Filomat 31:16 (2017), 5369–5377 https://doi.org/10.2298/FIL1716369A

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The Topology of θ_{ω} -Open Sets

Samer Al Ghour^a, Bayan Irshedat^a

^aDepartment of Mathematics and Statistics, Jordan University of Science and Technology, Irbid 22110, Jordan

Abstract. We define the θ_{ω} -closure operator as a new topological operator. We show that θ_{ω} -closure of a subset of a topological space is strictly between its usual closure and its θ -closure. Moreover, we give several sufficient conditions for the equivalence between θ_{ω} -closure and usual closure operators, and between θ_{ω} -closure and θ -closure operators. Also, we use the θ_{ω} -closure operator to introduce θ_{ω} -open sets as a new class of sets and we prove that this class of sets lies strictly between the class of open sets and the class of θ -open sets. We investigate θ_{ω} -open sets, in particular, we obtain a product theorem and several mapping theorems. Moreover, we introduce ω - T_2 as a new separation axiom by utilizing ω -open sets, we prove that the class of ω - T_2 is strictly between the class of T_1 topological spaces. We study relationship between ω - T_2 and ω -regularity. As main results of this paper, we give a characterization of ω - T_2 via θ_{ω} -closure and we give characterizations of ω -regularity via θ_{ω} -closure and via θ_{ω} -open sets.

1. Introduction

Let (X, τ) be a topological space and let $A \subseteq X$. Denote the closure of A by \overline{A} . A point $x \in X$ is in θ -closure of A [27] ($x \in Cl_{\theta}(A)$) if $\overline{U} \cap A \neq \emptyset$ for any $U \in \tau$ and with $x \in U$. A set A is called θ -closed [27] if $Cl_{\theta}(A) = A$. The complement of a θ -closed set is called a θ -open set. Denote the family of all θ -open sets in (X, τ) by τ_{θ} . It is known that τ_{θ} forms a topology on X coarser than the topology τ and $\tau_{\theta} = \tau$ if and only if (X, τ) is regular. Authors in [6, 7, 17, 18, 21–25, 28] continued the study of θ -closure operator, θ -open sets, and their related topological concepts. Recently, authors in [8–10, 19] have studied several generalizations of θ -open sets. A set A is ω -open set in (X, τ) [20] if for each $x \in A$, there is $U \in \tau$ such that $x \in U$ and U - A is countable, or equivalently, A is ω -open set in (X, τ) [1] if for each $x \in A$, there is $U \in \tau$ and a countable set $C \subseteq X$ such that $x \in U - C \subseteq A$. Denote the family of all ω -open sets in (X, τ) by τ_{ω} . It is known that τ_{ω} forms a topology on X finer than τ . ω -open sets played a vital role in general topology research see, [1, 4, 5, 11-16, 29]. Al Ghour in [1], used ω -open sets to define ω -regularity as a generalization of regularity as follows: A topological space (X, τ) is ω -regular if for each closed set F in (X, τ) and $x \in X - F$, there exist $U \in \tau$ and $V \in \tau_{\omega}$ such that $x \in U$ and $F \subseteq V$ with $U \cap V = \emptyset$. The closure of A in the topological space (X, τ_{ω}) is called the ω -closure of A in (X, τ) and is denoted by \overline{A}^{ω} . In this work, we use the ω -closure operator to define the θ_{ω} -closure operator in a similar way to that used in the definition of the θ -closure operator as follows: A point $x \in X$ is in θ_{ω} -closure of A ($x \in Cl_{\theta_{\omega}}(A)$) if $\overline{U}^{\omega} \cap A \neq \emptyset$ for any $U \in \tau$ with

²⁰¹⁰ Mathematics Subject Classification. Primary 54A10; Secondary 54D10

Keywords. Generalized open sets, θ -closure, θ -open, separation axioms

Received: 02 November 2016; Revised: 05 March 2017; Accepted: 11 March 2017

Communicated by Ljubiša D.R. Kočinac

Email addresses: algore@just.edu.jo (Samer Al Ghour), ersheidatbayan@gmail.com (Bayan Irshedat)

 $x \in U$. A set *A* is called θ_{ω} -closed if $Cl_{\theta_{\omega}}(A) = A$. The complement of a θ_{ω} -closed set is called a θ_{ω} -open set. Denote the family of all θ_{ω} -open sets in (X, τ) by $\tau_{\theta_{\omega}}$. We will show that $\tau_{\theta_{\omega}}$ forms a topology on *X* which is strictly between τ_{θ} and τ . Moreover, $\tau_{\theta_{\omega}} = \tau$ if and only if (X, τ) is ω -regular. In section 2, we define the θ_{ω} -closure operator as a new topological operator. We show that the θ_{ω} -closure of a subset of a topological space is strictly between its usual closure and its θ -closure. Moreover, we give several sufficient conditions for the equivalence between θ_{ω} -closure and usual closure operators, and between θ_{ω} -closure and θ -closure operators. Also, we use the θ_{ω} -closure operator to introduce θ_{ω} -open sets as a new class of sets and we prove that this class of sets lies strictly between the class of open sets and the class of θ -open sets. We investigate θ_{ω} -open sets, in particular, we obtain a product theorem and several mapping theorems.

In section 3, we introduce ω - T_2 as a new separation axiom by utilizing ω -open sets, we prove that the class of ω - T_2 is strictly between the class of T_2 topological spaces and the class of T_1 topological spaces. We study relationships between ω - T_2 and ω -regularity. As the main results of this chapter, we give a chaterization of ω - T_2 via θ_{ω} -closure and we give characterizations of ω -regularity via θ_{ω} -closure and via θ_{ω} -open sets.

In this paper, \mathbb{R} , \mathbb{Q} , \mathbb{Q}^c and \mathbb{N} denote, respectively the set of real numbers, the set of rational numbers, the set of irrational numbers and the set of natural numbers.

2. θ_{ω} -Closure Operator and the Topology of θ_{ω} -Open Sets

Let us start by the following definition:

Definition 2.1. ([27]) Let (X, τ) be a topological space and let $A \subseteq X$.

a. A point *x* in *X* is in the θ -closure of *A* ($x \in Cl_{\theta}(A)$) if $\overline{U} \cap A \neq \emptyset$ for any $U \in \tau$ and $x \in U$.

