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Abstract. This paper represents a generalization of the stability result on the Euler-Maruyama solution,
which is established in the paper M. Milošević, Almost sure exponential stability of solutions to highly nonlinear
neutral stochastics differential equations with time-dependent delay and Euler-Maruyama approximation, Math.
Comput. Model. 57 (2013) 887 – 899. The main aim of this paper is to reveal the sufficient conditions for the
global almost sure asymptotic exponential stability of the θ-Euler-Maruyama solution (θ ∈ [0, 1

2 ]), for a class
of neutral stochastic differential equations with time-dependent delay. The existence and uniqueness of
solution of the approximate equation is proved by employing the one-sided Lipschitz condition with respect
to the both present state and delayed arguments of the drift coefficient of the equation. The technique used
in proving the stability result required the assumption θ ∈ (0, 1

2 ],while the method is defined by employing
the parameter θ with respect to the both drift coefficient and neutral term. Bearing in mind the difference
between the technique which will be applied in the present paper and that used in the cited paper, the
Euler-Maruyama case (θ = 0) is considered separately. In both cases, the linear growth condition on the
drift coefficient is applied, among other conditions. An example is provided to support the main result of
the paper.

1. Introduction and Preliminary Results

Stochastic differential equations are well-known for describing those phenomena which are influenced
by some random factors. Often the investigation of such phenomena requires more complex models based
on (neutral) stochastic differential delay equations or (neutral) stochastic functional differential equations.
In most cases these equations cannot be solved explicitly, so it is necessary to study the approximate
solutions. There is an extensive literature based on the analysis of different properties of the exact and
approximate solutions of stochastic differential equations (see, for example [1, 4–9, 12, 13, 17]).

Very important issue in the analysis of stochastic differential equations is to determine the conditions
under which the exact and approximate solutions share some stability properties. There are many papers,
such as [2, 10, 14, 16, 18–20], where the authors studied a.s. exponential stability of different approximate
solutions for several classes of stochastic differential equations.
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The subject of this paper is consideration of the θ-Euler-Maruyama method, when θ ∈ [0, 1
2 ], for a class

of neutral stochastic differential equations with time-dependent delay under the linear growth condition on
the drift coefficient of the equation, among other conditions. Because of the presence of the time-dependent
delay, this method could be implicit with respect to the present-state argument of the drift, as well as, with
respect to the delayed arguments of the drift and neutral term. For that reason, the technique which is used
in this paper differs from those used in the context of some other classes of stochastic differential equations.
Significant contribution to the analysis of the θ-Euler-Maruyama method for neutral stochastic differential
delay equations is given in [2], where authors considered the case when the delay is constant and θ ∈ ( 1

2 , 1].
In this case, the method is implicit only with respect to the present-state argument of the drift. Moreover, in
[19] and [20], one can find the analysis of the θ-methods for stochastic differential equations with constant
delay and for neutral stochastic differential equations with constant delay, respectively.

As usual, we first present some standard notations and definitions which are necessary for further
consideration. The initial assumption is that all random variables and processes considered here are defined
on a complete probability space (Ω,F , {Ft}t≥0,P) with filtration {Ft}t≥0 satisfying the usual conditions (that
is, it is increasing and right-continuous, and F0 contains all P-null sets). Let w = {w(t), t ≥ 0} be an m-
dimensional standard Brownian motion. Let |x| stand for the Euclidean norm of x ∈ Rd and, for simplicity,
|A|2 = trace(ATA) for matrix A, where AT is the transpose of a vector or a matrix.

For a given τ > 0, denote by C([−τ, 0]; Rd) the family of continuous functions ϕ : [−τ, 0] → Rd with
the supremum norm ‖ϕ‖ = sup

−τ≤t≤0 |ϕ(t)|. Also, denote by Cb
F0

([−τ, 0]; Rd) the family of F0-measurable,
C([−τ, 0]; Rd)-valued bounded random variables.

Let δ : R+ → [0, τ] be the delay function which is Borel-measurable. We consider the following neutral
stochastic differential equation with time-dependent delay

d[x(t) − u(x(t − δ(t)), t)] = f (x(t), x(t − δ(t)), t)dt + 1(x(t), x(t − δ(t)), t)dw(t), t ≥ 0, (1)

satisfying the initial condition

x0 = ϕ = {ϕ(t) : t ∈ [−τ, 0]} ∈ Cb
F0

([−τ, 0]; Rd), (2)

where the functions

f : Rd
× Rd

× R+ → Rd, 1 : Rd
× Rd

× R+ → Rd×m, u : Rd
× R+ → Rd

are all Borel-measurable and x(t) is a d-dimensional state process.
A d-dimensional stochastic process {x(t), t ≥ −τ} is said to be a solution to Eq.(1) if it is a.s. continuous,

Ft-adapted,
∫
∞

0 | f (x(t), x(t − δ(t)), t)|dt < ∞ a.s.,
∫
∞

0 |1(x(t), x(t − δ(t)), t)|2dt < ∞ a.s, x0 = ϕ a.s, and for every
t ≥ 0 the integral form of Eq.(1) holds a.s.

