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Abstract. Harandi [A. A. Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory
Appl., 2012 (2012), 10 pages] introduced the notion of metric-like spaces as a generalization of partial metric
spaces and studied some fixed point theorems in the context of the metric-like spaces. In this paper, we
utilize the notion of the metric-like spaces to introduce and prove some common fixed points theorems
for mappings satisfying nonlinear contractive conditions in partially ordered metric-like spaces. Also, we
introduce an example and an application to support our work. Our results extend and modify some recent
results in the literature.

1. Introduction and preliminaries

The notion of partial metric space was introduced by Matthews [24] in 1994 as a part of the study of
denotational semantics of dataflow networks. He showed that the Banach contraction principle can be
generalized to the partial metric context for applications in program verification.

Definition 1.1. [24] Let Y be a nonempty set. A function p : Y × Y → [0,∞) is called a partial metric if for all
y,w, z ∈ Y, the following conditions are satisfied:

1. y = z⇔ p(y, y) = p(y, z) = p(z, z),

2. p(y, y) ≤ p(y, z),

3. p(y, z) = p(z, y),

4. p(y, z) ≤ p(y,w) + p(w, z) − p(w,w).

The pair (Y, p) is called a partial metric space.
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A sequence {yn} in a partial metric space (Y, p) converges to a point y ∈ Y if limn→∞ p(yn, y) = p(y, y). A
sequence {yn} of elements of Y is called p−Cauchy if the limn,m→∞ p(yn, ym) exists as a finite number. The
partial metric space (Y, p) is called complete if for each p-Cauchy sequence {yn}, there is some y ∈ Y such
that

p(y, y) = lim
n→∞

p(yn, y) = lim
n,m→∞

p(yn, ym).

A basic example of a partial metric space is the pair (R+, p), where p(y, z) = max{y, z} for all y, z ∈ R+. For
more examples of partial metric spaces, see [5], [22], and [29].

Moreover, an important development is reported in fixed point theory via ordered metric spaces.
The existence of a fixed point in partially ordered sets has been considered in [16], [17], [30], and [31].
Tarski’s theorem is used in [25] to show the existence of solutions for fuzzy equations and in [26] to prove
existence theorems for fuzzy differential equations. In [13], [25],[26], and [28] some applications to ordinary
differential equations and matrix equations are investigated. In [12] and [15], some fixed point theorems
were proved for a mixed monotone mapping in a metric space endowed with partial order and the authors
applied their results to problems of existence and uniqueness of solutions to some boundary value problems.
Harandi [1] introduced a new extension of the concept of partial metric space, called a metric-like space.
He established the existence and uniqueness of fixed points in a metric-like space as well as in a partially
ordered metric-like space. The purpose of this paper is to present some common fixed point theorems
involving Geraghty contraction type mappings in the context of ordered metric-like spaces. Also, we
introduce an example and an application on the existence of a unique solution of an integral equation. Our
results extend and modify some recent results in the literature.
Now, we recall the definition of the metric like space:

Definition 1.2. [1] Let Y is a nonempty set. A function σ : Y × Y → [0,∞) is said to be a metric like space (or
dislocated metric) on Y if for any y,w, z ∈ Y, the following conditions hold:

(σ1) σ(y, z) = 0⇒ y = z,

(σ2) σ(y, z) = σ(z, y),

(σ3) σ(y,w) ≤ σ(y, z) + σ(z,w).

The pair (Y, σ) is called a metric-like space.

It is clear that every metric space and partial metric space is a metric-like space but the converse is not
true.

Example 1.3. [1] Let Y = {0, 1} and

σ(y, z) =


2, if y = z = 0;

1, otherwise.

Then (Y, σ) is a metric-like space but it is not a partial metric space. Note that σ(0, 0) � σ(0, 1).

Moreover, each metric-like σ on Y generates a topology τσ on Y whose base is the family of open σ-balls

Bσ(y, ε) = {z ∈ Y :| σ(y, z) − σ(y, y) |< ε}, f or all y ∈ Y and ε > 0.

Let (Y, σ) and (Z, σ) be metric-like spaces, and let f : Y→ Z be a continuous mapping. Then

lim
n→∞

yn = y ⇒ lim
n→∞

f yn = f y.

