\alpha}, v= \pm 1$.
In the first case, the Diophantine equation (12) is $5 u^{4}-20 u^{2} v^{2}+4 v^{4}= \pm 29^{\beta}$. Dividing both sides by v^{4}, we obtain

$$
\begin{equation*}
5 U^{4}-20 U^{2}+4=D_{1} V^{2} \tag{13}
\end{equation*}
$$

where $U=u / v, \quad V=29^{\beta_{1}} / v^{2}, \quad \beta_{1}=[\beta / 2]$ and $D_{1}= \pm 1, \pm 29$. Using MAGMA, we find three $\{5\}$-integral points $(0,2),(2,2),(-2,2)$ on the curve (13) with $D_{1}= \pm 1$, and no other points in the remaining cases. These points do not lead to solution of our original equation (1).

In the second case, the Diophantine equation (12) is $5 U^{4}-20 U^{2}+4= \pm 5^{\alpha} \cdot 29^{\beta}$. we need to find the integral points on the curves $5 U^{4}-20 U^{2}+4=D_{1} V^{2}$, for $D_{1}= \pm 1, \pm 5, \pm 29, \pm 145$. MAGMA finds three solutions (0,2), (2,2), ($-2,2$). None of points leads to any solutions of equation (2).

5.2. The Diophantine equation $x^{2}+5^{a} .41^{b}=y^{n}$

Since $n \geq 5$, by using Lemma 3,41 is primitive for L_{n}. Thus, $41 \equiv \pm 1(\bmod n)$ and we now see that the only possibilities are $n=5$ and $d=1$ or $n=5$ and $d=2$.

Using (8) with $n=5, d=2$, we obtain

$$
\begin{equation*}
v\left(5 u^{4}-20 u^{2} v^{2}+4 v^{4}\right)=5^{\alpha} 41^{\beta} . \tag{14}
\end{equation*}
$$

Therefore we only need to check $v= \pm 5^{\alpha}, v= \pm 1$.
In the first case the Diophantine equation is $v\left(5 u^{4}-20 u^{2} v^{2}+4 v^{4}\right)= \pm 41^{\beta}$. Dividing both sides by v^{4}, we obtain

$$
5 U^{4}-20 U^{2}+4=D_{1} V^{2}
$$

where $U=u / v, V=41^{\beta_{1}} / v^{2}, \quad \beta_{1}=[\beta / 2]$ and $D_{1}= \pm 1, \pm 41$. Using MAGMA, we find three $\{5\}$-integral points $(0,2),(2,2),(2,-2)$ on (14) with $D_{1}=1$, and none in the reamining cases. These points do not lead to any solutions of equation (4).

In the second case the Diophantine equation is $v\left(5 u^{4}-20 u^{2} v^{2}+4 v^{4}\right)=5^{\alpha} \cdot 41^{\beta}$. We need to find integral points on the curves $v\left(5 U^{4}-20 U^{2}+4\right)=D_{1} V^{2}$, for $D_{1}= \pm 1, \pm 5, \pm 41, \pm 205$. MAGMA finds three solutions $(0,2),(2,2),(2,-2)$. These points do not lead either to any solutions of our original equation (4).

Using (8) with $n=5, d=1$, we obtain the relation

$$
v\left(5 u^{4}-20 u^{2} v^{2}+4 v^{4}\right)=5^{\alpha} 41^{\beta}
$$

In case $v= \pm 5^{\alpha}$, we obtain $5 u^{4}-10 u^{2} v^{2}+v^{4}= \pm 41^{\beta}$. MAGMA then finds the $\{5\}$-integral points on

$$
5 U^{4}-10 U^{2}+1=D_{1} V^{2} \text { for } D_{1}= \pm 1, \pm 41
$$

which are $(0,1)$ if $D_{1}=1,(1,-2),(-1,-2)$ if $D_{1}=-1$, and finally $(2,1),(-2,1)$ if $D_{1}=41$. The point $(2,1)$ gives a new solution $(x, y, a, b)=(38,5,0,2)$ of the equation (4) which is not conventient for us since it has $a=0$.

In case $v= \pm 1$, we obtain $5 u^{4}-10 u^{2} v^{2}+4 v^{4}=5^{\alpha} 41^{\beta}$ MAGMA finds the integral points on

$$
5 U^{4}-10 U^{2}+1=D_{1} Y^{2} \text { for } D_{1}= \pm 1, \pm 5, \pm 41,205
$$

These points are $(2,41),(-2,41)$ for $D_{1}=41$. The point $(2,1)$ gives the solution $(x, y)=(38,5)$ of (4) again. This solution is not convenient for us since it has $a=0$. This completes the proof of lemma.

Acknowledgements 5.2. The author specially thanks to Dr. Gokhan Soydan for his orientation and encouragements.

