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Available at: http://www.pmf.ni.ac.rs/filomat

Rough Statistical Cluster Points
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aDepartment of Mathematics, Suleyman Demirel University, 32260, Isparta, Turkey

Abstract. In this paper, we define the concepts of rough statistical cluster point and rough statistical
limit point of a sequence in a finite dimensional normed space. Then we obtain an ordinary statistical
convergence criteria associated with rough statistical cluster point of a sequence. Applying these definitions
to the sequences of functions, we come across a new concept called statistical condensation point. Finally,
we observe the relations between the sets of statistical condensation points, rough statistical cluster points
and rough statistical limit points of a sequence of functions.

1. Introduction and Background

Let x = (xi) be a sequence in a finite dimensional normed space X and r be a nonnegative real number.
Suppose that for every ε > 0 there exists a positive integer iε such that ‖xi − x∗‖ < r + ε for every i ≥ iε. Then
the sequence x = (xi) is said to be r-convergent to x∗, and we write xi

r
→ x∗. The set

LIMrx :=
{
x∗ ∈ X : xi

r
→ x∗

}
is called the r-limit set of the sequence x = (xi). A sequence x = (xi) is said to be r-convergent if LIMrx , ∅. In
this case, r is called the convergence degree of the sequence x = (xi). For r = 0,we get the ordinary convergence.

Phu [16] and Burgin [3] introduced the notion of rough convergence independently with different titles.
Here we will adopt the definitions and notations in [16]. Phu [16] showed that the set LIMrx is bounded,
closed and convex; introduced the notion of rough Cauchy sequence and also investigated the dependence
of LIMrx on the roughness degree r. In [17], the results given in [16] are extended to infinite dimensional
normed spaces. Recently, Aytar [2] has given the relations between the ordinary core of a sequence x = (xi)
of real numbers and the r-limit set of the sequence x. In [2], an ordinary convergence criterion is obtained,
which states that a sequence is convergent if, and only if, its rough core is equal to its rough limit set for the
same roughness degree. In [1], the concept of rough statistical convergence is defined, and by introducing
the set of rough statistical limit points of a sequence, two statistical convergence criteria associated with this
set are obtained. Also it is proved that this set is closed and convex. Moreover, the relations between the set
of all statistical cluster points and the set of all rough statistical limit points of a sequence are investigated.
Listán-Garcı́a and Rambla-Barreno [13] studied on Chebyshev centers by using the rough convergence in
Banach spaces. Recently, the rough statistical convergence theory have been studied by many authors (see
[4], [6], [7], [14] and [15]).
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Now we briefly recall some of the basic concepts and notations of the theories of statistical convergence
and rough statistical convergence, and we refer to [1, 8–10] for more details.

Let K be a subset of the setN of positive integers, and let us denote the set {k ∈ K : k ≤ n} by Kn. Then the
natural density of K is defined by δ(K) := lim

n→∞
|Kn |

n ,where |Kn| denotes the number of elements in Kn. Clearly, a
finite subset has natural density zero and we have δ(Kc) = 1 − δ(K) whenever δ(K) exists, where Kc :=N\K
is the complement of K ⊂N. If K1 ⊆ K2, then δ(K1) ≤ δ(K2). In addition, δ(K) , 0 means that lim sup

n→∞

|Kn |

n > 0.

If a sequence x = (xi) satisfies some property P for all i except on a set of natural density zero, then we
say that the sequence x satisfies the property P for almost all i and we abbreviate this by a.a. i. Let (xik ) be a
subsequence of (xi) and denote K := {ik : k ∈N}. If δ(K) = 0, then (xik ) is called a subsequence of density zero or
a thin subsequence. We say that (xik ) is a nonthin subsequence of (xi) if K does not have density zero.