- b. *A* is θ -closed if $Cl_{\theta}(A) = A$.
- c. *A* is θ -open if the complement of *A* is θ -closed.

d. The family of all θ -open sets in (*X*, τ) is denoted by τ_{θ} .

Theorem 2.2. ([27]) Let (X, τ) be a topological space. Then

- *a*. τ_{θ} *forms a topology on X.*
- b. $\tau_{\theta} \subseteq \tau$ and $\tau_{\theta} \neq \tau$ in general.

Definition 2.3. ([20]) Let (X, τ) be a topological space and let $A \subseteq X$.

- a. A point *x* in *X* is a condensation point of *A* if for each $U \in \tau$ with $x \in U$, the set $U \cap A$ is uncountable.
- b. A set *A* is ω -closed if it contains all its condensation points.
- c. A set A is ω -open if the complement of A is ω -closed.

The family of all ω -open sets in a topological space (X, τ) is denoted by τ_{ω} . For a subset A of a topological space (X, τ) , it is known that $A \in \tau_{\omega}$ if and only if for each $x \in A$, there is $U \in \tau$ such that $x \in U$ and U - A is countable.

Theorem 2.4. ([2]) Let (X, τ) be a topological space. Then *a*. τ_{ω} is a topology on *X*.

b. $\tau \subseteq \tau_{\omega}$ and $\tau_{\omega} \neq \tau$ in general.

Notation 2.5. ([1]) Let (X, τ) be a topological space and let $A \subseteq X$. The closure of A in (X, τ_{ω}) will be denoted by \overline{A}^{ω} .

Theorem 2.6. ([1]) Let (X, τ) be a topological space and let $A \subseteq X$. Then $\overline{A}^{\omega} \subseteq \overline{A}$ and $\overline{A}^{\omega} \neq \overline{A}$ in general.

The following is the main definition of this work:

Definition 2.7. Let (X, τ) be a topological space and let $A \subseteq X$.

a. A point $x \in X$ is in the θ_{ω} -closure of A ($x \in Cl_{\theta_{\omega}}(A)$) if $\overline{U}^{\omega} \cap A \neq \emptyset$ for any $U \in \tau$ with $x \in U$.

b. A set *A* is called θ_{ω} -closed if $Cl_{\theta_{\omega}}(A) = A$.

c. A set *A* is called θ_{ω} -open if its complement is θ_{ω} -closed.

d. The family of all θ_{ω} -open sets in (X, τ) will be denoted by $\tau_{\theta_{\omega}}$.

Theorem 2.8. *Let* (X, τ) *be a topological space and let* $A \subseteq X$ *. Then*

a. $\overline{A} \subseteq Cl_{\theta_{\alpha}}(A) \subseteq Cl_{\theta}(A)$.

b. If A is θ -closed, then A is θ_{ω} -closed.

c. If A is θ_{ω} -closed, then A is closed.

Proof. (a) To see that $\overline{A} \subseteq Cl_{\theta_{\omega}}(A)$, let $x \in \overline{A}$ and let $U \in \tau$ with $x \in U$. Since $x \in \overline{A}$, $U \cap A \neq \emptyset$. Since $U \subseteq \overline{U}^{\omega}$, we have $\overline{U}^{\omega} \cap A \neq \emptyset$. Therefore, $x \in Cl_{\theta_{\omega}}(A)$. To see that $Cl_{\theta_{\omega}}(A) \subseteq Cl_{\theta}(A)$, let $x \in Cl_{\theta_{\omega}}(A)$ and let $U \in \tau$ with $x \in U$. Since $x \in Cl_{\theta_{\omega}}(A)$, $\overline{U}^{\omega} \cap A \neq \emptyset$. Since $\overline{U}^{\omega} \subseteq \overline{U}$, it follows that $\overline{U} \cap A \neq \emptyset$. Therefore, $x \in Cl_{\theta}(A)$.

(b) Suppose that A is θ -closed. Then $Cl_{\theta}(A) = A$. Thus by (a), $Cl_{\theta_{\omega}}(A) = A$ and hence A is θ_{ω} -closed.

(c) Suppose that *A* is θ_{ω} -closed. Then $Cl_{\theta_{\omega}}(A) = A$. Thus by (a), $\overline{A} = A$ and hence *A* is closed. \Box

Definition 2.9. Let (X, τ) be a topological space.

a. ([26]) (X, τ) is called locally countable if for each $x \in X$, there is $U \in \tau$ such that $x \in U$ and U is countable.

b. ([2]) (X, τ) is called anti-locally countable if each $U \in \tau - \{\emptyset\}$ is uncountable.

Lemma 2.10. ([1]) *a*. If (X, τ) is an anti-locally countable topological space, then for all $A \in \tau_{\omega}, \overline{A}^{\omega} = \overline{A}$. *b*. If (X, τ) is locally countable, then τ_{ω} is the discrete topology.

Recall that a topological space (X, τ) is called locally indiscrete if every open set in (X, τ) is closed.

Definition 2.11. A topological space (X, τ) is said to be ω -locally indiscrete if every open set in (X, τ) is ω -closed.

Theorem 2.12. *a. Every locally indiscrete topological space is ω-locally indiscrete. b. Every locally countable topological space is ω-locally indiscrete.*

Proof. (a) Follows from the fact that every closed set in a topological space is ω -closed.

(b) Let (X, τ) be locally countable. Then by Lemma 2.10 (b), τ_{ω} is the discrete topology. Thus, every open set in (X, τ) is ω -closed and hence (X, τ) is ω -locally indiscrete. \Box

The following example will show that the converse of each of the two implications in Theorem 2.12 is not true in general:

Example 2.13. Consider (\mathbb{R}, τ) where $\tau = \{\emptyset, \mathbb{R}, \mathbb{N}\}$. Then (\mathbb{R}, τ) is ω -locally indiscrete. On the other hand, since \mathbb{N} is open but not closed, then (\mathbb{R}, τ) is not locally indiscrete. Also, clearly that (\mathbb{R}, τ) is not locally countable.