For the purpose of the following consideration we impose the assumptions which will be used explicitly
in the paper.
A1 : There exists a positive constant K such that, for all x, y ∈ Rd and all t ≥ 0,

| f (x, y, t)|2 ≤ K(|x|2 + |y|2). (3)

A2 : There exists a constant β ∈ (0, 1) such that, for all x, y ∈ Rd and all t ≥ 0,

|u(x, t) − u(y, t)| ≤ β|x − y|. (4)

Additionally, if u(0, t) = 0, t ≥ 0, then (4) implies that for all x ∈ Rd,

|u(x, t)| ≤ β|x|. (5)

A3 : The delay function δ : R+ → [0, τ] is differentiable and |δ′(t)| ≤ η, t ≥ 0, where η ∈ (0, 1).

It should be stressed thatA3 implies that

|δ(t) − δ(s)| ≤ η|t − s|, t, s ≥ 0. (6)
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A4 : Assume that there exist constants α1 and α2, for which α1 >
α2

1−η > 0, such that, for all x, y ∈ Rd and
all t ≥ 0,

2(x − u(y, t))T f (x, y, t) + |1(x, y, t)|2 ≤ −α1|x|2 + α2|y|2. (7)

Also, we will assume that

f (0, 0, t) = 1(0, 0, t) = u(0, t) = 0, t ≥ 0. (8)

On the basis of the papers [12] and [13], one can conclude that hypothesesA2 −A4, together with the local
Lipschitz condition on f and 1 and the assumption (8), guarantee the existence and uniqueness of the global
solution of Eq.(1), which is almost surely exponentially stable. Results from [13] suggested to employA4,
as well as the linear growth conditionA1 on the drift coefficient of Eq. (1), in order to prove the almost sure
exponential stability of the θ-Euler-Maruyama solution.

It should be pointed out that this paper represents a generalization of the stability result on the Euler-
Maruyama solution, which is established in [13], due to the fact that the consideration in this paper is
based on the assumption that θ ∈ [0, 1

2 ]. However, the technique which will be used in the present paper is
different from the one applied in [13] and it is mainly addressed to the case when θ ∈ (0, 1

2 ]. Since it could
not be applied in its original form in the Euler-Maruyama case (θ = 0), we will consider that case separately.

Since the equations which determines the θ-Euler-Maruyama solution are implicit, the first item that
need to be considered is the existence and uniqueness of solutions of these equations. In that sense, we will
employ the one-sided Lipschitz conditions in the first and second argument of the function f , which are
given within the assumption C1.
C1: Let f ∈ C(Rd

× Rd
× R+; Rd) and suppose that there exist constants µ1, µ2 > 0 such that, for all

x, y, z ∈ Rd and all t ≥ 0,

〈x − y, f (x, z, t) − f (y, z, t)〉 ≤ µ1|x − y|2, (9)
〈x − y, f (z, x, t) − f (z, y, t)〉 ≤ µ2|x − y|2. (10)

Moreover, we introduce the following lemmas which will be used in proving the stability results. The
first one represents an elementary inequality, while the second one is proved in [13] (see Lemma 3).

Lemma 1.1. For all a, b > 0, p ≥ 1, c > 0, we have that

(a + b)p
≤ (1 + c)p−1(ap + c1−pbp).

From Lemma 1.1 and assumption (5), if c = β, then we conclude that for all x, y ∈ Rd, t ≥ 0,

|x − u(y, t)|p ≤ (1 + β)p−1(|x|p + β|y|p). (11)

In the sequel, we will use [·] to denote the integer part function.

Lemma 1.2. Assume that (6) holds. For any i ∈ {0, 1, 2, . . .}, let i−[δ(i∆)/∆] = a, where a ∈ {−n∗,−n∗+1,..., 0, 1, ..., i}.
Then,

#{ j ∈ {0, 1, 2, . . .} : j − [δ(i∆)/∆] = a} ≤ [(1 − η)−1] + 1,

where #S denotes the number of elements of the set S.

2. Almost Sure Exponential Stability of the θ-Euler-Maruyama Solution when θ ∈ (0, 1
2 ]

First, let us present the autonomous version of the initial equation (1), that is,

x(t) = ϕ(0) + u(x(t − δ(t))) − u(x(−δ(0))) +

∫ t

0
f (x(s), x(s − δ(s)))ds (12)

+

∫ t

0
1(x(s), x(s − δ(s)))dw(s), t ≥ 0,



M. Obradović, M. Milošević / Filomat 31:18 (2017), 5629–5645 5632

satisfying the initial condition x(t) = ϕ(t), t ∈ [−τ, 0].
In the sequel we will assume that, instead of the assumptions A1–A4, (8) and C1, their autonomous

versions hold.
Choose a step size ∆ ∈ (0, 1) such that ∆ = τ/n∗ for some integer n∗ > τ. We will define the discrete

θ-Euler-Maruyama approximate solution q corresponding to Eq.(12) on the equidistant partition k∆, k =
−(n∗ + 1),−n∗, ...,−1, 0, 1, ..... In that sense, set

δ(−∆) = δ(0), q−(n∗+1)∆ = ϕ(−n∗∆). (13)

