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Openness and Continuity in Locally Convex Cones
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Abstract. In this paper we define nearly continuity and nearly openness of linear operators between
locally convex cones. Also we give some conditions on locally convex cones and linear operators which
ensure that every nearly continuous (nearly open) mapping is continuous (open). We show by an example
that a nearly continuous operator is not necessarily continuous.

1. Introduction

A cone is defined to be a commutative monoid P together with a scalar multiplication by nonnegative
real numbers satisfying the same axioms as for vector spaces; that is, P is endowed with an addition
(a, b) 7→ a + b : P×P → Pwhich is associative, commutative and admits a neutral element 0 ∈ P, and with
a scalar multiplication (r, a) 7→ r.a : R+ ×P → P satisfying the usual associative and distributive properties,
where R+ is the set of nonnegative real numbers. We have 1a = a and 0a = 0, for all a ∈ P.

The theory of locally convex cones uses an order theoretical concept or a convex quasiuniform structure
to introduce a topological structure on a cone. In this paper we use mostly the latter. These cones developed
in [4] and [8]. For recent researches see [2, 3, 5, 9].

LetP be a cone. A convex quasiuniform structure onP is a collectionU of convex subsets U ⊆ P2 = P×P
such that the following properties hold:
(U1) ∆ ⊆ U for every U ∈ U ( ∆ = {(a, a) : a ∈ P});
(U2) for all U,V ∈ U there is a W ∈ U such that W ⊆ U ∩ V;
(U3) λU ◦ µU ⊆ (λ + µ)U for all U ∈ U and λ, µ > 0;
(U4) αU ∈ U for all U ∈ U and α > 0.
Here, for U,V ⊆ P2, by U ◦ V we mean the set of all (a, b) ∈ P2 such that there is some c ∈ P with (a, c) ∈ U
and (c, b) ∈ V.

Let P be a cone and U be a convex quasiuniform structure on P. We shall say (P,U) is a locally convex
cone if
(U5) for each a ∈ P and U ∈ U there is some λ > 0 such that (0, a) ∈ λU.

With every convex quasiuniform structureU onPwe associate two topologies: The neighborhood bases
for an element a in the upper and lower topologies are given by the sets

U(a) = {b ∈ P : (b, a) ∈ U}, resp. (a)U = {b ∈ P : (a, b) ∈ U}, U ∈ U.
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The common refinement of the upper and lower topologies is called symmetric topology. A neighborhood
base for a ∈ P in this topology is given by the sets

U(a)U = U(a) ∩ (a)U, U ∈ U.

The extended real numbers systemR = R∪{+∞} is a cone endowed with the usual algebraic operations,
in particular a +∞ = +∞ for all a ∈ R, α.(+∞) = +∞ for all α > 0 and 0.(+∞) = 0. We set Ṽ = {ε̃ : ε > 0},
where

ε̃ = {(a, b) ∈ R
2

: a ≤ b + ε}.

Then Ṽ is a convex quasiuniform structure onR and (R, Ṽ) is a locally convex cone. For a ∈ R the intervals
(−∞, a + ε] are the upper and the intervals [a − ε,+∞] are the lower neighborhoods, while for a = +∞ the
entire cone R is the only upper neighborhood, and {+∞} is open in the lower topology. The symmetric
topology is the usual topology on R with as an isolated point +∞.

For conesP andQ, a mapping T : P → Q is called a linear operator if T(a+b) = T(a)+T(b) and T(αa) = αT(a)
hold for all a, b ∈ P and α ≥ 0. If both (P,U) and (Q,W) are locally convex cones, the operator T is called
(uniformly) continuous if for every W ∈ W one can find U ∈ U such that (T×T)(U) ⊆W. Uniform continuity
is not just continuity. It is immediate from the definition that it implies and combines continuity for the
operator T : P → Qwith respect to the upper, lower and symmetric topologies on P and Q, respectively.

A linear functional on P is a linear operator µ : P → R. We note that µ : P → R is continuous if and only
if there is U ∈ U such that (µ(a), µ(b)) ∈ 1̃, i.e. µ(a) ≤ µ(b) + 1 for (a, b) ∈ U. We denote the set of all linear
functional on P by L(P) (the algebraic dual of P). For a subset F of P2, we define polar F◦ as follows:

F◦ = {µ ∈ L(P) : µ(a) ≤ µ(b) + 1, ∀(a, b) ∈ F}.

The dual cone P∗ of a locally convex cone (P,U) consists of all continuous linear functionals on P and
is the union of all polars U◦ of neighborhoods U ∈ U.

2. Nearly Continuity and Nearly Openness

In this section we define and investigate nearly continuous and nearly open linear operators in locally
convex cones.

Let (P,U) be a locally convex cone. We say that the subset F ⊆ P2 has the closedness property (CP) if
the following holds (see [2]):

(CP) if (a, b) < F, then there is µ ∈ P∗ such that µ(a) > µ(b) + 1 and µ(c) ≤ µ(d) + 1 for all (c, d) ∈ F.

Indeed, the property (CP) is an alternative to closedness in quasiuniform structures.

Definition 2.1. The uniformly closure of F ⊆ P2, un-cl(F), is the smallest set containing F which has (CP). The set
F is uniformly closed if F = un-cl(F).

Lemma 2.1. Let (P,U) be a locally convex cone. For every subset B of P2, (un-cl(B))◦ = B◦ (the polars being taken
in P∗).