Theorem 2.14. Let (X, τ) be an ω -locally indiscrete topological space and let $A \subseteq X$. Then

a. $\overline{A} = Cl_{\theta_{-}}(A)$.

b. If A is closed in (X, τ) , then A is θ_{ω} -closed in (X, τ) .

Proof. (a) By Theorem 2.8 (a), $\overline{A} \subseteq Cl_{\theta_{\omega}}(A)$. To see that $Cl_{\theta_{\omega}}(A) \subseteq \overline{A}$, let $x \in Cl_{\theta_{\omega}}(A)$ and $U \in \tau$ such that $x \in U$. Then $\overline{U}^{\omega} \cap A \neq \emptyset$. Since (X, τ) is ω -locally indiscrete, it follows that $\overline{U}^{\omega} = U$ and hence $U \cap A \neq \emptyset$. It follows that $x \in \overline{A}$.

(b) Suppose that *A* is closed in (X, τ) , then $A = \overline{A}$. Thus by (a), $A = Cl_{\theta_{\omega}}(A)$ and hence *A* is θ_{ω} -closed in (X, τ) . \Box

Corollary 2.15. *Let* (X, τ) *be locally indiscrete and let* $A \subseteq X$ *. Then:*

a. $A = Cl_{\theta_{\omega}}(A)$.

b. If A is closed in (X, τ) , then A is θ_{ω} -closed in (X, τ) .

Proof. Theorems 2.12 (a) and 2.14. \Box

Corollary 2.16. *Let* (X, τ) *be locally countable and let* $A \subseteq X$ *. Then*

a. $A = Cl_{\theta_{\omega}}(A)$.

b. If A is closed in (X, τ) , then A is θ_{ω} -closed in (X, τ) .

Proof. Theorems 2.12 (b) and 2.14. \Box

Theorem 2.17. Let (X, τ) be an anti-locally countable topological space and let $A \subseteq X$. Then

a. $Cl_{\theta}(A) = Cl_{\theta_{\omega}}(A).$

b. If A is θ_{ω} -closed in (X, τ) , then A is θ -closed in (X, τ) .

Proof. (a) By Theorem 2.8 (a), $Cl_{\theta_{\omega}}(A) \subseteq Cl_{\theta}(A)$. To see that $Cl_{\theta}(A) \subseteq Cl_{\theta_{\omega}}(A)$ let $x \in Cl_{\theta}(A)$ and $U \in \tau$ such that $x \in U$. Then $\overline{U} \cap A \neq \emptyset$. Since (X, τ) is anti-locally countable, then by Lemma 2.10 (a), $\overline{U}^{\omega} = \overline{U}$ and hence $\overline{U}^{\omega} \cap A \neq \emptyset$. It follows that $x \in Cl_{\theta_{\omega}}(A)$.

(b) Suppose that *A* is θ_{ω} -closed in (X, τ) , then $A = Cl_{\theta_{\omega}}(A)$. Thus by (a), $A = Cl_{\theta}(A)$ and hence *A* is θ -closed in (X, τ) . \Box

Theorem 2.18. *Let* (X, τ) *be a topological space. Then* $\tau_{\theta} \subseteq \tau_{\theta_{\omega}} \subseteq \tau$ *.*

Proof. To see that $\tau_{\theta} \subseteq \tau_{\theta_{\omega}}$, let $A \in \tau_{\theta}$. Then X - A is θ -closed and by Theorem 2.8 (b), X - A is θ_{ω} -closed. Thus $A \in \tau_{\theta_{\omega}}$. To see that $\tau_{\theta_{\omega}} \subseteq \tau$, let $A \in \tau_{\theta_{\omega}}$. Then X - A is θ_{ω} -closed and by Theorem 2.8 (c), X - A is closed. Thus $A \in \tau$. \Box

Lemma 2.19. ([27]) Let (X, τ) be a topological space. Then for each $A \in \tau$, $Cl_{\theta}(A) = \overline{A}$.

Theorem 2.20. Let (X, τ) be a topological space.

- *a.* If $A \subseteq B \subseteq X$, then $Cl_{\theta_{\omega}}(A) \subseteq Cl_{\theta_{\omega}}(B)$.
- *b.* For each subsets $A, B \subseteq X, Cl_{\theta_{\omega}}(A \cup B) = Cl_{\theta_{\omega}}(A) \cup Cl_{\theta_{\omega}}(B)$.
- *c.* For each subset $A \subseteq X$, $Cl_{\theta_{\omega}}(A)$ is closed in (X, τ) .
- *d.* For each $A \in \tau_{\omega}$, $Cl_{\theta_{\omega}}(A) = A$.
- e. For each $A \in \tau$, $Cl_{\theta}(A) = Cl_{\theta_{\omega}}(A) = \overline{A}$.

Proof. (a) Let $x \in Cl_{\theta_{\omega}}(A)$ and $U \in \tau$ with $x \in U$. Since $x \in Cl_{\theta_{\omega}}(A)$, $\overline{U}^{\omega} \cap A \neq \emptyset$. Since $A \subseteq B$, $\overline{U}^{\omega} \cap B \neq \emptyset$. This implies that $x \in Cl_{\theta_{\omega}}(B)$.

(b) By (a), we have $Cl_{\theta_{\omega}}(A) \cup Cl_{\theta_{\omega}}(B) \subseteq Cl_{\theta_{\omega}}(A \cup B)$. Let $x \notin Cl_{\theta_{\omega}}(A) \cup Cl_{\theta_{\omega}}(B)$. Then there are $U, V \in \tau$ such that $x \in U \cap V, \overline{U}^{\omega} \cap A = \emptyset$ and $\overline{V}^{\omega} \cap B = \emptyset$. Thus, we have $x \in U \cap V \in \tau$ and

$$\overline{U \cap V}^{\omega} \cap (A \cup B) = (\overline{U \cap V}^{\omega} \cap A) \cup (\overline{U \cap V}^{\omega} \cap B)$$
$$\subseteq (\overline{U}^{\omega} \cap A) \cup (\overline{V}^{\omega} \cap B)$$
$$= \emptyset \cup \emptyset$$
$$= \emptyset.$$

It follows that $x \notin Cl_{\theta_{\omega}} (A \cup B)$.