Define

qk = ϕ(k∆), k = −n∗,−n∗ + 1, ..., 0, (14)

while, for k ∈ {0, 1, 2, ...},

qk+1 = qk + θu(qk+1−[δ((k+1)∆)/∆]) + (1 − θ)u(qk−[δ(k∆)/∆]) − θu(qk−[δ(k∆)/∆]) − (1 − θ)u(qk−1−[δ((k−1)∆)/∆])
+θ f (qk+1, qk+1−[δ((k+1)∆)/∆])∆ + (1 − θ) f (qk, qk−[δ(k∆)/∆])∆ + 1(qk, qk−[δ(k∆)/∆])∆wk, (15)

where ∆wk = w((k + 1)∆) − w(k∆). For simplicity, denote

zk = qk − (1 − θ)u(qk−1−[δ((k−1)∆)/∆]) − θu(qk−[δ(k∆)/∆]) − θ f (qk, qk−[δ(k∆)/∆])∆,
fk = f (qk, qk−[δ(k∆)/∆]),
1k = 1(qk, qk−[δ(k∆)/∆]),

such that

zk+1 = zk + fk∆ + 1k∆wk, k ∈ {0, 1, 2, ...}. (16)

As mentioned in the introduction, first of all, we are interested in the conditions under which there
exists unique θ-Euler-Maruyama approximate solution of Eq.(15). In other words, we are interested in
establishing the existence and uniqueness of solution to the equation of the form

x = d̃ + θ
(
∆ f (x, a)IAc + ∆ f (x, x)IA + u(x)IA

)
, x ∈ Rd, (17)

for given a, d̃ ∈ Rd, where IA = 1 if [δ((k + 1)∆)/∆] = 0 and IA = 0, otherwise. In that sense, we impose the
next theorem without proof. The proof can be found in [11] or in [15].

Theorem 2.1 (Brouwer’s fixed point theorem). Assume that K ⊂ Rd is a compact and convex set and that
f : K→ K is continuous function. Then there exists a fixed point of f , i.e., x ∈ K such that f (x) = x.

Now, we present a lemma which establishes the existence and uniqueness of solution to Eq.(17) for any
θ ∈ (0, 1]. It should be mentioned that the proof corresponding to the case when θ = 1 can be found in [14].

Lemma 2.2. Assume that the condition (4) and the hypothesis C1 hold. If θ((µ1 + µ2)∆ + β) < 1, then, there exists
unique solution to Eq. (17).

Proof. The uniqueness of solution to Eq. (17) is proved straightforwardly. Namely, if we suppose that x and
y are both solutions of Eq. (17), then on the basis of conditions (4), (9) and (10), for any a, d̃ ∈ Rd, we have
that

|x − y|2 = θ
[
∆IAc〈x−y, f (x, a)− f (y, a)〉+∆IA〈x−y, f (x, x)− f (y, y)〉+IA〈x − y,u(x)−u(y)〉

]
≤ θ

[
∆µ1IAc |x − y|2+∆IA〈x−y, f (x, x)− f (x, y)〉+∆IA〈x−y, f (x, y)− f (y, y)〉 + IAβ|x − y|2

]
≤ θ

[
∆µ1IAc |x − y|2 + ∆µ2IA|x − y|2 + ∆µ1IA|x − y|2 + IAβ|x − y|2

]
≤ θ((µ1 + µ2)∆ + β)|x − y|2.
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Bearing in mind the assumption θ((µ1 + µ2)∆ + β) < 1, we conclude that x = y.
In order to prove the existence of solution to Eq. (17), denote that

R =
θ|∆ f (d̃, a)IAc + ∆ f (d̃, d̃)IA + u(d̃)IA|

1 − θ((µ1 + µ2)∆ + β)
.

Then, define a ball B = {x ∈ Rd : |x − d̃| ≤ R} and functions H : Rd
→ B, G : B→ B, such that

H(x) = d̃ + R
x − d̃

R ∨ |x − d̃|
, x ∈ Rd, (18)

G(x) = H
(
d̃ + θ(∆ f (x, a)IAc + ∆ f (x, x)IA + u(x)IA)

)
, x ∈ B. (19)

Since B is a compact and convex set and G is continuous function on B, it follows from Theorem 2.1 that
there exists a fixed point x∗ = G(x∗).

If we assume that

θ|∆ f (x∗, a)IAc + ∆ f (x∗, x∗)IA + u(x∗)IA| > R, (20)

then

x∗ = G(x∗) = H
(
d̃ + θ(∆ f (x∗, a)IAc + ∆ f (x∗, x∗)IA + u(x∗)IA)

)
= d̃ + R

∆ f (x∗, a)IAc + ∆ f (x∗, x∗)IA + u(x∗)IA

|∆ f (x∗, a)IAc + ∆ f (x∗, x∗)IA + u(x∗)IA|
, (21)

implying that |x∗ − d̃| = R.
On the other hand, (21) yields

|∆ f (x∗, a)IAc + ∆ f (x∗, x∗)IA + u(x∗)IA|

R
(x∗ − d̃) = ∆ f (x∗, a)IAc + ∆ f (x∗, x∗)IA + u(x∗)IA.

Consequently, by repeating the corresponding procedure from [14] (Lemma 1), we obtain

|∆ f (x∗, a)IAc + ∆ f (x∗, x∗)IA + u(x∗)IA| ≤ R,

which is a contradiction with respect to the assumption (20), since θ ∈ (0, 1]. Thus, we conclude that
θ|∆ f (x∗, a)IAc + ∆ f (x∗, x∗)IA + u(x∗)IA)| ≤ R. Then, definitions (18) and (19) give

x∗ = H
(
d̃ + θ(∆ f (x∗, a)IAc + ∆ f (x∗, x∗)IA + u(x∗)IA)

)
= d̃ + θ(∆ f (x∗, a)IAc + ∆ f (x∗, x∗)IA + u(x∗)IA),

that is, x∗ is a unique solution of Eq. (17).