Proof. Since B ⊆ un-cl(B), then (un-cl(B))◦ ⊆ B◦. Set

B̃ = {(a, b) ∈ P2 : µ(a) ≤ µ(b) + 1, ∀µ ∈ B◦}.

We have B ⊆ B̃. It is easy to see that B̃ has (CP). Then un-cl(B) ⊆ B̃ and so (B̃)◦ ⊆ (un-cl(B))◦ ⊆ B◦. It is
sufficient to prove that B◦ ⊆ (B̃)◦. Let µ ∈ B◦ and (a, b) ∈ B̃. By the definition of B̃, we have µ(a) ≤ µ(b) + 1.
Therefore µ ∈ (B̃)◦.
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Let (P,U) and (Q,W) be locally convex cones and T : P → Q be a linear operator. The adjoint
operator T∗ : Q∗ → L(P) is defined as follows: For any µ ∈ Q∗ define the linear functional T∗(µ) on P by
T∗(µ)(a) = µ(T(a)) for all a ∈ P. If T is continuous, then T∗ is a linear operator fromQ∗ intoP∗ (see [4], II.2.15).

Let T∗ be the adjoint operator of T. We characterize the subcone

T∗−1(P∗) = {µ ∈ Q∗ : T∗(µ) ∈ P∗}

of Q∗ as follows:

Proposition 2.2. Let (P,U) and (Q,W) be two locally convex cones and let T : P → Q be a linear operator. Then
T∗−1(P∗) = ∪U∈U((T × T)(U))◦ (the polars being taken in Q∗).

Proof. Let µ ∈ T∗−1(P∗). Then T∗(µ) ∈ P∗. Hence there exists U ∈ U such that T∗(µ) ∈ U◦, i.e. T∗(µ)(a) ≤
T∗(µ)(b) + 1 for all (a, b) ∈ U. Thus µ(T(a)) ≤ µ(T(b)) + 1 for all (a, b) ∈ U, i.e. µ ∈ ((T × T)(U))◦. Conversely, if
µ ∈ ((T × T)(U))◦, then µ(T(a)) ≤ µ(T(b)) + 1 for all (a, b) ∈ U and so T∗(µ) ∈ U◦ ⊆ P∗. Hence µ ∈ T∗−1(P∗).

Lemma 2.3. Let (P,U) and (Q,W) be two locally convex cones with duals P∗ and Q∗ respectively and let T be a
linear operator of P into Q with adjoint T∗. Then

(a) for each subset F of P2, T∗−1(F◦) = ((T × T)(F))◦,
(b) if the polar E◦ being taken in Q∗, for each subset E of Q2, T∗(E◦) ⊆ ((T × T)−1(E))◦ and if T is invertible, then

we have the inverse inclusion, i.e. T∗(E◦) = ((T × T)−1(E))◦.

Proof. (a) We have µ ∈ T∗−1(F◦) if and only if T∗(µ) ∈ F◦ if and only if T∗(µ)(a) ≤ T∗(µ)(b) + 1 for all (a, b) ∈ F,
if and only if µ(T(a)) ≤ µ(T(b)) + 1 for all (a, b) ∈ F, if and only if µ ∈ ((T × T)(F))◦.
(b) Let µ ∈ T∗(E◦). There is µ1 ∈ E◦ such that µ = T∗(µ1) = µ1 ◦ T. Now, if (a, b) ∈ (T × T)−1(E), then
µ1(T(a)) ≤ µ1(T(b)) + 1, i.e. µ(a) ≤ µ(b) + 1. Now, let T be invertible. If µ < T∗(E◦), then there exists (a, b) ∈ E
such that T∗−1(µ)(a) > T∗−1(µ)(b) + 1. Since (T∗)−1 = (T−1)∗, we have µ(T−1(a)) > µ(T−1(b)) + 1. This yields that
µ < ((T × T)−1(E))◦.

We endow P∗ with the canonical algebraic operations and the topology w(P∗,P) of pointwise conver-
gence on the elements of P, considered as functions on P∗ with values in R with its usual topology. As in
locally convex topological vector spaces, the polar U◦ of a neighborhood U ∈ U is w(P∗,P)-compact and
convex (see [4], Proposition II.2.4). A typical neighborhood for µ0 ∈ P

∗ in w(P∗,P) is given via a finite subset
A = {a1, a2, . . . , an} of P by

ωA(µ0) =


|µ(ai) − µ0(ai)| ≤ 1 if µ0(ai) < +∞

µ ∈ P∗ :
µ(ai) ≥ 1 if µ0(ai) = +∞

 .
Similar to topological vector spaces we have:

Proposition 2.4. The topology w(P∗,P) is Hausdorff.

Proof. Let µ1, µ2 ∈ P
∗ and µ1 , µ2. Then there is a ∈ P such that µ1(a) , µ2(a). We consider two cases:

(a) Suppose µ1(a), µ2(a) , +∞. We set ε =
3

| µ1(a) − µ2(a) |
. Then

ω{εa}(µ1) ∩ ω{εa}(µ2) = ∅.

For, if µ ∈ ω{εa}(µ1) ∩ ω{εa}(µ2), then | µ(εa) − µ1(εa) |≤ 1 and | µ(εa) − µ2(εa) |≤ 1, and so

| µ1(a) − µ2(a) |≤
2
ε

=
2
3
| µ1(a) − µ2(a) |,

which is a contradiction.
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(b) Suppose µ1(a) = +∞ (the case µ2(a) = +∞ is similar). We set ε = 1+ | µ2(a) |. Then

ω{ a
2ε

}(µ1) ∩ ω{a}(µ2) = ∅.