A sequence {yn} of elements of Y is called σ-Cauchy if the limit limn,m→∞ σ(yn, ym) exists as a finite number.
The metric-like space (Y, σ) is called complete if for each σ-Cauchy sequence {Yn}, there is some y ∈ Y such
that

lim
n→∞

σ(yn, y) = σ(y, y) = lim
n,m→∞

σ(yn, ym).
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Lemma 1.4. Let (Y, σ) be a metric-like space. Let {yn} be a sequence in Y such that yn → y where y ∈ Y and
σ(y, y) = 0. Then, for all z ∈ Y, we have limn→∞ σ(yn, z) = σ(y, z).

Remark 1.5. Let Y = {0, 1}, and σ(y, z) = 1 for each y, z ∈ Y and yn = 1 for each n ∈N. Then it is easy to see that
yn → 0 and yn → 1 and so in metric-like spaces the limit of a convergent sequence is not necessarily unique.

Karapınar et al. studied many interesting fixed and common fixed point theorems in metric-like space,
see [2]-[4], [11] and [18]-[21]. Also, Aydi et al. studied some nice works in metric like spaces, see [6]-[10].

Definition 1.6. Let (Y,�) be a partially ordered set and let f , 1 : Y→ Y be two mappings. Then:

1. The elements y, z ∈ Y are called comparable if y � z or z � y holds.

2. f is called nondecreasing w.r.t. � if y � z implies f y � f z.

3. The pair ( f , 1) is said to be weakly increasing if f y � 1 f y and 1y � f1y for all y ∈ Y.

4. The mapping f is said to be weakly increasing if the pair ( f , I) is weakly increasing, where I is denoted to the
identity mapping on Y.

Definition 1.7. Let (Y,�) be a partially ordered set. Then we say that Y is regular, if whenever {wn} is a nondecreasing
sequence in Y with respect to � such that wn → w, then wn � w for all n ∈N.

In 1973, Geraghty [14] defined a class of functions Π to be the set of functions α : [0,∞)→ [0, 1) such that if
{tn} is a sequence in [0,+∞) with α(tn)→ 1, then tn → 0.

The notion of an altering distance function was presented by Khan et al. [23] as follows:

Definition 1.8. [23] A functionψ : [0,∞)→ [0,∞) is called an altering distance function, if the following conditions
hold:

1. ψ is continuous and nondecreasing,

2. ψ(t) = 0⇔ t = 0.

2. Main Result

At the beginning of this section, we introduce the following lemma which will be used efficiently in the
proof of our main result.

Lemma 2.1. Let (Y, σ) be a metric like space and let {wn} be a sequence in Y such that
limn→∞ σ(wn,wn+1) = 0. If limn,m→∞ σ(wn,wm) , 0, then there exist ε > 0 and two sequences {nl} and {ml} of positive
integers with nl > ml > l such that following three sequences {σ(y2nl , y2ml )}, {σ(y2nl−1, y2ml )}, and {σ(y2nl , y2ml+1)}
converge to ε+ when l→∞.

Proof. Let {wn} be a sequence in (Y, σ) such that limn→∞ σ(wn,wn+1) = 0 and limn,m→∞ σ(wn,wm) , 0. Then there
exist ε > 0 and two sequences {nl} and {ml} of positive integers such that nl is the smallest positive integer for which

nl > ml > l, σ(w2nl ,w2ml ) ≥ ε.

This means that
σ(w2nl−2,w2ml ) < ε.

The triangular inequality implies that

ε ≤ σ(w2nl ,w2ml ) ≤ σ(w2nl ,w2nl−1) + σ(w2nl−1,w2nl−2) + σ(w2nl−2,w2ml )
≤ σ(w2nl ,w2nl−1) + σ(w2nl−1,w2nl−2) + ε.
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Letting l→∞ in the above inequalities, implies that

lim
l→∞

σ(y2nl , y2ml ) = ε+. (1)

Again, from the triangular inequality, we can deduce that

| σ(y2nl , y2ml+1) − σ(y2nl , y2ml ) |≤ σ(y2ml , y2ml+1).

Letting l→∞ in the above inequality. Then we have

lim
l→∞

σ(y2nl , y2ml+1) = ε+.

Similarly, one can easily show that
lim
l→∞

σ(y2nl−1, y2ml ) = ε+.

Definition 2.2. Let (Y,�, σ) be a partially ordered metric like space and f , 1 : Y→ Y be two mappings. Then we say
that the pair ( f , 1) is of generalized (ψ, β)-Geraghty contraction type if there exist α ∈ Π, ψ ∈ Ψ, and a continuous
function β : [0,∞)→ [0,∞) with β(t) ≤ ψ(t) for all t > 0 such that

ψ(σ( f y, 1z)) ≤ α(My,z)β(My,z), (2)

holds for all comparable elements y, z ∈ Y, where

My,z = max{σ(y, z), σ(y, f y), σ(z, 1z)}.