Our main goal is to reveal the conditions under which the θ-Euler-Maruyama solution, defined by
(13)-(15), is almost surely asymptotically exponentially stable in the sense of the following definition.

Definition 2.3. The solution qk of Eq.(15) is globally almost surely asymptotically exponentially stable if there exists
a constant ε > 0 such that

lim sup
k→∞

log |qk|

k∆
≤ −ε a.s.

for any bounded initial condition ϕ.

The next theorem establishes the global almost sure asymptotic exponential stability of the discrete
θ-Euler-Maruyama solution when θ ∈ (0, 1

2 ], for small enough step-size ∆.
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Theorem 2.4. Assume that the conditions of Lemma 2.2 hold, together with the hypotheses A1–A4. Additionally,
let θ ∈ (0, 1

2 ] and suppose that

β ∈

(
0,
−1 +

√
3

2

)
, (22)

α1 > max
{

K +
(
K + α2 + 4β2(1 − θ)2

)
([(1 − η)−1] + 1), 2θK + α2 + 4β2 (1 − θ)2

θ

}
. (23)

Then, there exists a ∆∗ ∈ (0, 1) such that the θ-Euler-Maruyama approximate solution defined by (13)-(15) is almost
surely asymptotically exponentially stable, whenever ∆ ∈ (0,∆∗).

Proof. On the basis of (15) and (16) we have that

|zk+1|
2 = |zk|

2+ [2(qk − (1 − θ)u(qk−1−[δ((k−1)∆)/∆]) − θu(qk−[δ(k∆)/∆]))T fk+ |1k|
2+ (1 − 2θ)| fk|2∆]∆ + mk,

= |zk|
2 + [2(qk − u(qk−[δ(k∆)/∆]))T fk + |1k|

2 + (1 − 2θ)| fk|2∆]∆

+2(1 − θ)(u(qk−[δ(k∆)/∆]) − u(qk−1−[δ((k−1)∆)/∆]))T fk∆ + mk, (24)

where

mk = |1k∆wk|
2
− |1k|

2∆ + 2(zk + fk∆)T1k∆wk. (25)

ApplyingA4 andA2, as well as the assumptionA1 on (24), for α1 >
α2

1−η > 0 and θ ∈ (0, 1
2 ], we get

|zk+1|
2
≤ |zk|

2 + (−α1|qk|
2 + α2|qk−[δ(k∆)/∆]|

2 + (1 − 2θ)| fk|2∆)∆
+2β(1 − θ)|qk−[δ(k∆)/∆] − qk−1−[δ((k−1)∆)/∆]|| fk|∆ + mk

≤ |zk|
2 + (−α1|qk|

2 + α2|qk−[δ(k∆)/∆]|
2 + (1 − 2θ)| fk|2∆)∆

+(β2(1 − θ)2
|qk−[δ(k∆)/∆] − qk−1−[δ((k−1)∆)/∆]|

2 + | fk|2)∆ + mk

≤ |zk|
2
− α1|qk|

2∆ + α2|qk−[δ(k∆)/∆]|
2∆ + (1 − 2θ)K|qk|

2∆2 + (1 − 2θ)K|qk−[δ(k∆)/∆]|
2∆2

+2β2(1 − θ)2
|qk−[δ(k∆)/∆]|

2∆ + 2β2(1 − θ)2
|qk−1−[δ((k−1)∆)/∆]|

2∆ + K|qk|
2∆ + K|qk−[δ(k∆)/∆]|

2∆ + mk. (26)

Thus, the estimate (26) can be written as

|zk+1|
2
≤ |zk|

2 +
(
α2 + (1 − 2θ)K∆ + 2β2(1 − θ)2 + K

)
|qk−[δ(k∆)/∆]|

2∆

+2β2(1 − θ)2
|qk−1−[δ((k−1)∆)/∆]|

2∆ +
(
− α1 + (1 − 2θ)K∆ + K

)
|qk|

2∆ + mk. (27)

Then, for an arbitrary constant A > 1, we find that

A(k+1)∆
|zk+1|

2
− Ak∆

|zk|
2
≤ A(k+1)∆

|zk|
2(1 − A−∆) + [−α1 + (1 − 2θ)K∆ + K] ∆A(k+1)∆

|qk|
2

+
[
α2 + (1 − 2θ)K∆ + 2β2(1 − θ)2 + K

]
∆A(k+1)∆

|qk−[δ(k∆)/∆]|
2

+2β2(1 − θ)2∆A(k+1)∆
|qk−1−[δ((k−1)∆)/∆]|

2 + A(k+1)∆mk. (28)

For simplicity, denote

R1(∆) = 1 − A−∆,

R2(∆) = −α1 + (1 − 2θ)K∆ + K,
R3(∆) = α2 + (1 − 2θ)K∆ + 2β2(1 − θ)2 + K.