(c) We show that $X - Cl_{\theta_{\omega}}(A) \in \tau$. Let $x \in X - Cl_{\theta_{\omega}}(A)$. Then there is $U \in \tau$ such that $x \in U$ and $\overline{U}^{\omega} \cap A = \emptyset$. Thus, $U \cap Cl_{\theta_{\omega}}(A) = \emptyset$. It follows that $X - Cl_{\theta_{\omega}}(A) \in \tau$.

(d) By Theorem 2.8 (a), $\overline{A} \subseteq Cl_{\theta_{\omega}}(A)$. Conversely, suppose to the contrary that there is $x \in Cl_{\theta_{\omega}}(A) \cap (X - \overline{A})$. Since $X - \overline{A} \in \tau$, we must have $\overline{X - \overline{A}}^{\omega} \cap A \neq \emptyset$. Choose $y \in \overline{X - \overline{A}}^{\omega} \cap A$. Since $A \in \tau_{\omega}$, then $(X - \overline{A}) \cap A \neq \emptyset$, a contradiction.

(e) Follows from (d) and Lemma 2.19. \Box

Theorem 2.21. Let (X, τ) be a topological space. Then

a. \emptyset *and X are* θ_{ω} *-closed sets.*

b. Finite union of θ_{ω} -closed sets is θ_{ω} -closed.

c. Arbitrary intersection of θ_{ω} -closed sets is θ_{ω} -closed.

Proof. (a) Follows from Theorems 2.2 (a) and 2.8 (b).

(b) It is sufficient to see that the union of two θ_{ω} -closed sets is θ_{ω} -closed. Let *A* and *B* be any two θ_{ω} -closed sets in (*X*, τ). Then $Cl_{\theta_{\omega}}(A) = A$ and $Cl_{\theta_{\omega}}(B) = B$. By Theorem 2.20 (b),

 $Cl_{\theta_{\omega}}(A \cup B) = Cl_{\theta_{\omega}}(A) \cup Cl_{\theta_{\omega}}(B)$ = $A \cup B$.

It follows that $A \cup B$ is θ_{ω} -closed.

(c) Let $\{A_{\alpha} : \alpha \in \Delta\}$ be a family of θ_{ω} -closed sets in (X, τ) . Then for all $\alpha \in \Delta$, $Cl_{\theta_{\omega}}(A_{\alpha}) = A_{\alpha}$. We show that $Cl_{\theta_{\omega}}(\cap\{A_{\alpha} : \alpha \in \Delta\}) \subseteq \cap\{A_{\alpha} : \alpha \in \Delta\}$. Let $x \in Cl_{\theta_{\omega}}(\cap\{A_{\alpha} : \alpha \in \Delta\})$ and let $U \in \tau$ such that $x \in U$. Then $\overline{U}^{\omega} \cap (\cap\{A_{\alpha} : \alpha \in \Delta\}) \neq \emptyset$. Therefore, $\overline{U}^{\omega} \cap A_{\alpha} \neq \emptyset$ for all $\alpha \in \Delta$. It follows that $x \in \cap\{Cl_{\theta_{\omega}}(A_{\alpha}) : \alpha \in \Delta\} = \cap\{A_{\alpha} : \alpha \in \Delta\}$. \Box

Theorem 2.22. Let (X, τ) be a topological space. Then $\tau_{\theta_{\omega}}$ is a topology on X.

Proof. (1) The fact that \emptyset , $X \in \tau_{\theta_{\omega}}$ follows from Theorem 2.21.

(2) Let $A, B \in \tau_{\theta_{\omega}}$. Then X - A and X - B are θ_{ω} -closed sets. By Theorem 2.21 (b),

 $X - (A \cap B) = (X - A) \cup (X - B)$

is θ_{ω} -closed sets. Hence $A \cap B \in \tau_{\theta_{\omega}}$.

(3) Let $\{A_{\alpha} : \alpha \in \Delta\} \subseteq \tau_{\theta_{\omega}}$. Then $\{X - A_{\alpha} : \alpha \in \Delta\}$ is a family of θ_{ω} -closed sets in (X, τ) . Thus by Theorem 2.21 (c),

 $X - \cup \{A_{\alpha} : \alpha \in \Delta\} = \cap \{X - A_{\alpha} : \alpha \in \Delta\}$

is θ_{ω} -closed set. Hence $\cup \{A_{\alpha} : \alpha \in \Delta\} \in \tau_{\theta_{\omega}}$. \Box

Theorem 2.23. Let (X, τ) be a topological space and $A \subseteq X$. Then $A \in \tau_{\theta_{\omega}}$ if and only if for each $x \in A$, there is $U \in \tau$ such that $x \in U \subseteq \overline{U}^{\omega} \subseteq A$.

Proof. Suppose that $A \in \tau_{\theta_{\omega}}$ and let $x \in A$. Then X - A is θ_{ω} -closed and $x \notin X - A$. Thus, $x \notin Cl_{\theta_{\omega}}(X - A)$ and hence there is $U \in \tau$ such that $x \in U$ and $\overline{U}^{\omega} \cap (X - A) = \emptyset$. Therefore, we have $x \in U \subseteq \overline{U}^{\omega} \subseteq A$.

Conversely, suppose for each $x \in A$, there is $U \in \tau$ such that $x \in U \subseteq \overline{U}^{\omega} \subseteq A$ and suppose on that contrary that $A \notin \tau_{\theta_{\omega}}$. Then X - A is not θ_{ω} -closed and $Cl_{\theta_{\omega}}(X - A) \neq X - A$. Choose $x \in Cl_{\theta_{\omega}}(X - A) - (X - A)$. Since $x \in A$, there is $U \in \tau$ such that $x \in U \subseteq \overline{U}^{\omega} \subseteq A$. Thus we have $x \in U \in \tau$ and hence $\overline{U}^{\omega} \cap (X - A) = \emptyset$. Therefore $x \notin Cl_{\theta_{\omega}}(X - A)$, a contradiction. \Box

Corollary 2.24. Every open ω -closed set in a topological space is θ_{ω} -open.