A sequence x = (xi) in Rn is said to be r-statistically convergent to x∗, denoted by xi
r−st
→ x∗, provided that

the set

{i ∈N : ‖xi − x∗‖ ≥ r + ε}

has natural density zero for every ε > 0; or equivalently, if the condition

st- lim sup ‖xi − x∗‖ ≤ r

is satisfied. In addition, we can write xi
r−st
→ x∗ if, and only if, the inequality

‖xi − x∗‖ < r + ε

holds for every ε > 0 and a.a.i.
Here r is called the statistical convergence degree. If we take r = 0, then we obtain the ordinary statistical

convergence.
In a similar fashion to the idea of classical rough convergence, the idea of rough statistical convergence

of a sequence can be interpreted as follows.
Assume that a sequence y = (yi) is statistically convergent and cannot be measured or calculated exactly,

and one has to do with an approximated (resp., statistically approximated) sequence x = (xi) satisfying∥∥∥xi − yi

∥∥∥ ≤ r for all i (resp., for a.a.i, namely, δ
({

i ∈N :
∥∥∥xi − yi

∥∥∥ > r
})

= 0). Then the sequence x is not
statistically convergent anymore, but since the inclusion{

i ∈N :
∥∥∥yi − y∗

∥∥∥ ≥ ε} ⊇ {
i ∈N :

∥∥∥xi − y∗
∥∥∥ ≥ r + ε

}
(1)

holds and we have δ
({

i ∈N :
∥∥∥yi − y∗

∥∥∥ ≥ ε}) = 0, we get

δ
({

i ∈N :
∥∥∥xi − y∗

∥∥∥ ≥ r + ε
})

= 0,

i.e., the sequence x is r-statistically convergent.
In general, the rough statistical limit of a sequence x = (xi) may not be unique for the roughness degree

r > 0. So we have to consider the so-called r-statistical limit set of the sequence x, which is defined by

st-LIMrx :=
{
x∗ ∈ X : xi

r−st
→ x∗

}
.

The sequence x is said to be r-statistically convergent provided that st-LIMrx , ∅.
The main purpose of this paper is to observe various aspects of the theory of rough statistical convergence

on sequences of functions. To this end, first we define the set of rough statistical cluster points of a sequence
in a normed space. Then we characterize this set by using the r−closed balls of ordinary statistical cluster
points. Later, we explore some properties of the set of rough statistical cluster points of a sequence, and
obtain an ordinary statistical convergence criterion associated with this set. In the next section, we also
introduce the concept of rough statistical limit point of a sequence. When we apply these concepts to
sequences of functions, we come across a new concept, called the statistical condensation point. Finally, we
observe the relations between the set of statistical condensation points, the set of rough statistical cluster
points and the set of rough statistical limit points of a sequence of functions.
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2. Rough Statistical Cluster Points

First, we introduce the concept of rough statistical cluster point of a sequence. Throughout the rest,
x = (xi) will denote a sequence in a finite dimensional normed space X.

Definition 2.1. Let r ≥ 0. The vector µ ∈ X is called the r-statistical cluster point of the sequence x = (xi) provided
that

δ({i ∈N :
∥∥∥xi − µ

∥∥∥ < r + ε}) , 0

for every ε > 0. We denote the set of all r-statistical cluster points the sequence x by Γr
x.

Note that if we take r = 0, then we obtain the notion of ordinary statistical cluster point defined by Fridy
[9]. It is easy to see that Γr1

x ⊆ Γr2
x for r1 ≤ r2.

Fridy [9] proved that the set Γx = Γ0
x is closed. We will show that the set Γr

x is closed for each r > 0.

Theorem 2.2. For any sequence x = (xi), the set Γr
x is closed for every r ≥ 0.

Proof. Let Γr
x , ∅ and consider a sequence y = (yi) ⊆ Γr

x such that limi→∞ yi = y∗. Let us show that

δ({i ∈N :
∥∥∥xi − y∗

∥∥∥ < r + ε}) , 0

for every ε > 0. Fix ε > 0. Since limi→∞ yi = y∗, there exists an i0 = i0(ε) ∈ N such that
∥∥∥yi − y∗

∥∥∥ < ε
2 for all

i > i0. Fix j0 such that j0 > i0. Then we have
∥∥∥y j0 − y∗

∥∥∥ < ε
2 .

