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On the Diophantine Equation x2 + 5a
· pb = yn
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Abstract. In this paper, all the solutions of the Diophantine equations x2 + 5a
· pb = yn (for p = 29, 41) are

given for nonnegative integers a, b, x, y,n ≥ 3 with x and y coprime.

1. Introduction

Recently, there have been many papers dealing with by the generalized Lebesgue-Nagell equation

x2 + C = yn (1)

where C > 0 is a fixed integer and x, y,n are positive integer unknowns with n ≥ 3. In 1850, V. A. Lebesque
[14] proved that this equation has no solution for C = 1. Ljunggren [16] solved for C = 2 and Nagell [20],
[21] solved it for C = 3, 4 and 5. J. H. E. Cohn [10] could solve (1) for 77 values of C between 1 and 100.
In [19], Mignotte and de Weger dealt with the cases C = 74 and 86, which had not been dealt with Cohn.
Finally the remaining cases up to 100 were dealt with by Bugeaud, Mignotte and Siksek in [7].

Here we consider the Diophantine equation (1) where C = qα1
1 · q

α2
2 . . . qαk

k or C = 2α0 · qα1
1 · q

α2
2 . . . qαk

k are
fixed numbers satisfying the following three conditions:

(I) qi ≡ 1 (mod 4) are primes for all i = 1, 2 . . . , k.
Write C = d · z2 with d is the square-free part of C. Let h(−d) denote the class number of the imaginary

quadratic fieldQ(
√
−d). Let rad(n) denote the radical of the positive integer n (product of all prime divisors

of n).
(II) rad(h(−d)) | 6 for any decomposition C = d · z2 as above.
(III) rad(qi ± 1) | 2 · 3 · 5 for all i = 1, . . . , k.
In such cases we apply the method used in [4]. If we are able to determine all S-integral points (with S

is an explicit set of rational primes) on some associated elliptic curve, then we can completely solve such
Diophantine equations. Conditions (I)-(III) above were suggested as a result of section 5 in [4].

In [11], all values of C satisfying conditions (I)-(III) are determined (Lemma 2). Radicals of C take exactly
41 values. Some of the equations x2 +C = yn with C listed in Lemma 2 were studied in the literature. These
include the cases where rad(C) ∈ {5, 13, 17, 29, 41, 97, 2 · 5, 2 · 13, 2 · 17, 5 · 13, 5 · 17, 2 · 5 · 13, 2 · 5 · 17, 2 · 29, 2 · 41}.

All solutions of the Diophantine equation (1) where found in [17] and [18] for rad(C) = 10, 26; in [11] for
rad(C) = 34, 58, 82; in [4] for rad(C) = 65; in [22] for rad(C) = 85; and in [12], [13] for rad(C) = 130, 170.
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In [9], the authors gave the complete solutions (n, a, b, x, y) of the Diophantine equation x2 + 5a
· 11b = yn

when 1cd(x, y) = 1, except for the case when x · a · b is odd.
In this paper, we obtain all solutions of the Diophantine equations

x2 + 5a
· pb = yn (p = 29, 41) (2)

in integers unknowns x, y, a, b,n under the conditions;

x ≥ 1, y > 1, n ≥ 3, a ≥ 0, b ≥ 0 x and y are coprime.

We apply the method from [4]. For n = 3 and n = 4, the problem is reduced to finding all {5, p} -integral
points on some elliptic curves. For n ≥ 5, we shall use the primitive divisors of Lucas sequences as in
[6] to deduce that only cases n ∈ {5, 7} are possible. In these cases, we again reduce our problem to the
computation of all {5, p} -integral points on some elliptic curves. The calculations were done using MAGMA,
[5]. We now state the two main results of this paper:

Theorem 1.1. The only solutions of the equation

x2 + 5a
· 29b = yn , x, y ≥ 1, 1cd(x, y) = 1, n ≥ 3, a, b ≥ 0 (3)

are

(x, y, a, b) = (2, 9, 2, 1) when n = 3

and

(x, y, a, b) = (2, 3, 2, 1) when n = 6.

Theorem 1.2. The only solutions of the equation

x2 + 5a
· 41b = yn , x, y ≥ 1, 1cd(x, y) = 1, n ≥ 3, a, b ≥ 0 (4)

are

(x, y, a, b) = (840, 29, 0, 2) when n = 4;
(x, y, a, b) = (38, 5, 0, 2) when n = 5

and

(x, y, a, b) = (278, 5, 0, 2) when n = 7.