Theorem 2.3. Let (Y,�, σ) be a complete partially ordered metric like space and f , 1 : Y → Y be two mappings
satisfying the following conditions:

1. The pair ( f , 1) is weakly increasing.

2. The pair ( f , 1) is of generalized (ψ, β)-Geraghty contraction type.

3. Either f or 1 is continuous.

Then f and 1 have a common fixed point u ∈ Y with σ(u,u) = 0. Furthermore, assume that if z1, z2 ∈ Y such
σ(z1, z1) = σ(z2, z2) = 0 implies that z1 and z2 are comparable. Then the common fixed point of f and 1 is unique.

Proof. Choose y0 ∈ Y. Let y1 = f y0 and y2 = 1y1. Continuing in this way, we construct a sequence {yn} in Y
defined by:

y2n+1 = f y2n and y2n+2 = 1y2n+1.

Since the pair ( f , 1) is weakly increasing, we have

y1 = f y0 � 1 f y0 = y2 = f y1 =� ...y2n � 1 f y2n = y2n+2 � ....

Thus yn � yn+1, for all n ∈ N. If there exists some k ∈ N such that σ(y2k, y2k+1) = 0. Then y2k = y2k+1
and hence y2k is a fixed point of f . To show that y2k is also a fixed point of 1 it is enough to show that
y2k = y2k+1 = y2k+2.
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Assume σ(y2k+1, y2k+2) , 0. Since y2k � y2k+1, then by (2), we have

ψ(σ(y2k+1, y2k+2))
= ψ(σ( f y2k, 1y2k+1))
≤ α(My2k ,y2k+1 )β(My2k ,y2k+1 )
≤ α(max{σ(y2k, y2k+1), σ(y2k, f y2k), σ(y2k+1, 1y2k+1)})β(max{σ(y2k, y2k+1),

σ(y2k, f y2k), σ(y2k+1, 1y2k+1)})
= α(max{σ(y2k, y2k+1), σ(y2k, y2k+1), σ(y2k+1, y2k+2)})β(max{σ(y2k, y2k+1),

σ(y2k, y2k+1), σ(y2k+1, y2k+2)})
= α(σ(y2k+1, y2k+2))β(σ(y2k+1, y2k+2))
< β(σ(y2k+1, y2k+2))
≤ ψ(σ(y2k+1, y2k+2)), (3)

which is a contradiction. So σ(y2k+1, y2k+2) = 0, that is, y2k = y2k+1 = y2k+2. Thus y2k is a common fixed point
for f and 1.
Now, we assume that σ(yn, yn+1) , 0 for all n ∈N. If n is even, then n = 2t for some t ∈N.

ψ(σ(yn, yn+1))
= ψ(σ(y2r, y2r+1))
= ψ(σ( f y2r, 1y2r−1))
≤ α(max{σ(y2r−1, y2r), σ(y2r−1, 1y2r−1), σ(y2r, f y2r)})β(max{σ(y2r−1, y2r),

σ(y2r−1, 1y2r−1), σ(y2r, f y2r)})
= α(max{σ(y2r−1, y2r), σ(y2r, y2r+1)})β(max{σ(y2r−1, y2r), σ(y2r, y2r+1)})
< β(max{σ(y2r−1, y2r), σ(y2r, y2r+1)}). (4)

Assume
max{σ(y2r−1, y2r), σ(y2r, y2r+1)} = σ(y2r, y2r+1).

By (4), we get
ψ(σ(y2r, y2r+1)) < ψ(σ(y2r, y2r+1),

which is a contradiction. Thus

max{σ(y2r−1, y2r), σ(y2r, y2r+1)} = σ(y2r, y2r−1).

Therefore
ψ(σ(y2n, y2n+1)) < ψ(σ(y2n−1, y2n)).