Proof. Let (X, τ) be a topological space and let A be open and ω -closed set in (X, τ) . Let $x \in A$. Since A is ω -closed, then $\overline{A}^{\omega} = A$. Take U = A. Then $U \in \tau$ and $x \in U = \overline{U}^{\omega} = A \subseteq A$. Thus by Theorem 2.23, it follows that A is θ_{ω} -open. \Box

Corollary 2.25. *Every countable open set in a topological space is* θ_{ω} *-open.*

Proof. Follows directly form Corollary 2.24 since countable sets in a topological space are ω -closed.

The following example shows that θ_{ω} -open sets are strictly between θ -open sets and open sets:

Example 2.26. Consider (\mathbb{R}, τ) where $\tau = \{\emptyset, \mathbb{R}, \mathbb{N}, \mathbb{Q}^c, \mathbb{N} \cup \mathbb{Q}^c\}$. Then

a. $\tau_{\theta_{\omega}} = \{\emptyset, \mathbb{R}, \mathbb{N}\}.$

b. $\tau_{\theta} = \{\emptyset, \mathbb{R}\}.$

Proof. (a) Note that $\tau_{\omega} = \tau_{coc} \cup \{A : A \subseteq \mathbb{N}\}$ where τ_{coc} is the cocountable topology on \mathbb{R} . Then a subset $B \subseteq \mathbb{R}$ is closed in $(\mathbb{R}, \tau_{\omega})$ if and only if either B is countable or $B = \mathbb{R} - A$ where $A \subseteq \mathbb{N}$. So $\overline{\mathbb{Q}^{e}}^{\omega} = \mathbb{R} - \mathbb{N}$. If $\mathbb{Q}^{c} \in \tau_{\theta_{\omega}}$, then there is $U \in \tau$ such that $\sqrt{2} \in U \subseteq \overline{U}^{\omega} \subseteq \mathbb{Q}^{c}$. Since $\sqrt{2} \in U \in \tau$, then $\mathbb{Q}^{c} \subseteq U$ and so $\mathbb{R} - \mathbb{N} = \overline{\mathbb{Q}^{c}}^{\omega} \subseteq \overline{U}^{\omega} \subseteq \mathbb{Q}^{c}$ which is impossible, it follows that $\mathbb{Q}^{c} \in \tau - \tau_{\theta_{\omega}}$. If $\mathbb{N} \cup \mathbb{Q}^{c} \in \tau_{\theta_{\omega}}$, then there is $U \in \tau$ such that $\sqrt{2} \in U \subseteq \overline{U}^{\omega} \subseteq \mathbb{N} \cup \mathbb{Q}^{c}$. Since $\sqrt{2} \in U$ and so $\mathbb{R} - \mathbb{N} = \overline{\mathbb{Q}^{e}}^{\omega} \subseteq \overline{U}^{\omega} \subseteq \mathbb{N} \cup \mathbb{Q}^{c}$. Since $\sqrt{2} \in U \in \tau$, then $\mathbb{Q}^{c} \subseteq U$ and so $\mathbb{R} - \mathbb{N} = \overline{\mathbb{Q}^{e}}^{\omega} \subseteq \overline{U}^{\omega} \subseteq \mathbb{N} \cup \mathbb{Q}^{c}$ which is impossible and it follows that $\mathbb{N} \cup \mathbb{Q}^{c} \in \tau - \tau_{\theta_{\omega}}$. By Corollary 2.25, $\mathbb{N} \in \tau_{\theta_{\omega}}$. This ends the proof that $\tau_{\theta_{\omega}} = \{\emptyset, \mathbb{R}, \mathbb{N}\}$.

(b) By Theorem 2.18, $\tau_{\theta} \subseteq \tau_{\theta_{\omega}}$. So to see that $\tau_{\theta} = \{\emptyset, \mathbb{R}\}$, it is sufficient to show that $\mathbb{N} \notin \tau_{\theta}$. If $\mathbb{N} \in \tau_{\theta}$, then there is $U \in \tau$ such that $1 \in U \subseteq \overline{U} \subseteq \mathbb{N}$. Since $1 \in U \in \tau$, we have $U = \mathbb{N}$ and so $\overline{\mathbb{N}} = \mathbb{N}$, but $\overline{\mathbb{N}} = \mathbb{Q}$. Therefore, $\mathbb{N} \notin \tau_{\theta}$. \Box

If (X, τ) and (Y, σ) are two topological spaces, then $\tau \times \sigma$ will denote the product topology on $X \times Y$, also π_x and π_y will denote the projection functions on *X* and *Y*, respectively.

Lemma 2.27. ([3]) Let (X, τ) and (Y, σ) be two topological spaces.

(a) $(\tau \times \sigma)_{\omega} \subseteq \tau_{\omega} \times \sigma_{\omega}$. (b) If $A \subseteq X$ and $B \subseteq Y$, then $\overline{A}^{\omega} \times \overline{B}^{\omega} \subseteq \overline{A \times B}^{\omega}$.

Theorem 2.28. Let (X, τ) and (Y, σ) be two topological spaces. If $G \in (\tau \times \sigma)_{\theta_u}$, then $\pi_x(G) \in \tau_{\theta_u}$ and $\pi_y(G) \in \sigma_{\theta_u}$.

Proof. Let $x \in \pi_x(G)$. Choose $y \in Y$ such that $(x, y) \in G$. Since $G \in (\tau \times \sigma)_{\theta_\omega}$, there is $H \in \tau \times \sigma$ such that $(x, y) \in H \subseteq \overline{H}^{\omega} \subseteq G$. Choose $U \in \tau$ and $V \in \sigma$ such that $(x, y) \in U \times V \subseteq H$. Thus, by Lemma 2.27 (b),

$$(x, y) \in U \times V \subseteq \overline{U}^{\omega} \times \overline{V}^{\omega} \subseteq \overline{U \times V}^{\omega} \subseteq \overline{H}^{\omega} \subseteq G$$

and hence

$$x \in U \subseteq \overline{U}^{\omega} \subseteq \pi_x(G)$$
.