For, if µ ∈ ω{ a
2ε

}(µ1) ∩ ω{a}(µ2), then µ2(a) − 1 ≤ µ(a) ≤ 1 + µ2(a) and µ(
a

2ε
) ≥ 1. Thus

2(1+ | µ2(a) |) = 2ε ≤ µ(a) ≤ 1 + µ2(a),

which is a contradiction.

Proposition 2.5. Let (P,U) and (Q,W) be two locally convex cones. If T : (P,U) → (Q,W) is a linear operator,
then its adjoint T∗ : (Q∗,w(Q∗,Q))→ (L(P),w(L(P),P)) is continuous.

Proof. Let µ0 ∈ Q
∗ and ωA(ν0) be a neighborhood of ν0 = T∗(µ0) in the topology w(L(P),P), where A =

{a1, a2, .., an} is a finite subset of P. The neighborhood ωA(ν0) is given by

ωA(ν0) =


|ν(ai) − ν0(ai)| ≤ 1 if ν0(ai) < +∞

ν ∈ L(P) :
ν(ai) ≥ 1 if ν0(ai) = +∞

 .
If we set B = {T(a1),T(a2), ...,T(an)}, then it is easy to check that T∗(ωB(µ0)) ⊆ ωA(ν0).

Definition 2.2. Let (P,U) be a locally convex cone with dual P∗. We shall say that the subset C∗ of P∗ is nearly
closed if C∗ ∩ U◦ is w(P∗,P)-closed for every U ∈ U. Then (P,U) is called fully complete, if every nearly closed
subcone of P∗ is w(P∗,P)-closed.

Let U and W be convex quasiuniform structures on P. We say that U is finer than W whenever for
every W ∈ W there is U ∈ U such that U ⊆W.

Proposition 2.6. The fully complete cone (P,U) remains fully complete under any convex quasiuniform structure
finer than U.

Proof. It follows from the definition.

Example 2.3. The extended real numbers system R = R ∪ {+∞} endowed with the convex quasiuniform
structure Ṽ = {ε̃ : ε > 0} is a fully complete locally convex cone. Indeed, R

∗

= [0,+∞) ∪ {0̄}, where 0̄(x) = 0
for all x ∈ R and 0̄(+∞) = +∞. All subcones of R

∗

are {0}, {0, 0̄}, R
∗

and [0,∞). On the other hand, the
subsets (ε̃)◦ are w(R

∗

,R)-compact for all ε > 0 (see [4], Proposition II.2.4). Then the intersection of (ε̃)◦ with
each of the first three subcones is w(R

∗

,R)-compact and then w(R
∗

,R)-closed (since w(R
∗

,R) is Hausdorff).
This means that these subcones are nearly closed. We note that the subcone [0,+∞) is not nearly closed. In
fact for each ε > 0, [0,+∞) ∩ (ε̃)◦ = [0, 1

ε ] which is not w(R
∗

,R)-closed, since 0̄ is in the closure of [0, 1
ε ]. We

conclude that all nearly closed subcones of R
∗

are w(R
∗

,R)-closed, so R is fully complete.

Definition 2.4. Let (P,U) and (Q,W) be locally convex cones. We say that the linear operator T : (P,U)→ (Q,W)
is nearly open if for every U ∈ U there exists W ∈ W such that W ⊆ un-cl((T × T)(U)).

Definition 2.5. Let (P,U) and (Q,W) be locally convex cones. The linear operator T : (P,U) → (Q,W) is called
nearly continuous if for every W ∈ W there exists U ∈ U such that U ⊆ un-cl((T × T)−1(W)).

Lemma 2.7. If T is a nearly open linear operator of (P,U) into (Q,W), with adjoint T∗ (mapping Q∗ into L(P)),
and D∗ is a nearly closed subcone of Q∗ and the polars of the subsets of Q2 are in Q∗, then T∗(D∗)∩P∗ is nearly closed.
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Proof. We show that T∗(D∗) ∩ P∗ ∩U◦ is w(P∗,P)-closed for all U ∈ U. If U ∈ U, then

T∗(D∗) ∩ P∗ ∩U◦ = T∗(D∗) ∩U◦ = T∗(D∗ ∩ T∗−1(U◦)).

Since T is nearly open, there is W ∈ W such that W ⊆ un-cl((T × T)(U)) and so un-cl((T × T)(U)) ∈ W.
Thus ((T × T)(U))◦ = (un-cl((T × T)(U)))◦ is w(Q∗,Q)-compact. Since D∗ is nearly closed, D∗ ∩ ((T × T)(U))◦

is w(Q∗,Q)-closed and so it is w(Q∗,Q)-compact. Now by Lemma 2.3(a), T∗−1(U◦) = ((T × T)(U))◦. By
Proposition 2.5, T∗ is continuous under the topologies w(Q∗,Q) and w(L(P),P), hence T∗(D∗ ∩ T∗−1(U◦))
is w(L(P),P)-compact and so w(P∗,P)-compact. Since w(P∗,P) is Hausdorff (Proposition 2.4), therefore
T∗(D∗) ∩ P∗ ∩U◦ = T∗(D∗ ∩ T∗−1(U◦)) is w(P∗,P)-closed.