References

[1] Abouszaid M., "Les nombers de Lucas et Lehmer ans diviseur primitif", J. Théor. Nombers Bordeaux. 18 (2006), 299-313.
[2] Abu Muriefah F.S., Arif S.A.,"The Diophantine equation $x^{2}+5^{2 k+1}=y^{n \prime \prime}$, Indian J. Pure and Appl. Math. 30 (1999), 229-231.
[3] Abu Muriefah F.S., Arif S.A.,"On The Diophantine equation $x^{2}+5^{2 k}=y^{n \prime \prime}$, Demonstratio Math. 319 (2006), 285-289.
[4] Abu Muriefah F.S., Luca F., Togbé A.,"On The Diophantine equation $x^{2}+5^{a} .13^{b}=y^{n \prime \prime}$, Glasgow Math. J. 50 (2008), 175-181.
[5] Bosma W., Cannon J., Playoust C., "Magma Algebra System I. The user language", J. Symbolic Comput. 24 (1997), 235-265.
[6] Bilu Y., Hanrot G., Voutier P. M., "Existence of Primitive divisors of Lucas numbers with an appendix by M. Mignotte.", J. Reine Angew. Math. 535 (2001), 75-122
[7] Bugeaud Y., Mignotte M., Siksek S., "Classical and modular approaches to exponential and Diophantine equations II. The Lebesque-Nagell equation.", Compos. Math. 142/1 (2006), 31-62.
[8] Carmichael R.,D., "On The numerical factors of the arithmetic forms $\alpha^{n}-\beta^{n "}$, Ann. Math.(2) 15 (1913), 30-70.
[9] Cangül I. N., Demirci M., Soydan G., Tzanakis N., "On The Diophantine equation $x^{2}+5^{a} .11^{b}=y^{n}$ ", Functiones et Approximatio Commentarii Mathematici 43.2 (2010), 209-225.
[10] Cohn J. H. E., "The Diophantine equation $x^{2}+c=y^{n} I I^{\prime}$, Acta Arith. 109 (2003), 205-206.
[11] Dabrowski A., "On The Lebesque Nagell equation", Colloq. Math. 125 (2011), 245-253.
[12] Goins E., Luca F., Togbé A., "On The Diophantine equation $x^{2}+2^{\alpha} .5^{\beta} .13^{\gamma}=y^{n \prime}$, Proceedings of ANTS VIII, A. J. Van der Poorten and A. Stein (eds.), Lecture Notes in Computer Sciences 5011 (2008), 430-442.
[13] Godinho H., Marques D., Togbé A., "On The Diophantine equation $x^{2}+2^{\alpha} .5^{\beta} .17 \gamma=y^{n}$ ", Communications in Math. 20 (2012), 81-88.
[14] Lebesque V. A., "Sur I'impossibilité en nombre entier de L'equation $x^{m}=y^{2}+1$ ", Nouvelle Annales des Mathématiques 9 (1850), 178-181.
[15] Liquin T.,"On The Diophantine equation $x^{2}+5^{m}=y^{n "}$, Ramanujan J. 19 (2009), 325-338.
[16] Ljunggren W., "Über einige Arcustangensgleichungen die auf interessante unbestimmte Gleichungen führen", Ark. Mat. Astr. Fys. 29A, 13 (1943), 1-11.
[17] Luca F., Togbé A., "On The Diophantine equation $x^{2}+2^{a} .5^{b}=y^{n \prime}$, Int. J. Number Theory. 4 (2008), 973-979.
[18] Luca F., Togbé A., "On The Diophantine equation $x^{2}+2^{a} .13^{b}=y^{n \prime \prime}$, Colloq. Math. 116 (2009), 139-146.
[19] Mignotte M., de Weger B.M.M."On The Diophantine equation $x^{2}+74=y^{5}$ and $x^{2}+86=y^{5 \prime \prime}$, Glasgow Math. J. 38/1 (1996), 77-85.
[20] Nagell T.,"Sur I'impossibilité en nombers entier de quelques équations a deux indeterminées", Norsk. Mat. Forensings Skifter 13 (1923), 65-82.
[21] Nagell T.,"Contributions to the theory of a category of Diophanine equations of the second degree with two unknowns", Nova Acta Reg. Soc. Upsal.IV Ser."16 Uppsala (1955), 1-38.
[22] Pink I., Rabai Z.,"On The Diophantine equation $x^{2}+5^{k} .17^{l}=y^{n \prime \prime}$, Communications in Math. 19 (2011), 1-9.

[^0]: 2010 Mathematics Subject Classification. 11D61, 11D41.
 Keywords. Exponential Diophantine Equations, Primitive divisors of Lehmer sequences.
 Received: 22 May 2014; Accepted: 12 April 2017
 Communicated by Dragan S. Djordjević
 Research supported by the Research Fund of Uludag University KUAP(F)-2015/18
 Email address: mdemirci@uludag.edu.tr (Musa Demırcı)