It follows that $\pi_x(G) \in \tau_{\theta_\omega}$. Similarly, we can show that $\pi_y(G) \in \sigma_{\theta_\omega}$. \Box

If $f : (X, \tau) \longrightarrow (Y, \sigma)$ is a closed function, then $f : (X, \tau) \longrightarrow (Y, \sigma_{\omega})$ is closed, but the converse is not true in general as the following example shows:

Example 2.29. Define $f : (\mathbb{R}, \tau_u) \longrightarrow (\mathbb{R}, \tau_u)$ by

$$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \\ 1 & \text{if } x \in \mathbb{R} - \mathbb{Q} \end{cases}$$

For every closed subset *C* of (\mathbb{R}, τ_u) , $f(C) \subseteq \mathbb{Q}$, which shows that *f* is ω -closed. Since \mathbb{R} is closed in (\mathbb{R}, τ_u) but $f(\mathbb{R}) = \mathbb{Q}$ is not closed in (\mathbb{R}, τ_u) , then *f* is not closed.

Theorem 2.30. Let $f : (X, \tau) \longrightarrow (Y, \sigma)$ be a function. If $f : (X, \tau) \longrightarrow (Y, \sigma)$ is open and $f : (X, \tau) \longrightarrow (Y, \sigma_{\omega})$ is closed, then $f : (X, \tau_{\theta}) \longrightarrow (Y, \sigma_{\theta_{\omega}})$ is open.

Proof. Let $A \in \tau_{\theta}$ and let $y \in f(A)$. Choose $x \in A$ such that y = f(x). Choose $V \in \tau$ such that $x \in V \subseteq \overline{V} \subseteq A$. Thus, $f(x) = y \in f(V) \subseteq f(\overline{V}) \subseteq f(A)$. Since f is open, then $f(V) \in \sigma$. Since f is ω -closed, then $f(\overline{V})$ is ω -closed and so $\overline{f(V)}^{\omega} \subseteq f(\overline{V}) \subseteq f(A)$. It follows that $f(A) \in \sigma_{\theta_{\omega}}$. \Box **Theorem 2.31.** Let $f : (X, \tau) \longrightarrow (Y, \sigma)$ be a function. If $f : (X, \tau) \longrightarrow (Y, \sigma)$ is open and $f : (X, \tau_{\omega}) \longrightarrow (Y, \sigma_{\omega})$ is closed, then $f : (X, \tau_{\theta_{\omega}}) \longrightarrow (Y, \sigma_{\theta_{\omega}})$ is open.

Proof. Let $A \in \tau_{\theta_{\omega}}$ and let $y \in f(A)$. Choose $x \in A$ such that y = f(x). Choose $V \in \tau$ such that $x \in V \subseteq \overline{V}^{\omega} \subseteq A$. Thus, $f(x) = y \in f(V) \subseteq f(\overline{V}^{\omega}) \subseteq f(A)$. Since f is open, then $f(V) \in \sigma$. Since f is ω -closed, then $f(\overline{V})$ is ω -closed and so $\overline{f(V)}^{\omega} \subseteq f(\overline{V}) \subseteq f(A)$. It follows that $f(A) \in \sigma_{\theta_{\omega}}$. \Box

Theorem 2.32. Let $f : (X, \tau) \longrightarrow (Y, \sigma)$ be function. If $f : (X, \tau) \longrightarrow (Y, \sigma)$ and $f : (X, \tau_{\omega}) \longrightarrow (Y, \sigma_{\omega})$ are both continuous, then $f : (X, \tau_{\theta_{\omega}}) \longrightarrow (Y, \sigma_{\theta_{\omega}})$ is continuous.

Proof. Let $B \in \sigma_{\theta_{\omega}}$ and let $x \in f^{-1}(B)$. Then $f(x) \in B$ and so there is $V \in \sigma$ such that $f(x) \in V \subseteq \overline{V}^{\omega} \subseteq B$. Thus, $x \in f^{-1}(V) \subseteq f^{-1}(\overline{V}^{\omega}) \subseteq f^{-1}(B)$. Since $f: (X, \tau) \longrightarrow (Y, \sigma)$ is continuous, then $f^{-1}(V) \in \tau$. Since $f: (X, \tau_{\omega}) \longrightarrow (Y, \sigma_{\omega})$ is continuous, then $f^{-1}(\overline{V}^{\omega})$ is ω -closed and so $\overline{f^{-1}(V)}^{\omega} \subseteq f^{-1}(\overline{V}^{\omega}) \subseteq f^{-1}(B)$. It follows that $f^{-1}(B) \in \tau_{\theta_{\omega}}$. \Box

3. Separation Axioms

Definition 3.1. A topological space (X, τ) is said to be ω - T_2 if for any pair (x, y) of distinct points in X there exist $U \in \tau$, $V \in \tau_{\omega}$ such that $x \in U, y \in V$ and $U \cap V = \emptyset$.

Theorem 3.2. A topological space (X, τ) is ω - T_2 if and only if for each $x \in X$, $Cl_{\theta_{\omega}}(\{x\}) = \{x\}$.

Proof. Suppose that (X, τ) is ω - T_2 and suppose on the contrary that for some $x \in X$, $Cl_{\theta_{\omega}}(\{x\}) \neq \{x\}$. Choose $y \in Cl_{\theta_{\omega}}(\{x\}) - \{x\}$. Then there exist $U \in \tau_{\omega}$ and $V \in \tau$ such that $x \in U, y \in V$ and $U \cap V = \emptyset$. Since $y \in V \in \tau$ and $y \in Cl_{\theta_{\omega}}(\{x\})$, then $\overline{V}^{\omega} \cap \{x\} \neq \emptyset$. Thus we have $x \in U \in \tau_{\omega}$ and $x \in \overline{V}^{\omega}$ and hence $U \cap V \neq \emptyset$, a contradiction.