Lemma 2.8. For every locally convex cone (P,U), (P × P)◦ = {0}.

Proof. It is straightforward.

Proposition 2.9. If there is a continuous nearly open linear operator of a fully complete cone onto a locally convex
cone (Q,W), then (Q,W) is fully complete.

Proof. Let T be a continuous nearly open linear operator of the fully complete cone (P,U) onto (Q,W), and
let D∗ be a nearly closed subcone of the dual Q∗ of Q. Since T is continuous, T∗ maps Q∗ into the dual P∗ of
P and by Lemma 2.7, T∗(D∗) is nearly closed. Thus T∗(D∗) is w(P∗,P)-closed, since P is fully complete. By
Lemmas 2.8 and 2.3(a),

T∗−1({0}) = T∗−1((P × P)◦) = ((T × T)(P × P))◦ = (Q × Q)◦ = {0}.

Thus D∗ = T∗−1(T∗(D∗)). By Proposition 2.5, D∗ is w(Q∗,Q)-closed. Thus Q is fully complete.

Proposition 2.10. If T is a nearly continuous linear operator of (P,U) into (Q,W), with adjoint T∗ (mapping Q∗

into L(P)), and if C∗ is a nearly closed subcone of P∗ and the polars of the subsets of P2 are in P∗, then T∗−1(C∗) is
nearly closed.

Proof. Let W ∈ W. We set K∗ = T∗−1(C∗) and V = (T × T)−1(W). There is U ∈ U such that U ⊆ un-cl((T ×
T)−1(W)) = un-cl(V), since T is nearly continuous. Therefore, since C∗ is nearly closed, C∗ ∩ (un-cl(V))◦

is w(P∗,P)-compact and so w(L(P),P)-compact, and then w(L(P),P)-closed. Hence by Proposition 2.5,
T∗−1(C∗ ∩ (un-cl(V))◦) is w(Q∗,Q)-closed. We have

T∗−1(C∗ ∩ (un-cl(V))◦) = T∗−1(C∗ ∩ V◦) = K∗ ∩ T∗−1(V◦) = K∗ ∩ ((T × T)(V))◦.

Thus
K∗ ∩W◦ = K∗ ∩W◦

∩ ((T × T)(V))◦ = T∗−1(C∗ ∩ (un-cl(V))◦) ∩W◦,

which is an intersection of w(Q∗,Q)-closed sets. Thus K∗ is nearly closed.

A barrel is a convex subset B of P2 with the following properties:

(B1) For every b ∈ P there is U ∈ U such that for every a ∈ U(b)U there is a λ > 0 such that (a, b) ∈ λB.
(B2) For all a, b such that (a, b) < B there is aµ ∈ P∗ such thatµ(c) ≤ µ(d)+1 for all (c, d) ∈ B andµ(a) > µ(b)+1

(see [10]).

It is clear that for every barrel B, we have un-cl(B) = B.
An upper-barreled cone is defined in [6] as follows:

Let (P,U) be a locally convex cone. Then P is called upper-barreled if for every barrel B ⊆ P2, there is U ∈ U
such that U ⊆ B.

Proposition 2.11. Let (P,U) and (Q,W) be two locally convex cones and let T be a continuous and nearly open
linear operator of P into Q. If (P,U) is upper-barreled, so is (Q,W).
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Proof. Let B be a barrel in Q. Since T is continuous, (T × T)−1(B) is a barrel in P by Lemma 4.4 of [6] and
therefore there exists U ∈ U such that U ⊆ (T×T)−1(B), becauseP is upper-barrelled. Since T is nearly open,
there exists W ∈ W such that W ⊆ un-cl((T × T)(U)). Thus

W ⊆ un-cl((T × T)((T × T)−1(B))) ⊆ un-cl(B) = B.

Let (P,U) be a locally convex cone. The subset A ⊆ P∗ is called (uniformly) equicontinuous, if there is
some U ∈ U such that for all a, b ∈ P and µ ∈ A, (a, b) ∈ U implies µ(a) ≤ µ(b) + 1. In other words, the subset
A ⊆ P∗ is equicontinuous if and only if there is some U ∈ U such that A ⊆ U◦. Thus for every U ∈ U, U◦ is
an equicontinuous subset of P∗ ([4], IV.1.1).

Proposition 2.12. Let (P,U) and (Q,W) be two locally convex cones, T be a linear operator of P into Q and the
polars of the subsets of Q2 be in Q∗. Then T is nearly open if and only if for each equicontinuous subset B of P∗,
T∗−1(B) is an equicontinuous subset of Q∗.

Proof. Let B be an equicontinuous subset of P∗. Then B ⊆ U◦ for some U ∈ U. Since T is nearly open, there
is W ∈ W such that W ⊆ un-cl((T × T)(U)). Therefore by Lemmas 2.1 and 2.3(a),

T∗−1(B) ⊆ T∗−1(U◦) = ((T × T)(U))◦ = (un-cl((T × T)(U)))◦ ⊆W◦.