Note that when a = 0, (3) becomes x2 + 29b = yn and x2 + 41b = yn, respectively, all solutions of which are
already known (see [11]), while when b = 0, our equation becomes x2 + 5a = yn and all solutions of which
have been found in [2], [3] and [15]. Thus, from now on we shall assume that a · b > 0 in (2).

2. Preliminaries

We will determine all the primes p ≡ 1 (mod 4) satisfying the condition (III). First we recall some results:

Lemma 2.1. ([11]) There are exactly eight primes p ≡ 1 (mod 4) satisfying the condition (III): 5, 13, 17, 29, 41,
97, 449, 4801.

Now we are ready to determine all values of C satisfying (I)-(III).
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Lemma 2.2. ([11]) (i) The prime power pa satisfies the conditions (I)-(III) iff p ∈ {5, 13, 17, 29, 41, 97}.
(ii) The number C = 2a0 · pa satisfies (I)-(III) iff p ∈ {5, 13, 17, 29, 41}.
(iii) The odd number C = pa

· qb with p, q are different odd primes, satisfies (I)-(III) iff p · q ∈ {5 · 13, 5 · 17,
5 · 29, 5 · 41, 13 · 17, 13 · 29, 13 · 41, 17 · 29, 17 · 41, 17 · 97, 29 · 41}.

(iv) The number C = 2a0 · pa
· qb where p, q are different odd primes satisfies (I)-(III) iff p · q ∈ {5 · 13, 5 · 17,

5 · 41, 13 · 17, 17 · 41}.
(v) The odd number C = pa1

1 · pa2
2 · pa3

3 with p1, p2 and p3 are different odd primes satisfies (I)-(III) iff
p1 · p2 · p3 ∈ {5 · 13 · 17, 5 · 13 · 29, 5 · 13 · 41, 5 · 17 · 29, 5 · 17 · 41, 5 · 29 · 41, 13 · 17 · 29,
13 · 17 · 41, 13 · 29 · 41}.

(vi) The number C = 2a0 · pa1
1 · pa2

2 · pa3
3 where p1, p2 and p3 are different odd primes satisfies (I)-(III)

iff p1 · p2 · p3 ∈ {5 · 13 · 29, 5 · 17 · 29, 13 · 17 · 29, 13 · 29 · 41}.
(vii) The number C with ≥ 4 different odd prime factors satisfies (I)-(III) iff C = 5a

· 13b
· 17c

· 41d.

Let α, β be two algebraic integers. If α+ β and α · β are nonzero coprime integers and α/β is not a root of
unity, then (α, β) is called a Lucas pair. Further, let k = α + β and l = α · β. Then we have

α = 1
2 (k + λ

√
d) , β = 1

2 (k − λ
√

d) with λ ∈ {∓1},

where d = k2
−4l. We call (k, l) the parameters of the Lucas pair (α, β). Two Lucas pairs (α1, β1) and (α2, β2) are

called equivalent if α1/α2 = β1/β2 = ∓1. Given a Lucas pair (α, β), one defines the corresponding sequence
of Lucas numbers by

Ln(α, β) =
αn
− βn

α − β
n = 0, 1, 2, . . . (5)

For two equivalent Lucas pairs (α1, β1) and (α2, β2), we have Ln(α1, β1) = ±Ln(α2, β2) for all n ≥ 0.
A prime r is called a primitive divisor of Ln(α, β), (n > 1) if

r | Ln(α, β) and r - d · L1(α, β) · · · Ln−1(α, β).

Lemma 2.3. ([8]) If r is a primitive divisor of Ln(α, β), then

r ≡ e (mod n), where e = (−4d
r ).

Now we give an important result of Bilu, Hanrot and Voutier [6] concerning the existence of primitive
divisors of Lucas sequence :

Lemma 2.4. Let Ln = Ln(α, β) be a Lucas sequence. If n ≥ 5 is a prime, then Ln has a primitive divisor except for
finitely many pairs (α, β) which are explicitly determined in Table 1 in [6].

Proof. Follows by Theorem 1.4 in [6] and Theorem 1 in [1].