Consequently, we see from (28) that

Ak∆
|zk|

2
≤ |z0|

2 + R1(∆)
k−1∑
i=0

A(i+1)∆
|zi|

2 + R2(∆)∆
k−1∑
i=0

A(i+1)∆
|qi|

2 + R3(∆)∆
k−1∑
i=0

A(i+1)∆
|qi−[δ(i∆)/∆]|

2

+2β2(1 − θ)2∆

k−1∑
i=0

A(i+1)∆
|qi−1−[δ((i−1)∆)/∆]|

2 + Mk, (29)
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where

Mk =

k−1∑
i=0

A(i+1)∆mi

is a local martingale with M0 = 0.
By the definition of zk and Lemma 1.1, for c = β, we get

|zk|
2
≤ (1 + β)|qk − (1 − θ)u(qk−1−[δ((k−1)∆)/∆]) − θu(qk−[δ(k∆)/∆])|2 +

1 + β

β
|θ fk∆|2.

Further on, applying the assumptionA1, Lema 1.1, inequality (11) and then assumptionA2, we find that

|zk|
2
≤ (1 + β)|qk − u(qk−[δ(k∆)/∆]) + (1 − θ)(u(qk−[δ(k∆)/∆]) − u(qk−1−[δ((k−1)∆)/∆]))|2

+
1 + β

β
θ2K

(
|qk|

2 + |qk−[δ(k∆)/∆]|
2
)
∆2

≤ (1 + β)2
|qk − u(qk−[δ(k∆)/∆])|2 +

(1 + β)2

β
(1 − θ)2

|u(qk−[δ(k∆)/∆]) − u(qk−1−[δ((k−1)∆)/∆]))|2

+
1 + β

β
θ2K

(
|qk|

2 + |qk−[δ(k∆)/∆]|
2
)
∆2

≤ (1 + β)3
(
|qk|

2 + β|qk−[δ(k∆)/∆]|
2
)

+ β(1 + β)2(1 − θ)2
|qk−[δ(k∆)/∆] − qk−1−[δ((k−1)∆)/∆])|2

+
1 + β

β
θ2K

(
|qk|

2 + |qk−[δ(k∆)/∆]|
2
)
∆2

≤ (1 + β)3
(
|qk|

2 + β|qk−[δ(k∆)/∆]|
2
)

+ 2β(1 + β)2(1 − θ)2
(
|qk−[δ(k∆)/∆]|

2 + |qk−1−[δ((k−1)∆)/∆])|2
)

+
1 + β

β
θ2K(|qk|

2 + |qk−[δ(k∆)/∆]|
2)∆2

=

(
(1 + β)3 +

1 + β

β
θ2K∆2

)
|qk|

2 +

(
β(1 + β)3 + 2β(1 + β)2(1 − θ)2 +

1 + β

β
θ2K∆2

)
|qk−[δ(k∆)/∆]|

2

+2β(1 + β)2(1 − θ)2
|qk−1−[δ((k−1)∆)/∆]|

2. (30)

Then, substituting (30) into (29) we get

Ak∆
|zk|

2
≤ |z0|

2 + K1(∆)
k−1∑
i=0

A(i+1)∆
|qi|

2 + K2(∆)
k−1∑
i=0

A(i+1)∆
|qi−[δ(i∆)/∆]|

2

+K3(∆)
k−1∑
i=0

A(i+1)∆
|qi−1−[δ((i−1)∆)/∆]|

2 + Mk, (31)

where

K1(∆) = R1(∆)
(
(1 + β)3 +

1 + β

β
θ2K∆2

)
+ R2(∆)∆,

K2(∆) = R1(∆)
(
β(1 + β)3 + 2β(1 + β)2(1 − θ)2 +

1 + β

β
θ2K∆2

)
+ R3(∆)∆,

K3(∆) = 2R1(∆)β(1 + β)2(1 − θ)2 + 2β2(1 − θ)2∆.

Noting that K3(∆) > 0, in a view of (13), we conclude that

K3(∆)
k−1∑
i=0

A(i+1)∆
|qi−1−[δ((i−1)∆)/∆]|

2
≤ K3(∆)A∆

|q−1−[δ(0)/∆]|
2 + K3(∆)A∆

k−1∑
i=0

A(i+1)∆
|qi−[δ(i∆)/∆]|

2. (32)
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Thus (31) becomes

Ak∆
|zk|

2
≤ |z0|

2 + K1(∆)
k−1∑
i=0

A(i+1)∆
|qi|

2 + (K2(∆) + K3(∆)A∆)
k−1∑
i=0

A(i+1)∆
|qi−[δ(i∆)/∆]|

2

+K3(∆)A∆
|q−1−[δ(0)/∆]|

2 + Mk. (33)

By applying Lemma 1.2 to the second sum on the right-hand side of (33), we obtain

k−1∑
i=0

A(i+1)∆
|qi−[δ(i∆)/∆]|

2
≤ An∗∆

k−1∑
i=0

A(i−[δ(i∆)/∆]+1)∆
|qi−[δ(i∆)/∆]|

2

≤ ([(1 − η)−1] + 1)An∗∆
k−1∑

i=−n∗

A(i+1)∆
|qi|

2. (34)

Bearing in the mind that n∗∆ = τ,K2(∆) > 0 and K3(∆) > 0, on the basis of (34) the expression (33) can be
estimated as