To prove the converse, let U ∈ U. The set U◦ is an equicontinuous subset of P∗. So by the assumption,
T∗−1(U◦) is an equicontinuous subset of Q∗. Thus there is W ∈ W such that ((T × T)(U))◦ = T∗−1(U◦) ⊆ W◦.
We claim that W ⊆ un-cl((T × T)(U)). For, if (a, b) < un-cl((T × T)(U)), then by (CP), there is µ ∈ Q∗ such that
µ(a) > µ(b)+1 andµ(c) ≤ µ(d)+1 for all (c, d) ∈ un-cl((T×T)(U)). Henceµ ∈ (un-cl((T×T)(U)))◦ = ((T×T)(U))◦.
Thus µ ∈W◦ and so (a, b) <W.

Proposition 2.13. Let (P,U) and (Q,W) be two locally convex cones and the polars of the subsets of P2 be in P∗.

(a) If T is nearly continuous, then its adjoint T∗ maps an equicontinuous subset of Q∗ into an equicontinuous
subset of P∗.

(b) If T is invertible and its adjoint T∗ maps equicontinuous subsets of Q∗ into equicontinuous subsets of P∗, then
T is nearly continuous.

Proof. (a) Let B ⊆ Q∗ be an equicontinuous set. There exists W ∈ W such that B ⊆ W◦. Because T is nearly
continuous, there is U ∈ U such that U ⊆ un-cl((T × T)−1(W)). Thus by Lemma 2.1 and Lemma 2.3(b),

T∗(B) ⊆ T∗(W◦) ⊆ ((T × T)−1(W))◦ = (un-cl((T × T)−1(W)))◦ ⊆ U◦.

(b) Let W ∈ W. Then W◦ is an equicontinuous subset of Q∗. By the hypothesis, T∗(W◦) is an equicontinuous
subset of P∗. Thus there exists U ∈ U such that T∗(W◦) ⊆ U◦. We claim that U ⊆ un-cl((T × T)−1(W)).
Indeed, if (a, b) < un-cl((T × T)−1(W)), there is µ ∈ P∗ such that µ(a) > µ(b) + 1 and µ(c) ≤ µ(d) + 1 for all
(c, d) ∈ un-cl((T × T)−1(W)), because un-cl((T × T)−1(W)) has (CP). We have µ ∈ (un-cl((T × T)−1(W)))◦. Since
T is invertible, by Lemma 2.3(b),

(un-cl((T × T)−1(W)))◦ = ((T × T)−1(W))◦ = T∗(W◦) ⊆ U◦.

Therefore µ ∈ U◦ and so (a, b) < U.

We shall say that the subset F of P2 is u-bounded if it is absorbed by each U ∈ U. The subset B of P is
called bounded below (or above) whenever {0}×B (or B×{0}) is u-bounded. The subset B is called bounded
if it is bounded below and above. An element a ∈ P is called bounded below (or above) whenever {a} is so
(see [2]).
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Theorem 2.14. Let (P,U) and (Q,W) be locally convex cones. If all of the elements of Q are bounded and P is
upper-barrelled, then:

(a) Any linear mapping T of P into Q is nearly continuous.
(b) Any linear mapping S of Q onto P is nearly open.

Proof. (a) Let W ∈ W. We show that un-cl((T×T)−1(W)) is a barrel inP, sinceP is upper-barrelled. Because
un-cl((T×T)−1(W)) has (CP), it is sufficient to prove condition (B1) for un-cl((T×T)−1(W)). Let b ∈ P. There
is a λ > 0 such that (0,T(b)) ∈ λW, since Q is a locally convex cone. Let U ∈ U be arbitrary. If a ∈ U(b)U,
then by the hypothesis, T(a) is bounded above, therefore there is a ρ > 0 such that (T(a), 0) ∈ ρW. Then
(T(a),T(b)) ∈ (λW) ◦ (ρW) ⊆ (λ + ρ)W. Hence (a, b) ∈ (λ + ρ)un-cl((T × T)−1(W)). Thus there is V ∈ U such
that V ⊆ un-cl((T × T)−1(W)), and so T is nearly continuous.

(b) We prove that un-cl((S × S)(W)) is a barrel in P. Let b ∈ P. There is x ∈ Q such that S(x) = b, since S
is onto. There is a λ > 0 such that (0, x) ∈ λW. Thus (0,S(x)) ∈ λ(S × S)(W). Let U ∈ U be arbitrary. If
a ∈ U(b)U, then there is a y ∈ Q such that S(y) = a. Now y is bounded above, thus there is a ρ > 0 such that
(y, 0) ∈ ρW. Hence (S(y), 0) ∈ ρ(S × S)(W). Therefore

(a, b) = (S(y),S(x)) ∈ (λ + ρ)(S × S)(W) ⊆ (λ + ρ)un-cl((S × S)(W)).

3. Open Mapping Type Theorems

Walter Roth proved a Uniform Boundedness theorem and Hahn-Banach type Theorems for locally
convex cones in [10] and [11] respectively. In this section of this paper, we prove some open mapping type
theorems for locally convex cones.

Definition 3.1. Let (P,U) and (Q,W) be locally convex cones. The linear operator T : (P,U) → (Q,W) is called
(uniformly) open if for every U ∈ U one can find W ∈ W such that W ⊆ (T × T)(U).

It is easy to see that if T : (P,U)→ (Q,W) is open, then it is open under the upper, lower and symmetric
topologies. If T : P → Q is open, then T is surjective. Indeed, let q ∈ Q. For every U ∈ U there is W ∈ W
such that W ⊆ (T × T)(U). By (U5), there is a λ > 0 such that (0, q) ∈ λW. Thus (0, q) ∈ (T × T)(λU). Hence
there is a p ∈ P such that (0, q) = (T × T)(0, λp), that is q = T(λp).