Let j be any point of the set {i ∈N :
∥∥∥xi − y j0

∥∥∥ < r + ε
2 }. Since

∥∥∥x j − y j0

∥∥∥ < r + ε
2 , we get∥∥∥x j − y∗

∥∥∥ ≤

∥∥∥x j − y j0

∥∥∥ +
∥∥∥y j0 − y∗

∥∥∥
< r +

ε
2

+
ε
2

= r + ε,

which shows that j ∈ {i ∈N :
∥∥∥xi − y∗

∥∥∥ < r + ε}. Hence we have

{i ∈N :
∥∥∥xi − y j0

∥∥∥ < r +
ε
2
} ⊆ {i ∈N :

∥∥∥xi − y∗
∥∥∥ < r + ε}. (2)

Since the natural density of the set on the left-hand side of the inclusion relation (2) is not equal to zero, the
natural density of the set on the right-hand side is different from zero. Therefore we have y∗ ∈ Γr

x.

We note that if µ ∈ Γr
x then δ

({
i :

∥∥∥xi − µ
∥∥∥ < r + ε

})
, 0. By the statistical analogue of Bolzano-Weierstrass

Theorem (see [18, Theorem 2]), the subsequence (xi)i∈K has a statistical cluster point, where K =
{
i :

∥∥∥xi − µ
∥∥∥ ≤ r

}
.

If we denote this statistical cluster point by ν then we have
∥∥∥µ − ν∥∥∥ ≤ r. Therefore we have that if µ ∈ Γr

x

then there exists a vector ν ∈ Γx such that
∥∥∥µ − ν∥∥∥ ≤ r.

Theorem 2.3. Let r > 0. For any sequence x = (xi), we have x∗ ∈ Γr
x if and only if there exists a sequence y = (yi)

such that x∗ ∈ Γy and
∥∥∥xi − yi

∥∥∥ ≤ r for a.a.i.

Proof. Necessity. Fix r and ε.Assume that x∗ ∈ Γr
x.Hence we have δ (K) , 0,where K := {i ∈N : ‖xi − x∗‖ < r + ε} .

Define

yi :=


x∗ , ‖xi − x∗‖ ≤ r and i ∈ K
xi + r x∗−xi

‖xi−x∗‖
, ‖xi − x∗‖ > r and i ∈ K

zi , i < K
, (3)
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where the sequence z = (zi) is arbitrary. It is clear that∥∥∥yi − x∗
∥∥∥ =

{
0 , if ‖xi − x∗‖ ≤ r
‖xi − x∗‖ − r , otherwise (4)

and ∥∥∥xi − yi

∥∥∥ ≤ r

for every i ∈ K. Now let us show that the inclusion

K ⊆
{
i ∈N :

∥∥∥yi − x∗
∥∥∥ < ε} (5)

holds. If i0 ∈ K, then we have
∥∥∥xi0 − x∗

∥∥∥ < r + ε. Hence the following two cases are possible:

(i) If
∥∥∥xi0 − x∗

∥∥∥ ≤ r, then from (4), we get
∥∥∥yi0 − x∗

∥∥∥ = 0, i.e., i0 ∈
{
i ∈N :

∥∥∥yi − x∗
∥∥∥ < ε} .

(ii) If
∥∥∥xi0 − x∗

∥∥∥ > r, then from (4), we get
∥∥∥yi0 − x∗

∥∥∥ =
∥∥∥xi0 − x∗

∥∥∥−r < r+ε−r = ε, i.e., i0 ∈
{
i ∈N :

∥∥∥yi − x∗
∥∥∥ < ε} .