Since ψ is an altering distance function, we conclude that

σ(y2n, y2n+1) ≤ σ(y2n−1, y2n) (5)

holds for all n ∈N. If n is odd, then n = 2t + 1 for some t ∈N. By (2), we have

ψ(σ(yn, yn+1))
= ψ(σ(y2r+1, y2r+2))
= ψ(σ( f y2r, 1y2r+1))
≤ α(max{σ(y2r, y2r+1), σ(y2r, f y2r), σ(y2r+1, 1y2r+1)})

β(max{σ(y2r, y2r+1), σ(y2r, f y2r), σ(y2r+1, 1y2r+1)})
= α(σ(y2r, y2r+1), σ(y2r+1, y2r+2)})β(σ(y2r, y2r+1), σ(y2r+1, y2r+2)})
< β(σ(y2r, y2r+1), σ(y2r+1, y2r+2)). (6)
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Assume that max{σ(y2r, y2r+1), σ(y2r+1, y2r+2)} = σ(y2r+1, y2r+2).
By (6), we get ψ(σ(y2r+1, y2r+2)) < ψ(σ(y2r+1, y2r+2)), which is a contradiction. Thus

max{σ(y2r, y2r+1), σ(y2r+1, y2r+2)} = σ(y2r, y2r+1).

Therefore

ψ(σ(yn, yn+1)) < ψ(σ(yn−1, yn)).

Since ψ is an altering distance function, we deduce that

σ(y2n+1, y2n+2) ≤ σ(y2n, y2n+1) (7)

holds for all n ∈N. Combining (5) and (7) together, we have

σ(yn, yn+1) ≤ σ(yn−1, yn) (8)

holds for all n ∈ N. Therefore, the sequence {σ(yn, yn+1)} is a decreasing sequence. Thus, there exists u ≥ 0
such that

lim
n→∞

wn = lim
n→∞

σ(yn, yn+1) = u.

Now we prove that u = 0. Suppose the contrary, that is u > 0. From (4) and (6), we have

ψ(σ(yn, yn+1)) ≤ α(σ(yn−1, yn))β(σ(yn−1, yn)).

Taking the limit lim sup in the above inequality, implies that ψ(u) < β(u) ≤ ψ(u), which is a contradiction.
Therefore u = 0. This implies that

wn = σ(yn, yn+1)→ 0 as n→∞. (9)

Now, we prove that
lim

n,m→∞
σ(yn, ym) = 0.

Suppose that
lim

n,m→∞
σ(yn, ym) , 0.

By Lemma 2.1, there exist ε > 0 and two sequences {ynl } and {yml } of {yn} with 2nl > 2ml ≥ l such that the
following three sequences

{σ(y2nl , y2ml )}, {σ(y2nl−1, y2ml )}, {σ(y2nl , y2ml+1)} (10)

converge to ε+ when l→∞. From (2), we have

ψ(σ(y2nl , y2ml+1)) = ψ(σ( f y2ml , 1y2nl−1))
≤ α(My2ml ,y2nl−1 )β(My2ml ,y2nl−1 ), (11)

where

My2ml ,y2nl−1 = max{σ(y2nl−1, y2ml ), σ(y2nl−1, 1y2nl−1 ), σ(y2ml , f y2ml )}
= max{σ(y2nl−1, y2ml ), σ(y2nl−1, y2nl ), σ(y2ml , y2ml+1)}.

Letting l→∞ in (11) and using the properties of ψ, α and β, we conclude that

ψ(ε) ≤ α(ε)β(ε)
< β(ε)
≤ ψ(ε),
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a contradiction. Therefore
lim

n,m→∞
σ(yn, ym) = 0,

that is, {yn} is a σ−Cauchy sequence in Y. From the completeness of (Y, σ), there exists w ∈ Y such that

lim
n→∞

σ(yn,w) = σ(w,w) = lim
n,m→∞

σ(yn, ym) = 0. (12)

Since f and 1 are continuous, we get

lim
n→∞

σ(yn+1, 1w) = σ( f yn+1, 1w) = σ( f w, 1w), (13)

lim
n→∞

σ( f w, yn+1) = σ( f w, 1yn) = σ( f w, 1w). (14)

By Lemma 1.4 and (12), we obtain

lim
n→∞

σ(yn+1, 1w) = σ(w, 1w), (15)

and

lim
n→∞

σ( f w, yn+1) = σ( f w,w). (16)

Combining (13) and (15), we deduce that σ(w, 1w) = σ( f w, 1w). Also, by (14) and (16), we deduce that
σ( f w,w) = σ( f w, 1w). So

σ(w, 1w) = σ( f w,w) = σ( f w, 1w). (17)

Now we show that σ(w, 1w) = 0. Suppose to the contrary, that is, σ(w, 1w) > 0. Since w � w, we obtain

ψ(σ(w, 1w)) = ψ(σ( f w, 1w))
≤ α(Mw,w)β(Mw,w), (18)

where

Mw,w = max{σ(w,w), σ(w, f w), σ(w, 1w)}
= max{σ(w, 1w), σ(w, 1w)} = σ(w, 1w).