Ak∆
|zk|

2
≤ X + h(A,∆)

k−1∑
i=0

A(i+1)∆
|qi|

2 + Mk, (35)

where, for any ∆ ∈ (0, 1), we have

X = |z0|
2 + K3(∆)A∆

|q−1−[δ(0)/∆]|
2 + (K2(∆) + K3(∆)A∆)([(1 − η)−1] + 1)Aτ

−1∑
i=−n∗

A(i+1)∆
|ϕ(i∆)|2 < ∞, (36)

and

h(A,∆) = K1(∆) + (K2(∆) + K3(∆)A∆)([(1 − η)−1] + 1)Aτ

= (1 − A−∆)
(
(1 + β)3 +

1 + β

β
θ2K∆2

)
+ (−α1 + (1 − 2θ)K∆ + K)∆

+
[
(1 − A−∆)

(
β(1 + β)3 + 2β(1 + β)2(1 − θ)2 +

1 + β

β
θ2K∆2

)
+
(
α2 + (1 − 2θ)K∆ + 2β2(1 − θ)2 + K

)
∆

+
(
2(1 − A−∆)β(1 + β)2(1 − θ)2 + 2β2(1 − θ)2∆

)
A∆

]
([(1 − η)−1] + 1)Aτ. (37)

One can observe that

d
dA

h(A,∆) = ∆A−∆−1

(
(1 + β)3 +

1 + β

β
θ2K∆2

)
+
[
(1 − A−∆)

(
β(1 + β)3 + 2β(1 + β)2(1 − θ)2 +

1 + β

β
θ2K∆2

)
+
(
α2 + (1 − 2θ)K∆ + 2β2(1 − θ)2 + K

)
∆

+
(
2(1 − A−∆)β(1 + β)2(1 − θ)2 + 2β2(1 − θ)2∆

)
A∆

]
([(1 − η)−1] + 1)τAτ−1

+([(1 − η)−1] + 1)Aτ
[
∆A−∆−1

(
β(1 + β)3 + 2β(1 + β)2(1 − θ)2 +

1 + β

β
θ2K∆2

)
+
(
2(1 − A−∆)β(1 + β)2(1 − θ)2 + 2β2(1 − θ)2∆

)
∆A∆−1 + 2∆A−1β(1 + β)2(1 − θ)2

]
> 0. (38)

On the other hand, we have

h(1,∆) = (−α1 + (1 − 2θ)K∆ + K)∆ +
(
(1 − 2θ)K∆ + K + α2 + 4β2(1 − θ)2

)
([(1 − η)−1] + 1)∆. (39)



M. Obradović, M. Milošević / Filomat 31:18 (2017), 5629–5645 5637

The application of the condition (23) yields the existence of

∆1 =
α1 − K −

(
K + α2 + 4β2(1 − θ)2

)
([(1 − η)−1] + 1)

(1 − 2θ)K([(1 − η)−1] + 2)
, (40)

such that, for any ∆ ∈ (0,∆∗), where ∆∗ = ∆1 ∧ 1, we have that h(1,∆) < 0. Moreover, for any step-size
∆ ∈ (0,∆∗), the function h(A,∆) is continuous with respect to A ∈ (1,+∞) and tends to +∞ as A→ +∞. So,
there exists a unique Ā = Ā(∆) > 1, for which h(Ā,∆) = 0 such that h(A,∆) ≤ 0 whenever A ∈ (1, Ā].

From (35) we conclude that, for any ∆ ∈ (0,∆∗) and any A ∈ (1, Ā],

Ak∆
|zk|

2
≤ X + Mk. (41)

On the basis of the semi-martingale convergence theorem (see [3]), we find that

lim sup
k→∞

Ak∆
|zk|

2
≤ lim sup

k→∞
(X + Mk) < ∞ a.s. (42)

By the definition of zk, assumptionA4 and Lemma 1.1, for c = β, we get

|zk|
2
≥ |qk − (1 − θ)u(qk−1−[δ((k−1)∆)/∆]) − θu(qk−[δ(k∆)/∆])|2

−2θ∆(qk − (1 − θ)u(qk−1−[δ((k−1)∆)/∆]) − θu(qk−[δ(k∆)/∆]))T fk
= |qk − (1 − θ)u(qk−1−[δ((k−1)∆)/∆]) − θu(qk−[δ(k∆)/∆])|2 − 2θ∆(qk − u(qk−[δ(k∆)/∆]))T fk
−2θ(1 − θ)∆(u(qk−[δ(k∆)/∆]) − u(qk−1−[δ((k−1)∆)/∆]))T fk

≥
1

1 + β
|qk|

2
−

1
β
|(1 − θ)u(qk−1−[δ((k−1)∆)/∆]) + θu(qk−[δ(k∆)/∆])|2 + α1θ∆|qk|

2

−α2θ∆|qk−[δ(k∆)/∆]|
2
− (1 − θ)2∆|u(qk−[δ(k∆)/∆]) − u(qk−1−[δ((k−1)∆)/∆])|2 − θ2∆| fk|2.