Conversely, suppose for each $x \in X$, $Cl_{\theta_{\omega}}(\{x\}) = \{x\}$. Let $x, y \in X$ with $x \neq y$. By assumption, $Cl_{\theta_{\omega}}(\{y\}) = \{y\}$ and so we have $x \notin Cl_{\theta_{\omega}}(\{y\})$. Thus there is $U \in \tau$ such that $x \in U$ and $\overline{U}^{\omega} \cap \{y\} = \emptyset$. Take $V = X - \overline{U}^{\omega}$. Then we have $y \in V \in \tau_{\omega}$ and $U \cap V = \emptyset$. This ends the proof that (X, τ) is ω - T_2 . \Box

Theorem 3.3. If (X, τ) is an ω - T_2 topological space, then (X, τ_{ω}) is T_2 .

```
Proof. Obvious. \Box
```

The converse of Theorem 3.3 is not true in general as the following example clarifies:

Example 3.4. Consider (X, τ) where *X* is any countable set which contains at least two distinct points and τ is the indiscrete topology. It is obvious that τ_{ω} is the discrete topology and so (X, τ_{ω}) is T_2 . Choose $x, y \in X$ such that $x \neq y$. If $U \in \tau$ and $V \in \tau_{\omega}$ such that $x \in U, y \in V$. Then U = X and $U \cap V \neq \emptyset$. It follows that (X, τ) is not ω - T_2 .

Theorem 3.5. Every ω - T_2 topological space is T_1 .

Proof. Let (X, τ) be ω - T_2 . We show for each $x \in X, \overline{\{x\}} \subseteq \{x\}$. Let $x \in X$. Since (X, τ) is ω - T_2 , then by Theorem 3.2, $Cl_{\theta_{\alpha}}(\{x\}) = \{x\}$. By Theorem 2.8 (a), we have $\overline{\{x\}} \subseteq Cl_{\theta_{\alpha}}(\{x\}) = \{x\}$. \Box

The following example shows that the converse of Theorem 3.5 is not true in general:

Example 3.6. Consider (\mathbb{R}, τ) where τ is the cofinite topology. It is clear that (\mathbb{R}, τ) is T_1 . It is not difficult to check that τ_{ω} is the cocountable topology. Thus $(\mathbb{R}, \tau_{\omega})$ is not T_2 and by Theorem 3.3, (\mathbb{R}, τ) not ω - T_2 .

Theorem 3.7. *Every locally countable* T_1 *topological space is* ω - T_2 *.*

Proof. Let (X, τ) be locally countable and T_1 . Let $x, y \in X$ with $x \neq y$. Since (X, τ) is locally countable, then τ_{ω} is the discrete topology and so $\{y\} \in \tau_{\omega}$. On the other hand since (X, τ) is T_1 , then $\{y\}$ is closed in (X, τ) and $X - \{y\} \in \tau$. Take $U = X - \{y\}$ and $V = \{y\}$. Then $U \in \tau, V \in \tau_{\omega}, x \in U, y \in V$ and $U \cap V = \emptyset$. This shows that (X, τ) is ω - T_2 . \Box

Theorem 3.8. Every T_2 topological space is ω - T_2 .

Proof. Obvious.

The following example shows that the converse of Theorem 3.8 is not true in general:

Example 3.9. Consider (\mathbb{N}, τ) where τ is the cofinite topology. It is clear that (\mathbb{N}, τ) is T_1 and locally countable and thus by Theorem 3.7, it is ω - T_2 . On the other hand, it is well known that (\mathbb{N}, τ) is not T_2 .

Definition 3.10. ([1]) A topological space (X, τ) is called ω -regular if for each closed set F in (X, τ) and $x \in X - F$, there exist $U \in \tau$ and $V \in \tau_{\omega}$ such that $x \in U, F \subseteq V$ and $U \cap V = \emptyset$.

Theorem 3.11. ([1]) A topological space (X, τ) is ω -regular if and only if for each $U \in \tau$ and each $x \in U$ there is $V \in \tau$ such that $x \in V \subseteq \overline{V}^{\omega} \subseteq U$.

Theorem 3.12. ([27]) A topological space (X, τ) is regular if and only if $\tau = \tau_{\theta}$.

Theorem 3.13. ([18]) A topological space (X, τ) is regular if and only if for each subset $A \subseteq X$, $Cl_{\theta}(A) = \overline{A}$.

The following result modify Theorems 3.12 and 3.13 for ω -regular topological spaces:

Theorem 3.14. For any topological space (X, τ) , the following are equivalent:

a. (X, τ) is ω -regular.

b. $\tau = \tau_{\theta_{\omega}}$.

c. For each subset $A \subseteq X$, $Cl_{\theta_{\alpha}}(A) = \overline{A}$.

Proof. It follows from Theorems 2.18, 3.11 and 2.23.

Corollary 3.15. *Every* ω *-locally indiscrete topological space is* ω *-regular.*

Proof. Theorems 2.14 and 3.14. \Box

Corollary 3.16. *Every locally indiscrete topological space is* ω *-regular.*

Proof. Theorem 2.12 (a) and Corollary 3.15. \Box

Corollary 3.17. *Every locally countable topological space is* ω *-regular.*

Proof. Theorem 2.12 (b) and Corollary 3.15. \Box

Theorem 3.18. ([1]) Every regular topological space is ω -regular.

The converse of Theorem 3.18 is not true in general: Consider the topological space in Example 3.9. By Corollary 3.17, (\mathbb{N}, τ) is ω -regular. On the other hand, it is well known that this topological space is not regular.

Theorem 3.19. Every anti-locally countable ω -regular topological space is regular.

Proof. Let (X, τ) be anti-locally countable and ω -regular. We will apply Theorem 3.13. Let $A \subseteq X$. Since (X, τ) is anti-locally countable, then by Theorem 2.17 (a) $Cl_{\theta}(A) = Cl_{\theta_{\omega}}(A)$. Also, by Theorem 3.14 we have $Cl_{\theta_{\omega}}(A) = \overline{A}$. It follows that $Cl_{\theta}(A) = \overline{A}$. \Box

The topological space in Example 3.9 is ω -regular but not ω - T_2 . Thus, ω -regularity does not imply ω - T_2 in general, however we have the following result:

Theorem 3.20. Every ω -regular T_1 topological space is ω - T_2 .