Therefore, from (18), we get

ψ(σ(w, 1w)) ≤ α(σ(w, 1w))β(σ(w, 1w)) < β(σ(w, 1w) ≤ ψ(σ(w, 1w), (19)

which is a contradiction. Therefore we have σ(w, 1w) = 0. Hence 1w = w. From (17), we conclude that
σ(w, f w) = 0. Thus f w = w. So w is a common fixed point of f and 1. To prove the uniqueness of the
common fixed point, we assume that v is another fixed point of f and 1. Now we show that σ(v, v) = 0.
Suppose to the contrary, that is, σ(v, v) > 0. Since v � v, we have

ψ(σ(v, v)) = ψ(σ( f v, 1v))
≤ α(σ(v, v))β(σ(v, v))
< β(σ(v, v))
≤ ψ(σ(v, v))

which is a contradiction. Thus σ(v, v) = 0. So by the additional conditions on Y, we conclude that w and v
are comparable. Now assume that σ(w, v) , 0. Then

ψ(σ(w, v)) = ψ(σ( f w, 1v))
≤ α(σ(w, v))β(σ(w, v))
< β(σ(w, v))
≤ ψ(σ(w, v))
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which is a contradiction. Thus σ(w, v) = 0. Hence w = v. Thus f and 1 have a unique common fixed
point.

The continuity of f or 1 in Theorem 2.3 can be dropped if we assume that Y is regular. Thus, we have
the following theorem:

Theorem 2.4. Let (Y,�, σ) be a complete partially ordered metric like space and f , 1 : Y → Y be two mappings
satisfying the following conditions:

1. The pair ( f , 1) is weakly increasing.

2. The pair ( f , 1) is generalized (ψ, β)-Geraghty contraction type.

3. Y is regular.

Then f and 1 have a common fixed point u ∈ Y with σ(u,u) = 0. Furthermore, assume that if z1, z2 ∈ Y such
σ(z1, z1) = σ(z2, z2) = 0 implies that z1 and z2 are comparable. Then the common fixed point of f and 1 is unique.

Proof. Following the proof of Theorem 2.3, we construct a sequences {yn} in Y such that yn → u ∈ Y with σ(u,u) = 0.
Now, we prove that u is a common fixed point of f and 1.
By regularity of Y, we have

yn � u f or all n ∈N.

So for any n ∈N, the elements yn and u are comparable.
Now, we prove that σ(u, 1u) = 0. Suppose to the contrary, that is σ(u, 1u) > 0.
By (2), we have

ψ(σ(y2n+1, 1u))
= ψ(σ( f y2n, 1u))
≤ α(max{σ(y2n,u), σ(y2n, f y2n), σ(u, 1u)})β(max{σ(y2n,u), σ(y2n, f y2n), σ(u, 1u)})
= α(max{σ(y2n,u), σ(y2n, y2n+1), σ(u, 1u)})β(max{σ(y2n,u), σ(y2n, y2n+1), σ(u, 1u)}).

Letting n→ +∞ in above inequalities, we conclude that

ψ(σ(u, 1u)) ≤ α(σ(u, 1u))β(σ(u, 1u)).

Using the properties of ψ, α and β, we conclude that ψ(σ(u, 1u)) < ψ(σ(u, 1u)), a contradiction. Thus, σ(u, 1u) = 0.
Hence u is a fixed point of 1. Using similar arguments as above, we can show that u is a fixed point of f . The
uniqueness of the common fixed point of f and 1 is obtained by similar arguments as those given in the proof of
Theorem 2.3.

Corollary 2.5. Let (Y,�, σ) be a partially ordered complete metric like space and f : Y→ Y be a mapping satisfying
the following conditions:

1. There exist ψ ∈ Ψ, α ∈ Π and a continuous function β : [0,+∞)→ [0,+∞) with β(t) ≤ ψ(t) for all t > 0 such
that

ψ(σ( f x, f y)) ≤ α(max{σ(x, y), σ(x, f x), σ(y, f y)})β(max{σ(x, y), σ(x, f x), σ(y, f y)})

holds for all comparable x, y ∈ Y.

2. f y � f ( f y) for all y ∈ Y.