Since δ (K) , 0, by the inclusion relation (5) , we have
δ
({

i ∈N :
∥∥∥yi − x∗

∥∥∥ < ε}) , 0.

Sufficiency. Suppose that x∗ ∈ Γy and fix ε > 0. Then we have δ
({

i ∈N :
∥∥∥yi − x∗

∥∥∥ < ε}) , 0. Take

j ∈
{
i ∈N :

∥∥∥yi − x∗
∥∥∥ < ε}. We can write∥∥∥x j − x∗

∥∥∥ ≤

∥∥∥x j − y j

∥∥∥ +
∥∥∥y j − x∗

∥∥∥
< r + ε.

Therefore we get j ∈ {i ∈N : ‖xi − x∗‖ < r + ε} , which shows that the inclusion{
i ∈N :

∥∥∥yi − x∗
∥∥∥ < ε} ⊆ {i ∈N : ‖xi − x∗‖ < r + ε}

holds. From this inclusion, we have δ ({i ∈N : ‖xi − x∗‖ < r + ε}) , 0.

The following theorem presents a simple way to find the set Γr
x.

Theorem 2.4.

Γr
x =

⋃
c∈Γx

Br(c), (6)

where Br(c) :=
{
y ∈ X :

∥∥∥y − c
∥∥∥ ≤ r

}
.

Proof. Let µ ∈
⋃

c∈Γx

Br(c). Then there exists a vector c ∈ Γx such that µ ∈ Br(c), i.e.,
∥∥∥c − µ

∥∥∥ ≤ r. Fix ε > 0. Since

c ∈ Γx, there exists a set K = K(ε) := {i ∈N : ‖xi − c‖ < ε}with δ (K) , 0. We have∥∥∥xi − µ
∥∥∥ ≤ ‖xi − c‖ +

∥∥∥c − µ
∥∥∥

< ε + r

for every i ∈ K. Therefore we get δ
({

i ∈N :
∥∥∥xi − µ

∥∥∥ < ε + r
})
, 0, which completes the first part of the

proof.
For the converse inclusion, take µ ∈ Γr

x. Then we have

δ
({

i ∈N :
∥∥∥xi − µ

∥∥∥ < ε + r
})
, 0 (7)
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for every ε > 0. Let us show that µ ∈
⋃

c∈Γx

Br(c). Suppose that this is not satisfied. Then we get µ < Br(c),

i.e.,
∥∥∥µ − c

∥∥∥ > r for every c ∈ Γx. Since the set Γx is closed, there exists a vector c̃ ∈ Γx such that
∥∥∥µ − c̃

∥∥∥ =

min
{∥∥∥µ − c

∥∥∥ : c ∈ Γx

}
. We can write t :=

∥∥∥µ − c̃
∥∥∥ > r, because

∥∥∥µ − c
∥∥∥ > r for all c ∈ Γx. Define ε̃ := t−r

3 . Then
we get

X\Bε̃(Γx) ⊇
{
y ∈ X :

∥∥∥µ − y
∥∥∥ < ε̃ + r

}
, (8)

where Bε̃(Γx) =
{
y ∈ X : min

{∥∥∥y − c
∥∥∥ : c ∈ Γx

}
< ε̃

}
. By definition of Γx we can say that the set {i : xi < Bε̃(Γx)}

has density zero. Then by the inclusion (8) , we have

{i : xi < Bε̃(Γx)} ⊇
{
i :

∥∥∥xi − µ
∥∥∥ < ε̃ + r

}
. (9)

Therefore, from the inclusion (9) , we have that the set
{
i :

∥∥∥xi − µ
∥∥∥ < ε̃ + r

}
has natural density zero, which

contradicts to (7).

Now we present an ordinary statistical convergence criterion associated with the set Γr
x.

Theorem 2.5. The sequence x = (xi) is statistically convergent if and only if Γr
x =st-LIMrx.