We say that the locally convex cone (P,U) has the strict separation property if the following holds:

(SP) For all a, b ∈ P and U ∈ U such that (a, b) < ρU for some ρ > 1, there is a linear functional µ ∈ U◦

such that µ(a) > µ(b) + 1 (see [4], II.2.12).

Theorem 3.1. Let (P,U) and (Q,W) be locally convex cones.

(i) If T from P into Q is nearly continuous, Q has (SP) and the polars of the subsets of P2 are in P∗, then T is
continuous.

(ii) If T from P onto Q is nearly open, P has (SP) and the polars of the subsets of Q2 are in Q∗, then T is open.

Proof. Let W ∈ W be arbitrary. Since T is nearly continuous, there exists U′ ∈ U such that U′ ⊆ un-cl((T ×
T)−1( 1

2 W)). Then (un-cl((T × T)−1( 1
2 W)))◦ ⊆ U′◦. By Lemma 2.1 and Lemma 2.3(b), we have

((T × T)−1(
1
2

W))◦ = (un-cl((T × T)−1(
1
2

W)))◦

and
T∗((

1
2

W)◦) ⊆ ((T × T)−1(
1
2

W))◦.

We set U = 1
2 U′, then (T × T)(U) ⊆ W. For, if (a, b) ∈ U and (T(a),T(b)) < W, then there exists µ ∈ ( 1

2 W)◦

such that µ(T(a)) > µ(T(b)) + 1, since Q has (SP). But T∗(µ) ∈ U′◦. Therefore T∗(µ)(2a) ≤ T∗(µ)(2b) + 1, that is
(µ ◦ T)(a) ≤ (µ ◦ T)(b) + 1

2 , which is a contraction. The proof of (ii) is similar to (i).
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A locally convex cone (P,U) is said to be tightly covered by its bounded elements if for all a, b ∈ P and U ∈ U
such that a < U(b) there is some bounded element a′ ∈ P such that (a′, a) ∈ V for all V ∈ U and a′ < U(b) ([4],
II.2.13).

Corollary 3.2. Let (P,U) and (Q,W) be locally convex cones.

(i) If T from P into Q is nearly continuous, (Q,W) is tightly covered by its bounded elements and the polars of
the subsets of P2 are in P∗, then T is continuous.

(ii) If T fromP ontoQ is nearly open, (P,U) is tightly covered by its bounded elements and the polars of the subsets
of Q2 are in Q∗, then T is open.

Proof. Since by the separation Theorem ([4], II.2.14), every locally convex cone (Q,W) which is tightly
covered by its bounded elements has strict separation property (SP).

We note that every locally convex cone which elements are bounded, is tightly covered by its bounded
elements. Thus Theorem 2.14 and Corollary 3.2 give immediately:

Theorem 3.3. Let (P,U) and (Q,W) be locally convex cones. Let all of the elements of Q be bounded and P be
upper-barrelled.

(a) If the polars of the subsets of P2 are in P∗, then any linear mapping T of P into Q is continuous.
(b) If the polars of the subsets of Q2 are in Q∗, then any linear mapping S of Q onto P is open.

Lemma 3.4. Let (P,U) and (Q,W) be two locally convex cones, T : P → Q be a linear operator and the polars of
the subsets of P2 be in P∗. Then for every W ∈ W,

un-cl((T × T)−1(W)) ⊆ (T × T)−1(un-cl(W)).

Proof. Let(a, b) < (T × T)−1(un-cl(W)). Since un-cl(W) has (CP), there exists µ ∈ Q∗ such that µ(T(a)) >
µ(T(b)) + 1 and µ(c) ≤ µ(d) + 1 for all (c, d) ∈ un-cl(W). We have µ ∈ (un-cl(W))◦ = W◦. Hence by Lemma
2.3(b) and Lemma 2.1,

T∗(µ) ∈ T∗(W◦) ⊆ ((T × T)−1(W))◦ = (un-cl((T × T)−1(W)))◦.

Now if (a, b) ∈ un-cl((T × T)−1(W)), then T∗(µ)(a) ≤ T∗(µ)(b) + 1 and so (µ ◦ T)(a) ≤ (µ ◦ T)(b) + 1, which is a
contradiction.

It was proved in [6] that in a locally convex cone (P,U), the set of all barrelsB is a convex quasiuniform
structure on P.

Proposition 3.5. Let (P,U) and (Q,B) be locally convex cones, where B is the convex qusiuniform structure of all
barrels. If T : P → Q is a linear operator and the polars of the subsets of P2 are in P∗, then T is continuous.

Proof. Let B ∈ B. Then there is U ∈ U such that U ⊆ un-cl((T × T)−1(B)). Therefore by Lemma 3.4, we have
U ⊆ (T × T)−1(un-cl(B)) = (T × T)−1(B).

Let (P,U) be a locally convex cone and P∗ be its dual cone. We suppose that Uσ(P,P∗) is the coarsest
convex quasiuniform structure on P that makes all µ ∈ P∗ continuous. The finite intersections of the sets
(µ × µ)−1(ε̃) where µ ∈ P∗, ε > 0 and ε̃ = {(a, b) ∈ R2 : a ≤ b + ε}, form a base for Uσ(P,P∗). We call Uσ(P,P∗)
the weak convex quasiuniform structure onP. We say that T : P → Q is weakly continuous or σ-continuous
whenever it is continuous with respect to the weak convex quasiuniform structures on P and Q.