3. The Case n = 4

We now consider the special case of n = 4. The situation is rather easy in this case:

Lemma 3.1. The equation (2) has no solution with n = 4 and a · b > 0.

Proof. Let p ∈ {29, 41}. Let us rewrite the equation x2 + 5a
· pb = y4 in the form (x/z2)2 + A = (y/z)4 where A

is a 4th power-free positive integer, defined by. 5a
· pb = A · z4 for some integer z. Under these conditions,

we can write, A = 5α · pβ with α, β ∈ {0, 1, 2, 3} and we obtain the equation

V2 = U4
− 5α · pβ
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with U = y/z, V = x/z2. We now have to determine all {5, p}-integral points on these 16 elliptic curves.
Recall that if S is a finite set of prime numbers, then an S-integer is a rational number a/b with coprime

integers a and b > 0, where the prime factors of b are in S. We can always use MAGMA to determine the
{5, p}-integral points on the above elliptic curves (see [4], p. 176).

Now we give the results of our with MAGMA calculations:
(i) The only {5, 29} -integral point on V2 = U4

− 5α · 29β is (U,V, α, β) = (1, 0, 0, 0) with the conditions on
x, y and the definition of U,V one can see that there is no solution for this equation.

(ii) The only {5, 41}-integral point on V2 = U4
− 5α · 41β is (U,V, α, β) = (1, 0, 0, 0), (29, 840, 0, 2). Under the

conditions on x, y the definition of U,V which are not convenient for us since they a = 0 or a = b = 0. This
concludes the proof.

4. The Case n = 3

Now we deal with the second separate case of n = 3:

Lemma 4.1. (i) The only solution of the equation (3) with n = 3 and ab > 0 is (x, y, a, b) = (2, 9, 2, 1). In particular, if
n ≥ 3 is a multiple of 3 and the Diophantine equation (2) has an integer valuation (x, y, a, b), then n = 6. Furthermore
when n = 6, the only solution (x, y, a, b) is (2, 3, 2, 1).

(ii) The equation (4) has no solution with n = 3 and ab > 0.

Proof. Let p ∈ {29, 41}. Rewrite the equation x2 + 5a
· pb = y3 in the form (x/z3)2 + A = (y/z2)3, where A is a

6th power-free positive integer, defined by 5a
· pb = Az6, with some integer z. Of course, A = 5α · pβ with

α, β ∈ {0, 1, 2, 3, 4, 5} and we obtain the equations:

V2 = U3
− 5α · pβ,

with U = y/z2, V = x/z3. We now have to determine the {5, p}-integral points on these 36 elliptic curves,
and to do that, we use again MAGMA.

(i) The only {5, 29}-integral points on V2 = U3
− 5α · 29β are (U,V, α, β) ∈ {(1, 0, 0, 0), (29, 0, 0, 3), (5, 10, 2, 0),

(9, 2, 2, 1), (29, 58, 2, 2), (125, 1390, 2, 2), (145, 1740, 2, 2), (865, 25440, 2, 2), (145, 0, 3, 3)}. As the numbers x and y
are coprime positive integers, the above solutions lead to only one solution of the original equation, which
is (x, y, a, b) = (2, 9, 2, 1).

When n = 6, replace n by 3 and y by y2 to get a solution of equation (3) with n = 3 where the value of y
being a perfect square. We have only the possibility (2, 9, 2, 1) for (x, y, a, b). Therefore, the only solution of
equation (3) with n = 6 is (2, 3, 2, 1).

(ii) The only {5, 41} -integral points (u, v, α, β) on the curve V2 = U3
− 5α · 41β are (1, 0, 0, 0), (41, 0, 0, 3),

(41, 246, 1, 2), (5, 10, 2, 0), (41, 164, 2, 2), (5, 0, 3, 0), (205, 0, 3, 3), (125, 950, 4, 2) and (1025, 32800, 4, 2) with the con-
ditions on x, y and the definition of U,V one can easily see that none of these leads to a solution of the
equation in (1) in the case n = 3. This is the required result.

5. The Case n ≥ 5 is prime

Lemma 5.1. Equations (4) and (5) have no solution with n ≥ 5 prime and a.b > 0.