3. f is continuous.

Then f has a fixed point u ∈ Y such that σ(u,u) = 0. Furthermore, assume that if z1, z2 ∈ Y such σ(z1, z1) =
σ(z2, z2) = 0 implies that z1 and z2 are comparable. Then the fixed point of f is unique.

Proof. It follows from Theorem 2.3 by putting 1 = f .
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The continuity of f in Corollary 2.5 can be dropped:

Corollary 2.6. Let (Y,�, σ) be a partially ordered complete metric like space and f : Y→ Y be a mapping satisfying
the following conditions:

1. There exist ψ ∈ Ψ, α ∈ Π and a continuous function β : [0,+∞)→ [0,+∞) with β(t) ≤ ψ(t) for all t > 0 such
that

ψ(σ( f x, f y)) ≤ α(max{σ(x, y), σ(x, f x), σ(y, f y)})β(max{σ(x, y), σ(x, f x), σ(y, f y)})

holds for all comparable x, y ∈ Y.

2. f y � f ( f y) for all y ∈ Y.

3. Y is regular.

Then f has a fixed point u ∈ Y such that σ(u,u) = 0. Furthermore, assume that if z1, z2 ∈ Y such σ(z1, z1) =
σ(z2, z2) = 0 implies that z1 and z2 are comparable. Then the fixed point of f is unique.

Proof. It follows from Theorem 2.4 by putting 1 = f .

The following two corollaries are direct results of Theorem 2.3 and Theorem 2.4 respectively.

Corollary 2.7. Let (Y,�, σ) be a partially ordered complete metric like space and f , 1 : Y → Y be two mappings
satisfying the following conditions:

1. There exist ψ ∈ Ψ, α ∈ Π and a continuous function β : [0,+∞)→ [0,+∞) with β(t) ≤ ψ(t) for all t > 0 such
that

ψ(σ( f x, 1y)) ≤ α(σ(x, y))β(σ(x, y))

holds for all comparable x, y ∈ Y.

2. The pair ( f , 1) is weakly increasing.

3. Either f or 1 is continuous.

Then f and 1 have a common fixed point u ∈ Y such that σ(u,u) = 0. Furthermore, assume that if z1, z2 ∈ Y such
σ(z1, z1) = σ(z2, z2) = 0 implies that z1 and z2 are comparable. Then the common fixed point of f and 1 is unique.

The continuity of f or 1 in Corollary 2.9 can be dropped:

Corollary 2.8. Let (Y,�, σ) be a partially ordered complete metric like space and f , 1 : Y → Y be two mappings
satisfying the following conditions:

1. There exist ψ ∈ Ψ, α ∈ Π and a continuous function β : [0,+∞)→ [0,+∞) with β(t) ≤ ψ(t) for all t > 0 such
that

ψ(σ( f x, 1y)) ≤ α(σ(x, y))β(σ(x, y))

holds for all comparable x, y ∈ Y.

2. The pair ( f , 1) is weakly increasing.

3. Y is regular.

Then f and 1 have a common fixed point u ∈ Y such that σ(u,u) = 0. Furthermore, assume that if z1, z2 ∈ Y such
σ(z1, z1) = σ(z2, z2) = 0 implies that z1 and z2 are comparable. Then the common fixed point of f and 1 is unique.

The following two corollaries are consequence results of Corollary 2.9 and Corollary 2.10, respectively.

Corollary 2.9. Let (Y,�, σ) be a partially ordered complete metric like space and f : Y→ Y be a mapping satisfying
the following conditions:
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1. There exist ψ ∈ Ψ, α ∈ Π and a continuous function β : [0,+∞)→ [0,+∞) with β(t) ≤ ψ(t) for all t > 0 such
that

ψ(σ( f x, f y)) ≤ α(σ(x, y))β(σ(x, y))

holds for all comparable x, y ∈ Y.

2. f y � f ( f y) for all y ∈ Y.

3. f is continuous.

Then f has fixed point u ∈ Y such thatσ(u,u) = 0. Furthermore, assume that if z1, z2 ∈ Y suchσ(z1, z1) = σ(z2, z2) = 0
implies that z1 and z2 are comparable. Then the fixed point of f is unique.