Lemma 3.6. Let (P,U) and (Q,W) be locally convex cones and T be a linear operator from P into Q with adjoint
T∗. If T∗(Q∗) ⊆ P∗, then T is weakly continuous.
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Proof. Let W ∈ Wσ(Q,Q∗). Then there are n ∈N and µ1, ..., µn ∈ Q
∗ such that

n⋂
i=1

(µi × µi)−1(1̃) ⊆W.

Since for every i = 1, ...,n, T∗(µi) ∈ P∗, then

U =

n⋂
i=1

(T∗(µi) × T∗(µi))−1(1̃) ∈ Uσ(P,P∗).

We have (T × T)(U) ⊆ W. For, if (a, b) ∈
⋂n

i=1(T∗(µi) × T∗(µi))−1(1̃). Then we have µi(T(a)) ≤ µi(T(b)) + 1 for
every i = 1, ...,n, that is

(T(a),T(b)) ∈
n⋂

i=1

(µi × µi)−1(1̃) ⊆W.

Thus T is weakly continuous.

IfP is a cone with a convex quasiuniform structureU, then one can find a preorder (a reflexive transitive
relation≤) compatible by the algebraic operations and an (abstract) 0-neighborhood systemV (a subcone of
P without 0 directed towards 0) such that the convex quasiuniform structure Ṽ = {ṽ : v ∈ V} is equivalent
to U, where ṽ = {(a, b) : a ≤ b + v} (see [4], I.5.5).

A locally convex quotient cone was studied in [7] by means the ordered structure. Also locally convex
quotient cones investigated by Walter Roth in [9]. First we review the instruction of a locally convex
quotient cone from [7] briefly. Let P be a cone andM be a subcone of P. We consider the relation ∼ on P
as x ∼ y if and only if x +M = y +M. This equivalence relation means that x ∼ y if both x = y + m′ and
y = x + m for some m′,m ∈ M. The equivalence class x̃ is a subset of x̂ = x +M. The mapping k(x) = x̂ is
a linear mapping, which is called the canonical mapping of P onto P/M. If (P,V) is a locally convex cone
(by a preorder relation constructed) then the set P/M = {x̂ : x ∈ P} with V̂ = {v̂ : v ∈ V} is a locally convex
quotient cone. x̂ ≤ ŷ + v̂ means that for each m ∈ M there is a m′ ∈ M such that x + m ≤ y + m′ + v. This
implies in particular that x ≤ y + m′ + v for some m′ ∈ M. It was proved in [7] that

(∗) if for each v ∈ V and each m ∈ M, m ≤ v, i.e. (m, 0) ∈ ṽ,
then k is an open mapping under the lower, upper and symmetric topologies.

Lemma 3.7. With the condition (∗), k : (P, Ṽ)→ (P/M, ˜̂V) is even (uniformly) open.

Proof. We show that for every ṽ ∈ Ṽ there is ˜̂w ∈ ˜̂V such that ˜̂w ⊆ (k × k)(ṽ). Set w = v
2 . If (x̂, ŷ) ∈ ˜̂w, i.e.

x̂ ≤ ŷ+ ŵ, then there is m′ ∈ M such that x ≤ y+m′+w. Since by the condition (∗), m′ ≤ v
2 , we have x ≤ y+v,

i.e. (x, y) ∈ ṽ and so (x̂, ŷ) = (k(x), k(y)) ∈ (k × k)(ṽ).

Let (P,U) and (Q,W) be locally convex cones. The linear operator T : P → Q is called u-bounded
whenever for every u-bounded subset B of P2, (T × T)(B) is u-bounded. The locally convex cone (P,U) is
called bornological if every u-bounded linear operator from (P,U) into any locally convex cone is continuous.
If (Q,W) is a locally convex cone such that Q2 has the same u-bounded subsets underW andWσ(Q,Q∗)
and (P,U) is a bornological cone, then the weakly continuous linear operator T : P → Q is continuous (see
[2]).

Theorem 3.8. Let (P,U) and (Q,W) be two locally convex cones.

(a) Let T be a linear operator of P into Q. If P is bornological, the polars of the subsets of P2 being taken in P∗ and
Q

2 has the same u-bounded subsets underW andWσ(Q,Q∗), then T is continuous.
(b) Let T be a linear operator of P onto Q such that the condition (∗) holds for T−1(0) and T(a) = T(b) imply

a + T−1(0) = b + T−1(0) for all a, b ∈ P. If Q is bornological, the polars of the subsets of Q2 being taken in Q∗

and P2 has the same u-bounded subsets under U and Uσ(P,P∗), then T is open.
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Proof. Let T∗ be the adjoint operator. Then by Lemma 2.3,

T∗(Q∗) = T∗(
⋃

W∈W

W◦) ⊆
⋃

W∈W

T∗(W◦) ⊆
⋃

W∈W

((T × T)−1(W))◦.

Since polars are in P∗, T∗(Q∗) ⊆ P∗. Hence by Lemma 3.6, T is weakly continuous. Since P is bornological
by the hypothesis, T is continuous by the above description.