Proof. Let (X, τ) be ω -regular and T_1 . We apply Theorem 3.2. Let $x \in X$. Since (X, τ) is ω -regular, then by Theorem 3.14, $Cl_{\theta_{\omega}}(\{x\}) = \overline{\{x\}}$. Since (X, τ) is T_1 , then $\overline{\{x\}} = \{x\}$. Therefore, $Cl_{\theta_{\omega}}(\{x\}) = \{x\}$. \Box

To give an example on an ω - T_2 topological space that is not ω -regular, by Theorems 3.8 and 3.19 it is sufficient to give an example of an anti-locally countable T_2 topological space that is not regular. Consider $(\mathbb{R}, \tau_{\omega})$ where τ is the usual topology on \mathbb{R} . Clearly that $(\mathbb{R}, \tau_{\omega})$ is anti-locally countable. On the other hand it is well known that $(\mathbb{R}, \tau_{\omega})$ is T_2 but not regular.

References

- [1] S. Al Ghour, Certain covering properties related to paracompactness, Ph.D. thesis, University of Jordan, Amman, Jordan, (1999).
- [2] K. Al-Zoubi, K. Al-Nashef, The topology of ω -open subsets, Al-Manarah Journal 9 (2003) 169-179.
- [3] K. Al-Zoubi, On generalized ω-closed sets, Int. J. Math. Math. Sci. 13 (2005) 2011–2021.
- [4] H. Aljarrah, M. Md Noorani, T. Noiri, Contra $\omega\beta$ -continuity, Bol. Soc. Parana. Mat. 32 (2014) 9–22.
- [5] H. Aljarrah, M. Md Noorani, T. Noiri, On generalized $\omega\beta$ -closed sets, Missouri J. Math. Sci. 26 (2014) 70–87.
- [6] M. Caldas, S. Jafari, M.M. Kovar, Some properties of θ-open sets, Divulg. Mat. 12 (2004) 161–169.
- [7] M. Caldas, S. Jafari, R.M. Latif, Sobriety via θ-open sets, An. ,Stiinț. Univ. Al. I. Cuza Iași. Mat. (N.S.) 56 (2010) 163–167.
- [8] M. Caldas, On contra $\beta\theta$ -continuous functions, Proyecciones 32 (2013) 333–346.
- [9] M. Caldas, S. Jafari, On almost contra $\beta\theta$ -continuous functions with $\beta\theta$ -closed graphs, Jordan J. Math. Stat. 7(4) (2014) 327-337.
- [10] M. Caldas, S. Jafari, On some maps concerning $g\beta\theta$ -open sets, Proyecciones 34(1) (2015) 15-24.
- [11] C. Carpintero, N. Rajesh, E. Rosas, S. Saranyasri, Properties of faintly ω-continuous functions, Bol. Mat. 20 (2013) 135–143.
- [12] C. Carpintero, N. Rajesh, E. Rosas, S. Saranyasri, Some properties of upper/lower ω -continuous multifunctions, Sci. Stud. Res. Ser. Math. Inform. 23 (2013) 35–55.
- [13] C. Carpintero, N. Rajesh, E. Rosas, S. Saranyasri, On upper and lower almost contra-ω-continuous multifunctions, Ital. J. Pure Appl. Math. 32 (2014) 445–460.
- [14] C. Carpintero, N. Rajesh, E. Rosas, S. Saranyasri, Somewhat ω-continuous functions, Sarajevo J. Math. 11 (2015) 131–137.
- [15] C. Carpintero, N. Rajesh, E. Rosas, S. Saranyasri, Upper and lower $\delta\omega$ -continuous multifunctions, Afr. Mat. 26 (2015) 399–405.
- [16] H. Darwesh, Between preopen and open sets in topological spaces, Thai J. Math. 11 (2013) 143–155.
- [17] R.F. Dickman Jr., J.R. Porter, θ-closed subsets of Hausdorff spaces, Pacific J. Math. 59 (1975) 407-415.
- [18] R.F. Dickman Jr., J.R. Porter, θ-perfect and θ-absolutely closed functions, Ilinois J. Math. 21 (1977) 42–60.
- [19] E. Ekici, S. Jafari, M.R. Latif, ω_{θ} -open sets and ω_{θ} -continuous mapping, King Fahd Univ. of Petr. & Mine. Tech. Report Series 385 (2008) 1–13.
- [20] H. Hdeib, ω-closed mappings, Revista Colomb. Matem. XVI 16 (1982) 65–78.
- [21] D.S. Jankovic, θ-regular spaces, Internat. J. Math. & Math. Sci. 8 (1986) 615–619.
- [22] J.E. Joseph, θ -closure and θ -subclosed graphs, Math. Chronicle 8 (1979) 99–117.
- [23] M.M. Kovar, On θ -regular spaces, Internat. J. Math. & Math. Sci. 17 (1994) 687–692.
- [24] P.E. Long, L.L. Herrington, The τ_{θ} -topology and faintly continuous functions, Kyungpook Math. J. 22 (1982) 7–14.
- [25] T. Noiri, S. Jafari, Properties of (θ, s) -continuous functions, Topology Appl. 123 (2002) 167–179.
- [26] C.M. Pareek, Hereditarily Lindelof and hereditarily almost Lindelof spaces, Math. Japon. 30 (1985) 635-639.
- [27] N.V. Velicko, H-closed topological spaces, Mat. Sb. 70 (1966), 98–112; English transl.: Amer. Math. Soc. Transl. 78 (1968) 102–118.
- [27] N.V. Vencko, inclusion opological spaces, Mat. 50, 70 (1960), 50–112, English transit. Antel: Math. 50C, 1960) 102–110.
 [28] W.J. Yu, T. Yang, S.G Li, Some results related to θ-open sets and θ-open sets, J. Northwest Univ. Nat. Sci. 41 (2011) 385–390 (In Chinese).
- [29] I. Zorlutuna, *w*-continuous multifunctions, Filomat 27 (2013) 165–172.