Proof. Suppose that (1) holds with n ≥ 5, prime. We first rewrite the Diophantine equation x2 + 5a
· pb = yn

as x2 + d · z2 = yn, where d ∈ {1, 5, p, 5p}, p = 29, 41, z = 5α · pβ and the relation between α and β with a and b,
respectively, is clear.

If in (4) and (5), y > 1 is taken as an even number, we obviously have that x is odd. Since for any odd
integer t, we have t2

≡ 1 (mod 8) we get that 1 + d ≡ 0 (mod 8) by reducing (4) and (5) modulo 8. This
leads to d ≡ 7 (mod 8) for d ∈ {1, 5, 29, 145} or d ∈ {1, 5, 41, 205} which gives a contradiction. Hence in what
follows we may assume y > 1 is odd in (4) and (5) (and hence x ≥ 1 is even).

We work with the field K = Q(
√
−d). Since x is even, both factors on the left hand side of the equation

(x+ z
√
−d)(x− z

√
−d) = yn are relatively prime. Hence, the ideal x+ z

√
−d is a q-th power of some element



M. Demırcı / Filomat 31:16 (2017), 5263–5269 5267

in QK, for a prime q. The cardinality of the group of units of QK is 2 or 6, both coprime to q. Furthermore
{1, (1 +

√
−d)/2} is always an integral base for QK . Thus, we can finally write the relations

x + z
√

−d = ϕq, ϕ = u + v
√

−d (6)

where u, v ∈ Z.
Conjugating (7) and subtracting the two relations, we get

2
√

−d · 5α · pβ = ϕq
− ϕq. (7)

5.1. The Diophantine equation x2 + 5a
· 29b = yn

Since n ≥ 5, 29 is primitive for Ln by Lemma 3 (n is prime). Thus, 29 ≡ ±1 (mod n) and we conclude
that the only possibilities are n = 7 and d = 1 or n = 5 and d = 2.

5.1.1. The Case n = 7
By means of (8) with n = 7 and d = 1, we obtain the relation

v(7u6
− 35u4v2 + 21u2v4

− v6) = 5α.29β (8)

Since u and v are coprime, we have the following possibilities:

(a) v = ±5α · 29β, (b) v = ±29β, (c) v = ±5α, (d) v = ±1.

We need only look at the last two possibilities.

Case 1:. v = ±5α.
In this case, equation (9) becomes

7u6
− 35u4v2 + 21u2v4

− v6 = ±29β.

Dividing both sides by v6, we obtain

7U3
− 35U2 + 21U − 1 = D1 · V2 (9)

where U = u2/v2, V = 29β1/v3, β1 = [β/2], D1 = ±1,±29. In this case, as D1 = ±1, we have to find the
{5}-integral points on the elliptic curves:

7U3
− 35γU2 + 21U − γ = D1 · V2, γ = ±1. (10)

We multiply both sides of (10) by 72 to obtain

X3
− 35γ · X2 + 147X − 49γ = Y2,

where (X,Y) = (7γU, 7V) are {5}-integral points on the above elliptic curves.
Using MAGMA, we find (X,Y) ∈ {(1, 8), (58,−293)} ( hence (U,V) ∈ {(1/7, 8/7), (58/7,−293/7)} for γ = 1).

These do not lead to any solutions of the equation (4), either.
Consider the case D1 = ±29. The unique {5}-integral point (2349,−87464) on the elliptic curve

X3
− 35 · 29X2 + 21 · 7 · 292X − 72

· 293 = Y2

does not lead us to a solution of (4). With MAGMA, we find the following {5}-integral points
(−812, 5887), (−377, 6728), (−5,−776), (91, 4648), (1015, 47096), (−340103561/390625, 420852069512/244140625)
on the elliptic curve

X3 + 35 · 29x2 + 21 · 7 · 292X + 72
· 293 = Y2.

Only the point (−812, 5887) leads to the solution (x, y, a, b) = (278, 5, 0, 2) of our original equation (4), which
is not convenient for us since it has a = 0.
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Case 2:. v = ±1.
We have to find the integral points on

7U3
− 35U2 + 21U − 1 = D1 · V2 (11)

where D1 = ±1, ±5, ±29, ±145.
The cases D1 = ±1, ±29 where treated above.
Consider the case D1 = ±5. Using MAGMA, we find two solutions (21,−56), (574,−11557) on the curve

X3
− 35 · 5 · X2 + 21 · 7 · 52X − 72

· 53 = Y2

and there exists no integral points on the curve

X3
− 35 · 5 · X2 + 21 · 7 · 52X + 72

· 53 = Y2.