Proof. Necessity. Suppose that the sequence x converges statistically to x∗. Then we have Γx = {x∗} . By
Theorem 2.4, we can write Γr

x = Br(x∗). Therefore, from [1, Theorem 2.10], we get Γr
x = Br(x∗) =st-LIMrx.

Sufficiency. By Theorem 2.4 and [1, Theorem 2.12 (b)], we have⋃
c∈Γx

Br(c) =
⋂
c∈Γx

Br(c). (10)

The equality (10) is valid if, and only if, either the set Γx is empty or it is a singleton. Since st-LIMrx =⋂
c∈Γx

Br(c) = Br(x∗) (see [1, Theorem 2.10]), we have st − lim xi = x∗.

We note that in Theorem 2.5, the sequence x = (xi) need not be statistically convergent in order that the
inclusion Γr

x ⊆st-LIMrx holds, but this sequence must be statistically convergent in order that the converse
inclusion holds.

3. Rough Statistical Limit Points

Definition 3.1. Let r ≥ 0. The vector ν ∈ X is called the r-statistical limit point of the sequence x = (xi), provided
that there is a nonthin subsequence (xik ) of (xi) such that for every ε > 0 there exists a number k0 = k0(ε) ∈N with∥∥∥xik − ν

∥∥∥ < r + ε

for all k ≥ k0. We denote the set of all r-statistical limit points the sequence x by Λr
x.

Note that if we take r = 0, then we obtain the notion of ordinary statistical limit point defined by Fridy
[9]. Now we present a result which characterizes the set Λr

x. The proof is immediate by definitions.

Proposition 3.2. We have ν ∈ Λr
x if and only if there exists a nonthin subsequence (xik ) of (xi) such that lim sup

k→∞

∥∥∥xik − ν
∥∥∥ ≤

r.
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Example 3.3. Let us consider the uniformly distributed sequence (see [12]) x = (xi) defined by

x =
(
0, 0, 1, 0,

1
2
, 1, 0,

1
3
,

2
3
, 1, 0,

1
4
,

2
4
,

3
4
, 1, ...

)
.

We know that Lx = [0, 1], Γx = [0, 1] and Λx = Λ0
x = ∅ (see [9, Example 4]), where Lx denotes the set of all ordinary

limit points of the sequence x. The density of the indices of (xi) on any subinterval of length d is d itself.
Let r = 1. By Theorem 2.4, we have Γ1

x =
⋃

c∈Γx

B1(c) = [−1, 2].

Now we show that 1 ∈ Λ1
x and 2 < Λ1

x.

Let (xik ) be a subsequence of (xi) such that xik ∈
[

1
2 , 1

]
for every k ∈ N. The density of the indices of this

subsequence is 1
2 , i.e., (xik ) is a nonthin subsequence. Take k0 = 1. Then we have

∣∣∣xik − 1
∣∣∣ < 1 + ε for all k ≥ k0. Hence

we get 1 ∈ Λ1
x. Using the same subsequence we obtain a ∈ Λ1

x for every a ∈ (1, 2). Similarly, we get a ∈ Λ1
x for every

a ∈ (−1, 2).
Let us show that 2 < Λ1

x. If (xik ) is an arbitrary subsequence of (xi) that 1−converges to the number 2, we show
that this subsequence is thin. Let ε > 0. We have{

k ∈N : xik
}

=
{
k ∈N :

∣∣∣xik − 2
∣∣∣ < 1 + ε

}
∪

{
k ∈N :

∣∣∣xik − 2
∣∣∣ ≥ 1 + ε

}
δ
({

k ∈N : xik
})

= δ
({

k ∈N :
∣∣∣xik − 2

∣∣∣ < 1 + ε
}
∪

{
k ∈N :

∣∣∣xik − 2
∣∣∣ ≥ 1 + ε

})
≤ δ

({
k ∈N :

∣∣∣xik − 2
∣∣∣ < 1 + ε

})
+ δ

({
k ∈N :

∣∣∣xik − 2
∣∣∣ ≥ 1 + ε

})
.