The continuity of f or 1 in Corollary 2.9 can be dropped:

Corollary 2.10. Let (Y,�, σ) be a partially ordered complete metric like space and f : Y→ Y be a mapping satisfying
the following conditions:

1. There exist ψ ∈ Ψ, α ∈ Π and a continuous function β : [0,+∞)→ [0,+∞) with β(t) < ψ(t) for all t > 0 such
that

ψ(σ( f x, f y)) ≤ α(σ(x, y))β(σ(x, y))

holds for all comparable x, y ∈ Y.

2. f y � f ( f y) for all y ∈ Y.

3. Y is regular.

Then f has a fixed point u ∈ Y such that σ(u,u) = 0. Furthermore, assume that if z1, z2 ∈ Y such σ(z1, z1) =
σ(z2, z2) = 0 implies that z1 and z2 are comparable. Then the fixed point of f is unique.

Example 2.11. Let Y = {0, 1, 4} be equipped with the following partial order �:

�:= {(0, 0), (1, 1), (4, 4), (1, 0)}

Define a metric like function σ : Y × Y → R by σ(0, 0) = 0, σ(1, 1) = σ(4, 4) = 8, σ(1, 4) = σ(4, 1) = 4,
σ(4, 0) = σ(0, 4) = 4, and σ(0, 1) = σ(1, 0) = 4. It is easy to see that (Y, σ) is a complete metric like space. Also, define
f , 1 : Y→ R+ by

f =

(
0 1 4
0 0 1

)
, 1 =

(
0 1 4
0 1 0

)
.

It is an easy matter to see that the pair ( f , 1) is weakly increasing mapping with respect to � and that f and 1 are
continuous. Defineψ : [0;∞)→ [0;∞) byψ(t) = 1

e t, and β(t) = 1
1.1e t. Also, define α : [0,+∞)→ [0, 1) by α(t) = e

−t
16

if t > 0 and α(0) = 0.We next verify that the functions ( f , 1) satisfies the inequality (2). For that, given y, z ∈ Y with
y � z. Then we have the following cases:
Case 1: y = 0 and z = 0. Then

ψ(σ( f 0, 10)) = ψ(σ(0, 0)) = 0 ≤ α(M1,0)β(M1,0).

Case 2: y = 1 and z = 1. Then

ψ(σ( f 1, 11)) = ψ(σ(0, 1)) = ψ(4) =
4
e
,

and
M1,1 = max{8, 4, 8} = 8.
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So
α(M1,1)β(M1,1) = α(8)β(8) = e−

1
2

8
1.1e

.

Hence
ψ(σ( f 1, 11)) ≤ α(M1,1)β(M1,1).

Case 3: y = 4 and z = 4. Then

ψ(σ( f 4, 14)) = ψ(σ(1, 0)) = ψ(4) =
4
e
,

and
M4,4 = max{8, 4, 4} = 8.

So
α(M4,4)β(M4,4) = α(8)β(8) = e−

1
8

8
1.1e

.

Hence
ψ(σ( f 4, 14)) ≤ α(M4,4)β(M4,4).

Case 4: 1 � 0. Then, we have two subcases:
Subcase I: y = 1 and z = 0.. Then

ψ(σ( f 1, 10)) = ψ(σ(0, 0)) = 0 ≤ α(M1,0)β(M1,0).

Subcase II: y = 0 and z = 1. Then

ψ(σ( f 0, 11)) = ψ(σ(0, 1)) = ψ(4) =
4
e
,

and
M0,1 = max{0, 0, 8} = 8.

So
α(M0,1)β(M0,1) = α(8)β(8) = e−

1
2

8
1.1e

.

Hence
ψ(σ( f 0, 11)) ≤ α(M0,1)β(M0,1).

Thus, all the conditions of Theorem 2.3 are satisfied and hence f and 1 have a common fixed point. Indeed, 0 is a
common fixed point of f and 1.

3. Application

Let Y = C([0, 1],R) be the set of real continuous functions defined on [0, 1]. Take the metric-like
σ : Y × Y→ [0,∞) given by

σ(y, z) =‖ y − z ‖∞= sup
t∈[0,1]

| y(t) − z(t) |,

for all y, z ∈ Y. Then (Y, σ) is a complete metric-like space. Consider the integral equation

1(t) +

∫ 1

0
S(t, r) f (r, y(r))dr; t ∈ [0, 1] (20)

The purpose of this section is to give an existence solution to (3.1) that belongs to Y = C(I; R) (the set of
continuous real functions defined on I = [0, 1]), by using the obtained result in Corollary 2.5. We endow Y
with the partial order � given by:

y � z⇔ y(t) � z(t) f or all t ∈ [0, 1].
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We suppose that f : [0, 1] ×R→ R and 1 : [0, 1]→ R are two continuous. Now,we de
ne S : [0, 1] × [0, 1]→ [0,∞)

Fy(t) = 1(t) +

∫ 1

0
S(t, r) f (r, y(r))dr; t ∈ [0, 1] (21)

for all y ∈ Y. Then, a solution to (20) is a fixed point of f . We will prove the following result.