Moreover, applying the conditions (4) and (5) we obtain

|zk|
2
≥

1
1 + β

|qk|
2
− 2(1 − θ)2β|qk−1−[δ((k−1)∆)/∆]|

2
− 2θ2β|qk−[δ(k∆)/∆]|

2 + α1θ∆|qk|
2

−α2θ∆|qk−[δ(k∆)/∆]|
2
− (1 − θ)2β2∆(2|qk−[δ(k∆)/∆]|

2 + 2|qk−1−[δ((k−1)∆)/∆]|
2) − θ2K∆(|qk|

2 + |qk−[δ(k∆)/∆]|
2)

=

(
1

1 + β
+ α1θ∆ − θ2K∆

)
|qk|

2 +
(
−2θ2β − α2θ∆ − 2(1 − θ)2β2∆ − θ2K∆

)
|qk−[δ(k∆)/∆]|

2

+
(
−2(1 − θ)2β − 2(1 − θ)2β2∆

)
|qk−1−[δ((k−1)∆)/∆]|

2. (43)

Substituting (43) into (41), we get

( 1
1 + β

+ α1θ∆ − θ2K∆
)
Ak∆
|qk|

2
≤

(
2θ2β + α2θ∆ + 2(1 − θ)2β2∆ + θ2K∆

)
Ak∆
|qk−[δ(k∆)/∆]|

2

+2(1 − θ)2β
(
1 + β∆

)
Ak∆
|qk−1−[δ((k−1)∆)/∆]|

2 + X + Mk, (44)
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for any A ∈ (1, Ā]. So, for any γ ∈
(
0, log Ā

)
, there exists an integer k1 such that for any integer k2 > k1,

( 1
1 + β

+ α1θ∆ − θ2K∆
)

sup
k1≤k≤k2

eγk∆
|qk|

2

≤

(
2θ2β + α2θ∆ + 2(1 − θ)2β2∆ + θ2K∆

)
sup

k1≤k≤k2

eγk∆
|qk−[δ(k∆)/∆]|

2

+2(1 − θ)2β
(
1 + β∆

)
sup

k1≤k≤k2

eγk∆
|qk−1−[δ((k−1)∆)/∆]|

2 + sup
k1≤k≤k2

(X + Mk)

≤

(
2θ2β + α2θ∆ + 2(1 − θ)2β2∆ + θ2K∆

)
eγτ sup

k1≤k≤k2

eγ(k−[δ(k∆)/∆])∆
|qk−[δ(k∆)/∆]|

2

+2(1 − θ)2β
(
1 + β∆

)
eγ(τ+1) sup

k1≤k≤k2

eγ(k−1−[δ((k−1)∆)/∆])∆
|qk−1−[δ((k−1)∆)/∆]|

2 + sup
k1≤k≤k2

(X + Mk)

≤

(
2θ2β + α2θ∆ + 2(1 − θ)2β2∆ + θ2K∆

) eγτ sup
k1−n∗≤k≤k1−1

eγk∆
|qk|

2 + eγτ sup
k1≤k≤k2

eγk∆
|qk|

2


+2(1 − θ)2β

(
1 + β∆

) eγ(τ+1) sup
k1−n∗−1≤k≤k1−1

eγk∆
|qk|

2 + eγ(τ+1) sup
k1≤k≤k2

eγk∆
|qk|

2

 + sup
k1≤k≤k2

(X + Mk),

implying that

l(∆) sup
k1≤k≤k2

eγk∆
|qk|

2
≤

(
2θ2β + α2θ∆ + 2(1 − θ)2β2∆ + θ2K∆

)
eγτ sup

k1−n∗≤k≤k1−1
eγk∆
|qk|

2

+2(1 − θ)2β
(
1 + β∆

)
eγ(τ+1) sup

k1−n∗−1≤k≤k1−1
eγk∆
|qk|

2 + sup
k1≤k≤k2

(X + Mk), (45)

where

l(∆) =
1

1 + β
+ α1θ∆ − θ2K∆ −

(
2θ2β + α2θ∆ + 2(1 − θ)2β2∆ + θ2K∆

)
eγτ − 2(1 − θ)2β

(
1 + β∆

)
eγ(τ+1). (46)

Note that

l(∆) > ∆
[
α1θ − θ

2K −
(
α2θ + 4(1 − θ)2β2 + θ2K

)
eγ(τ+1)

]
+

1
1 + β

− 2β[θ2 + (1 − θ)2]eγ(τ+1). (47)

For any θ ∈ (0, 1
2 ] and any

γ ∈
(
0,−

1
τ + 1

log
(
2β(1 + β)(θ2 + (1 − θ)2

)
∧ log Ā

)
,

the condition (22), that is β ∈
(
0, −1+

√
3

2

)
, implies

1
1 + β

− 2β[θ2 + (1 − θ)2]eγ(τ+1) > 0.

Moreover, on the basis of (23), one can find

γ ∈
(
0,−

1
τ + 1

log
(
2β(1 + β)(θ2 + (1 − θ)2)

)
∧

1
τ + 1

log
α1θ − θ2K

α2θ + 4(1 − θ)2β2 + θ2K
∧ log Ā

)
, (48)

such that
α1θ − θ

2K −
(
α2θ + 4(1 − θ)2β2 + θ2K

)
eγ(τ+1) > 0.
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Consequently, if γ satisfies (48), then l(∆) > 0 for any ∆ ∈ (0,∆∗). Because of that, letting k2 → +∞, from
(45) we obtain

sup
k1≤k<∞

eγk∆
|qk|

2
≤

1
l(∆)

(2θ2β + α2θ∆ + 2(1 − θ)2β2∆ + θ2K∆
)

eγτ sup
k1−n∗≤k≤k1−1

eγk∆
|qk|

2

+2(1 − θ)2β
(
1 + β∆

)
eγ(τ+1) sup

k1−n∗−1≤k≤k1−1
eγk∆
|qk|

2 + sup
k1≤k<∞

(X + Mk)

 .
This inequality and (42) yield

lim sup
k→∞

eγk∆
|qk|

2 < ∞,

whenever γ satisfies (48) and ∆ ∈ (0,∆∗). Thus, (43) gives

lim sup
k→∞

eγk∆
|qk|

2
≤

1
l(∆)

lim sup
k→∞

(X + Mk) < ∞.