Since the subsequence (xik ) is 1−convergent to 2, we get δ
({

k ∈N :
∣∣∣xik − 2

∣∣∣ ≥ 1 + ε
})

= 0. Since the density
of xi ’s in any interval of length l is l itself, the density of xik

’s in any interval is less than l. Hence we have

δ
({

k ∈N :
∣∣∣xik − 2

∣∣∣ < 1 + ε
})
≤ ε.Therefore we get δ

({
k ∈N : xik

})
≤ ε.Since ε is arbitrary, we get δ

({
k ∈N : xik

})
=

0 which shows that the subsequence (xik ) is thin. Hence the proof is complete since the subsequence (xik ) is arbitrary.
Similar calculations can be made for the number −1.

As a direct consequence of this example we have the following:

1. Theorem 2.4 is not valid if we replace the set Γr
x with Λr

x.
2. We know that the set Λx may not be closed (see [9, Proposition 1]). Also the set Λr

x may not be closed
for r > 0.

3. Let x = (xi) be a sequence of real numbers. We know that Λx may be empty although the sequence x is
bounded (see Example 3.3). Here we claim that if the sequence x has a bounded nonthin subsequence,
then there exists an r ≥ 0 such that the set Λr

x is nonempty. The proof of this claim is straightforward
if we replace the role of the sequence in [16, Proposition 2.2] with its subsequence.

Theorem 3.4. For a sequence x = (xi), we have Λr
x ⊆ Γr

x.

The proof of the theorem above is similar to that of [9, Proposition 1]. As can be seen in Example 3.3,
the inclusion in Theorem 3.4 may be strict.

4. Applications to Sequences of Functions

Throughout this section, A will denote a subset ofR and f = ( fi) will denote a sequence of real functions
defined on A.

Definition 4.1. Let r ≥ 0. A function µ is called an r-statistical cluster point of the sequence f = ( fi) provided that

δ({i ∈N :
∣∣∣ fi(x) − µ(x)

∣∣∣ < r + ε}) , 0

for each x ∈ A and for every ε > 0.Note that the set {i ∈N :
∣∣∣ fi(x) − µ(x)

∣∣∣ < r + ε} depends on x and ε. We denote the
set of all statistical cluster points and all r-statistical cluster points of the sequence f = ( fi) by Γ f and Γr

f , respectively.
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Definition 4.2. Let r ≥ 0. A function ν is called an r-statistical limit point of the sequence f = ( fi) provided that
there is a nonthin subsequence of ( fik ) of ( fi) such that for every ε > 0 and for each x ∈ A there exists a number
k0 = k0(ε, x) ∈N with∣∣∣ fik (x) − ν(x)

∣∣∣ < r + ε

for all k ≥ k0.We denote the set of all statistical limit points and all r-statistical limit points of the sequence f = ( fi) by
Λ f and Λr

f , respectively.

We note that the definitions given above are pointwise convergence versions of Definitions 2.1 and 3.1.
Now we define a new concept of statistical limit point, which is called the statistical condensation point.
In the next subsection, we obtain the relations between the definitions given in this section. Classical
(non-statistical) versions of Definitions 4.3 and 4.4 are due to Hančl et al. [11].

Definition 4.3. Let r > 0. A function ν is called an r-statistical condensation point of the sequence f = ( fi) if for
every x ∈ A there is a nonthin index set I(x) such that

Br (x, ν(x)) ∩ G
(

fi
)
, ∅

for every i ∈ I(x), where the set Br (x, ν(x)) is an open disk with radius r and center (x, ν(x)) , and G
(

fi
)

is the set of
graph fi for every i ∈N. We denote the set of all r-statistical condensation points of the sequence f = ( fi) by Ψr

f .

Definition 4.4. A functionµ is said to be a statistical condensation point of the sequence f = ( fi) if it is an r-statistical
condensation point of f for every r > 0.We denote the set of all statistical condensation points of the sequence f = ( fi)
by Φ f .