These do not lead to any solutions of our original equation (4).
Consider the case D = ±145. Using MAGMA, we only find the solution (25201,−3586024) on the curve

X3
− 35 · 5 · 29X2 + 21 · 7 · 52

· 292X − 72
· 53
· 293 = Y2,

and we find another solution (696, 10933) on the curve

X3
− 35 · 5 · 29X2 + 21 · 7 · 52

· 292X + 72
· 53
· 293 = Y2.

These also do not lead to any solutions of (4).

5.1.2. Case n = 5
Using (8) with n = 5, d = 2, we obtain the relation

v(5u4
− 20u2v2 + 4v4) = 5α · 29β. (12)

As in the case n = 7, we only need to check the values v = ±5α, v = ±1.
In the first case, the Diophantine equation (12) is 5u4

− 20u2v2 + 4v4 = ±29β. Dividing both sides by v4,
we obtain

5U4
− 20U2 + 4 = D1V2, (13)

where U = u/v, V = 29β1/v2, β1 = [β/2] and D1 = ±1, ±29. Using MAGMA, we find three {5}-integral
points (0, 2), (2, 2), (−2, 2) on the curve (13) with D1 = ±1, and no other points in the remaining cases. These
points do not lead to solution of our original equation (1).

In the second case, the Diophantine equation (12) is 5U4
− 20U2 + 4 = ±5α · 29β. we need to find the

integral points on the curves 5U4
− 20U2 + 4 = D1V2, for D1 = ±1, ±5, ±29, ±145. MAGMA finds three

solutions (0, 2), (2, 2), (−2, 2). None of points leads to any solutions of equation (2).

5.2. The Diophantine equation x2 + 5a.41b = yn

Since n ≥ 5, by using Lemma 3, 41 is primitive for Ln. Thus, 41 ≡ ±1 (mod n) and we now see that the
only possibilities are n = 5 and d = 1 or n = 5 and d = 2.

Using (8) with n = 5, d = 2, we obtain

v(5u4
− 20u2v2 + 4v4) = 5α41β. (14)

Therefore we only need to check v = ±5α, v = ±1.
In the first case the Diophantine equation is v(5u4

− 20u2v2 + 4v4) = ±41β. Dividing both sides by v4, we
obtain

5U4
− 20U2 + 4 = D1V2,
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where U = u/v, V = 41β1/v2, β1 = [β/2] and D1 = ±1, ±41. Using MAGMA, we find three {5}-integral
points (0, 2), (2, 2), (2,−2) on (14) with D1 = 1, and none in the reamining cases. These points do not lead to
any solutions of equation (4).

In the second case the Diophantine equation is v(5u4
− 20u2v2 + 4v4) = 5α · 41β. We need to find integral

points on the curves v(5U4
−20U2+4) = D1V2 , for D1 = ±1, ±5, ±41, ±205. MAGMA finds three solutions

(0, 2), (2, 2), (2,−2). These points do not lead either to any solutions of our original equation (4).
Using (8) with n = 5, d = 1, we obtain the relation

v(5u4
− 20u2v2 + 4v4) = 5α41β.

In case v = ±5α, we obtain 5u4
− 10u2v2 + v4 = ±41β. MAGMA then finds the {5}-integral points on

5U4
− 10U2 + 1 = D1V2 for D1 = ±1, ±41,

which are (0, 1) if D1 = 1, (1,−2), (−1,−2) if D1 = −1, and finally (2, 1), (−2, 1) if D1 = 41. The point (2, 1)
gives a new solution (x, y, a, b) = (38, 5, 0, 2) of the equation (4) which is not conventient for us since it has
a = 0.

In case v = ±1, we obtain 5u4
− 10u2v2 + 4v4 = 5α41β MAGMA finds the integral points on

5U4
− 10U2 + 1 = D1Y2 for D1 = ±1, ±5, ±41, 205.

These points are (2, 41), (−2, 41) for D1 = 41. The point (2, 1) gives the solution (x, y) = (38, 5) of (4) again.
This solution is not convenient for us since it has a = 0. This completes the proof of lemma.
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