(b) We can write T = s ◦ k, where k is the canonical mapping of P onto P/T−1(0) and s is the linear mapping
ofP/T−1(0) ontoQ. The mapping s is one-to-one. For, if s(a+T−1(0)) = s(b+T−1(0)), then (s◦k)(a) = (s◦k)(b),
i.e. T(a) = T(b). By the hypothesis, a + T−1(0) = b + T−1(0). Since k is continuous, P/T−1(0) has the same
u-bounded subsets under Û and Ûσ. Therefore, by (a), s−1 is continuous. Thus s is open. On the other hand
k is open by Lemma 3.7. Therefore T is open.

Corollary 3.9. If µ is a linear functional on a bornological cone (P,U) and the polars of the subsets of P2 are in P∗,
then µ is continuous.

Proof. Since (R, Ṽ) has the same u-bounded subsets under Ṽ and Ṽσ(R,R
∗

) (see [2]).

The locally convex cone (P,U) is called a uc-cone whenever U = {αU : α > 0} for some U ∈ U. The
uc-cones in locally convex cones play the role of normed spaces in topological vector spaces. Every uc-cone
is bornological (see [2]).

Corollary 3.10. Let (P,U) and (Q,W) be two locally convex cones.

(a) If T is a linear operator of P into Q, P is a uc-cone, the polars of the subsets of P2 are in P∗ and Q2 has the same
u-bounded subsets underW andWσ(Q,Q∗), then T is continuous.

(b) Let T be a linear operator of P onto Q such that the condition (∗) holds for T−1(0) and T(a) = T(b) imply
a + T−1(0) = b + T−1(0) for all a, b ∈ P. If Q is a uc-cone, the polars of the subsets of Q2 are in Q∗ and P2 has
the same u-bounded subsets under U and Uσ(P,P∗), then T is open.

We illustrate Theorems 2.14, 3.1 and 3.8 in the following example.

Example 3.2. Let (E, ||.||) be a normed vector space with unit ball B. Let P be the subcone of Conv(E) (the
cone of all non-empty convex subsets of E) consisting of all sets a + ρB, a ∈ E, ρ ≥ 0. Then the dual cone of
P may be easily discribed: It is the set of all µ ⊕ r, where r ≥ 0 and µ is a linear functional on E such that
||µ|| ≤ r, if we define (µ ⊕ r)(a + ρB) = µ(a) + rρ. The polar of B (as an abstract neighborhood for P) consists
of those µ ⊕ r with r ≤ 1 (see [4], II, Example 2.17). Set

B̃ = {(a + ρaB, c + ρcB) ∈ P2 : a + ρaB ⊆ c + ρcB + B}

and U = {αB̃ : α > 0}. The locally convex cone (P,U) is a uc-cone and has (SP), since it is tightly covered
by its bounded elements (in fact all elements of P are bounded). The cone P is fully complete. In fact, all
subcones of P∗ are {0 ⊕ 0}, {0 ⊕ r, r ≥ 0} and P∗, which all of them are nearly closed and w(P∗,P)-closed.

Now, let (F, ||.||) be another normed vector space with unit ball U and Q = {x + λU : x ∈ F, λ ≥ 0}. Let
T : E → F be a surjective linear operator, α > 0, such that ||T(a)|| = α||a|| for all a ∈ E. We extend T to an
operator T : P → Q by T(a+ρB) = T(a)+αρU (see [4], II, Example 6.10(d)). SinceP andQ are full (containing
the abstract neighborhood systems {αB : α > 0} and {λU : λ > 0} respectively), then they are upper barreled
(see [6]). By the boundedness of the elements of these cones, the operator T is nearly continuous and nearly
open (Theorem 2.14). SinceP andQ have (SP), then T is continuous and open (Theorem 3.1). Also it is easy
to check that P, Q and T satisfy in the conditions of Theorem 3.8.

In the following example we show that a nearly continuous operator is not necessarily continuous.

Example 3.3. We consider the mapping T : (R+, Ṽ)→ (R+, Ṽ) defined as
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T(a) =

0, a = 0
+∞, a , 0.

The cone R+ = [0,+∞] with Ṽ = {ε̃ : ε > 0} is a locally convex cone, where

ε̃ = {(a, b) ∈ R+
2

: a ≤ b + ε}.

The dual cone of (R+, Ṽ) is the positive reals together with 0 which maps all a ∈ R+ into 0 and +∞ into +∞

(see [1]). The mapping T : R+ → R+ is a linear operator (we note that T is not linear from R to R.). The
linear operator T is not continuous, since for each ε > 0, (

ε
2
, 0) ∈ ε̃ but (T(

ε
2

),T(0)) < 1̃. We show that T is
nearly continuous. Let ε > 0 be arbitrary. Then

(T × T)−1(ε̃) = {(a, b) ∈ R+ ×R+ : T(a) ≤ T(b) + ε} = R+
2
\ {(a, 0) : a > 0}

has not (CP) property. The smallest set containing this set which has (CP) isR+
2
, i.e. un-cl((T×T)−1(ε̃)) = R+

2
,

and 1̃ ⊆ un-cl((T × T)−1(ε̃)). Therefore T is nearly continuous.
Also T∗(R

∗

+) * R
∗

+, for example for µ = α > 0, T∗(µ) = µ ◦ T = T which doesn’t belong to R
∗

+. We have

{0} = (un-cl((T × T)−1(ε̃)))◦ , ((T × T)−1(ε̃))◦ = {0,T}.

This shows that if the polars are not in P∗ (T ∈ L(R+), but T < R
∗

+), Lemma 2.1 dose not hold necessarily.
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