4.1. Relations between the sets Γr
f , Λ

r
f , Ψ

r
f , Γ f , Λ f and Φ f

First we recall that a sequence f = ( fi) converges statistically pointwise to a function µ provided that

δ
({

i ∈N :
∣∣∣ fi(x) − µ(x)

∣∣∣ ≥ ε}) = 0

for every ε > 0 and every x ∈ A. In this case we write st − lim fi = µ on A [5]. The next example shows that
there are no inclusion relations between the sets Ψr

f and Γr
f , and between the sets Ψr

f and Λr
f for a sequence

f .

Example 4.5. Define

fi(x) :=


x2i , x ∈ [−1, 1]
0 , x ∈ (−∞,−1) ∪ (1,∞) , i is a nonsquare

x2i + 1 , i is a square
.

Then we have st − lim fi =

{
1 , x ∈ {−1, 1}
0 , otherwise , i.e., this function is the statistical pointwise limit of the sequence

f = ( fi).
Take r = 1

2 . Then we have

Λ
1
2
f = Γ

1
2
f =

 µ : µ(k, t(x)) =

{
k , x = 1,−1
t(x) , otherwise , where k ∈

[
1
2 ,

3
2

]
and t is any function from R to

[
−

1
2 ,

1
2

]


and

Ψ
1
2
f =

 µ : µ(k, t(x)) =

{
k , x = 1,−1
t(x) , otherwise , where k ∈

(
−

1
2 ,

3
2

)
and t is any function from R to

(
−

1
2 ,

1
2

]
 .
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Let µ(x) :=
{

1
2 , x = 1,−1
−

1
2 , otherwise . Then we get µ ∈ Λ

1
2
f = Γ

1
2
f but µ < Ψ

1
2
f .

Let v(x) :=
{

0 , x = 1,−1
1
2 , otherwise . Then we have ν ∈ Ψ

1
2
f but ν < Λ

1
2
f = Γ

1
2
f . Consequently, neither the inclusion

Ψr
f ⊆ Γr

f nor the inclusion Γr
f ⊆ Ψr

f holds.
On the other hand, we obtain

Λ0
f = Γ0

f =

{
h(x) =

{
1 , x = 1,−1
0 , otherwise

}
and

Φ f =

{
µ : µ(k, x) =

{
k , x = 1,−1
0 , otherwise , where k = 1 or k = 0

}
.

Hence we have Γ f ⊂ Φ f and Λ f ⊂ Φ f for this sequence.

Theorem 4.6. We have Γ f ⊆ Φ f for the sequence f = ( fi).

Proof. Let µ ∈ Γ f . Fix x ∈ A and ε > 0. Then we have δ (K) , 0 where K = K(ε, x) := {i ∈N :
∣∣∣ fi(x) − µ(x)

∣∣∣ < ε}.
Let r := ε and take (x, fi(x)) ∈ G( fi). Since

∣∣∣ fi(x) − µ(x)
∣∣∣ < r for i ∈ K, we have (x, fi(x)) ∈ Br(x, µ(x)) for every

i ∈ K, which shows that

Br(x, µ(x)) ∩ G( fi) , ∅, (11)

that is, µ ∈ Φ f .

Since we have Λ f ⊆ Γ f , we get Λ f ⊆ Φ f by Theorem 4.6.
The origin of the rest of this study is due to Hančl et al. [11]. In the paper [11], the following results

for sequences of fuzzy numbers are obtained. Here we will show that these results are also valid for any
sequence of functions.

It is easy to see that Φ f contains all functions being statistical pointwise limits of all subsequences of
f = ( fi). The following example shows that the opposite of this claim is not true in general.