Theorem 3.1. Suppose that the following conditions are satisfied:

1. there exists ζ : Y × Y→ [0, 1) such that for all r ∈ [0, 1] and for all y, z ∈ Y

0 ≤| f (r, y(r)) − f (r, z(r)) |≤ ζ(y, z) | y(r) − z(r) |,

2. there exists α : [0,∞)→ [0, 1) such that

lim
n→∞

α(tn) = 1 ⇒ lim
n→∞

tn = 0,

and

‖

∫ 1

0
S(t, r)ζ(y, z)dr ‖∞≤ (‖ y − z ‖∞).

Then the integral equation (20) has a unique solution in Y.

Proof. Clearly, any fixed point of (21) is a solution to (20). By conditions (i) and (ii), we obtain

| f (y)(t) − f (z)(t) | =

∣∣∣∣∣∣
∫ 1

0
S(t, r)[ f (r, y(r)) − f (r, z(r))]dr

∣∣∣∣∣∣
≤

∫ 1

0
S(t, r) | f (r, y(r)) − f (r, z(r)) | dr

≤

∫ 1

0
S(t, r)ζ(y, z) | f (r, y(r)) − f (r, z(r)) | dr

≤

∫ 1

0
S(t, r)ζ(y, z) ‖ y − z ‖∞ dr

≤ σ(y, z)
∫ 1

0
S(t, r)ζ(y, z)dr

≤ α(σ(y, z))σ(y, z).

Then we have

‖ f (y)(t) − f (z)(t) ‖∞≤ α(σ(y, z))σ(y, z).

Thus for ally, z ∈ Y, we obtain
σ( f y, f z) ≤ α(σ(y, z))σ(y, z)

This implies that the hypotheses of Corollary 2.5 hold. Thus the operator f has a unique fixed point, that is, the
integral equation (21) has a unique solution in Y.
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[3] H. Alsulami, S.Gülyaz, E. Karapınar, I. Erhan, An Ulam stability result on quasi-b-metric-like spaces, Open Mathematics, Volume 14,

Issue 1 (Jan 2016).
[4] H. H. Alsulami, E.Karapınar and H.Piri, Fixed Points of Modified F-Contractive Mappings in Complete Metric-Like Spaces, Journal of

Function Spaces, Volume 2015 (2015), Article ID 270971, 9 pages
[5] H. Aydi, Fixed point results for weakly contractive mappings in ordered partial metric spaces. J. Adv. Math. Stud. 4(2),1-12(2011)
[6] H. Aydi, A. Felhi, Best proximity points for cyclic Kannan-Chatterjea- Ciric type contractions on metric-like spaces, Journal of Nonlinear

Sciences and Application, 9, 2458–2466 (2016)
[7] H. Aydi, A. Felhi, S. Sahmim, On common fixed points for (alpha,psi)-contractions and generalized cyclic contractions in b-metric-like

spaces and consequences, Journal of Nonlinear Sciences and Application, 9, 2492–2510 (2016)
[8] H. Aydi, A. Felhi, On best proximity points for various alpha-proximal contractions on metric-like spaces, Journal of Nonlinear Sciences

and Application, 9, 5202–5218 (2016)
[9] H. Aydi, A. Felhi, H. Afshari, New Geraghty type contractions on metric-like spaces, Journal of Nonlinear Sciences and Application,

10, 780–788 (2017).
[10] H. Aydi, A. Felhi, S. Sahmim, Common fixed points via implicit contractions on b-metric-like spaces, Journal of Nonlinear Sciences and

Application, 10, 1524–1537 (2017)
[11] H.Aydi and E. Karapınar, Fixed point results for generalized α−ψ-contractions in metric-like spaces and applications, Electronic Journal

of Differential Equations, Vol. 2015 (2015), No. 133, pp. 1-15.
[12] L. Ciric, N. Cakid, M. Rajovic, JS. Uma, Monotone generalized nonlinear contractions in partially ordered metric spaces. Fixed Point

Theory Appl. 2008, Article ID 131294 (2008)
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