Example 4.7. Let us define

fi(x) :=


2 , x ∈ (3, 4)
0 , otherwise , i is a square

11(x) , i is a nonsquare
,

where 11(x) :=
{

2 , x ∈ (0, 2)
0 , otherwise . Then we have Φ f =

{
11, 12, 13, 14

}
, where 12(x) :=

{
2 , x ∈ [0, 2)
0 , otherwise , 13(x) :={

2 , x ∈ (0, 2]
0 , otherwise and 14(x) :=

{
2 , x ∈ [0, 2]
0 , otherwise . Note that the sequence f is statistically pointwise convergent

to the functions 11, 12, 13 and 14, if we omit the set of discontinuity points.
As we noted above, none of the elements 12, 13, 14 in Φ f is a statistical pointwise limit of a subsequence of f . In

fact, they are not the elements of the sets Γ f and Λ f . It is clear that Γ f = Λ f =
{
11

}
.

By making small changes in the example above, we may observe that even a constant sequence of
functions may have more than one statistical condensation point.

Example 4.8. Define the sequence fi := 11 for all i ∈N. Then we have Φ f =
{
11, 12, 13, 14

}
.
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Although the functions 11, 12, 13 and 14 defined above are different, if we omit the points of discontinuity,
they are identical. Hence we reach the following equivalence relation. The origin of this definition can be
found in [11, Definition 3.1].

Definition 4.9. For two functions µ and ν, define µ ∼ ν if they have the same sets of continuity points and

lim
x→x+

0

µ(x) = lim
x→x+

0

ν(x) and lim
x→x−0

µ(x) = lim
x→x−0

ν(x) (12)

hold for every x0 ∈ A.

It is easy to see that the relation ∼ is an equivalence relation. Note that, if the relation ∼ is defined only
by the condition (12), then the functions

h1(x) :=
{

2 , x = 1
0 , otherwise and h2(x) :=

{
3 , x = 5
0 , otherwise

become equivalent with respect to this relation, and therefore the equivalence classes become very large.
For instance, the functions having only one point of discontinuity become equivalent.

Theorem 4.10. µ ∼ ν if and only if they have the same sets of continuity points C, and µ and ν agree on some dense
set D ⊂ C, i.e., there exists a dense set D ⊂ C such that µ|D = ν|D.

The proof of this theorem is the same as in [11, Lemma 3.1].
Now we give an example which shows that there is a sequence f = ( fi) which is statistically pointwise

convergent to µ at each continuity point of µ such that µ < Φ f .

Example 4.11. Define fi(x) := 0, and µ(x) :=
{

1 , if x = 0
0 , otherwise . Then the sequence f is statistically pointwise

convergent to µ except at x = 0.On the other hand, take r = 1
2 . Then we have Br(0, µ(0))∩G( fi) = ∅ for every i ∈N.

Since δ
({

i ∈N : Br(0, µ(0)) ∩ G( fi) = ∅
})

= 1, we get µ < Ψ
1
2
f , i.e., µ < Φ f .

Similarly, the fact µ ∈ Φ f does not guarantee that the sequence f = ( fi) is statistically pointwise
convergent to µ at each continuity point of µ.

Example 4.12. Define

fi(x) :=


µ (x) , i is an odd number

i , x ∈ [1, 2]
0 , otherwise

}
, otherwise ,

where µ (x) :=
{

1 , x ∈ [1, 2]
0 , otherwise . Since δ

({
i ∈N : Br(x, µ(x)) ∩ G( fi) , ∅

})
, 0 for every x ∈ R and every r > 0,

we have µ ∈ Ψr
f for every r > 0, i.e., we get µ ∈ Φ f . But there are so many continuity points of µ such that the

sequence f is not statistically pointwise convergent to µ at those points. For example, the function µ is continuous at
the point 3

2 , but we have

δ
({

i ∈N :
∣∣∣∣∣ fi (3

2

)
− µ

(3
2

)∣∣∣∣∣ ≥ ε}) = δ ({2i : i ∈N}) , 0,

for every ε ∈ (0, 1), that is, the sequence f is not statistically convergent to µ at the point 3
2 .
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