Consequently, we have

lim sup
k→∞

log(eγk∆
|qk|

2)
k∆

= 0.

This yields

lim sup
k→∞

log |qk|

k∆
≤ −

γ

2

for any ∆ ∈ (0,∆∗) and any γ satisfying (48). This completes the proof.

3. The Euler-Maruyama Case

For the reasons mentioned in the introduction, in order to complete the paper we will consider the case
when θ = 0, that is, the Euler-Maruyama case. Then, (15) becomes

qk+1 = qk + u(qk−[δ(k∆)/∆]) − u(qk−1−[δ((k−1)∆)/∆]) + f (qk, qk−[δ(k∆)/∆])∆ + 1(qk, qk−[δ(k∆)/∆])∆wk, k ∈ {0, 1, 2, ...}, (49)

such that (13), (14) and (49) determine the discrete Euler-Maruyama solution. In this case, we have that

zk = qk − u(qk−1−[δ((k−1)∆)/∆]).

In the sequel, we will establish the stability result for the solution of Eq. (49), analogous to the one from
Theorem 2.4. So, we will give only a sketch of proof, by stressing those parts which are different to
corresponding parts of the proof of Theorem 2.4.

Theorem 3.1. Assume that the hypothesesA1–A4 hold. Additionally, let

β ∈

(
0,
−1 +

√
5

2

)
, (50)

α1 > K + (K + α2 + 4β2)([(1 − η)−1] + 1). (51)

Then, there exists a ∆̃∗ ∈ (0, 1), such that the Euler-Maruyama approximate solution defined by (13), (14) and (49) is
almost surely asymptotically exponentially stable, whenever ∆ ∈ (0, ∆̃∗).
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Proof. On the basis of (49) we have

|zk+1|
2 = |zk|

2 + [2(qk − u(qk−[δ(k∆)/∆]))T fk + |1k|
2 + | fk|2∆]∆

+2(u(qk−[δ(k∆)/∆]) − u(qk−1−[δ((k−1)∆)/∆]))T fk∆ + mk, (52)

where

mk = |1k∆wk|
2
− |1k|

2∆ + 2(zk + fk∆)T1k∆wk.

Applying the arguments which are used for obtaining the estimate (27), we get

|zk+1|
2
≤ |zk|

2 + (α2 + K∆ + 2β2 + K)|qk−[δ(k∆)/∆]|
2∆ + 2β2

|qk−1−[δ((k−1)∆)/∆]|
2∆ + (−α1 + K∆ + K)|qk|

2∆ + mk. (53)

Then, for an arbitrary constant A > 1, we find that

A(k+1)∆
|zk+1|

2
− Ak∆

|zk|
2
≤ A(k+1)∆

|zk|
2(1 − A−∆) + [−α1 + K∆ + K] ∆A(k+1)∆

|qk|
2

+
[
α2 + K∆ + 2β2 + K

]
∆A(k+1)∆

|qk−[δ(k∆)/∆]|
2

+2β2∆A(k+1)∆
|qk−1−[δ((k−1)∆)/∆]|

2 + A(k+1)∆mk. (54)

If we recall that R1(∆) = 1 − A−∆ and denote

R̃2(∆) = −α1 + K∆ + K, R̃3(∆) = α2 + K∆ + 2β2 + K,

then, from (54) follows that

Ak∆
|zk|

2
≤ |z0|

2 + R1(∆)
k−1∑
i=0

A(i+1)∆
|zi|

2 + R̃2(∆)∆
k−1∑
i=0

A(i+1)∆
|qi|

2

+R̃3(∆)∆
k−1∑
i=0

A(i+1)∆
|qi−[δ(i∆)/∆]|

2 + 2β2∆

k−1∑
i=0

A(i+1)∆
|qi−1−[δ((i−1)∆)/∆]|

2 + Mk, (55)

where

Mk =

k−1∑
i=0

A(i+1)∆mi

is a local martingale with M0 = 0.
By the definition of zk and (11), we get

|zk|
2 = |qk − u(qk−1−[δ((k−1)∆)/∆])|2 ≤ (1 + β)|qk|

2 + β(1 + β)|qk−1−[δ((k−1)∆)/∆]|
2. (56)

Then, substituting (56) into (55) we obtain that

Ak∆
|zk|

2
≤ |z0|

2 + K̃1(∆)
k−1∑
i=0

A(i+1)∆
|qi|

2 + K̃2(∆)
k−1∑
i=0

A(i+1)∆
|qi−[δ(i∆)/∆]|

2

+K̃3(∆)
k−1∑
i=0

A(i+1)∆
|qi−1−[δ((i−1)∆)/∆]|

2 + Mk, (57)

where

K̃1(∆) = R1(∆)(1 + β) + R̃2(∆)∆, K̃2(∆) = R̃3(∆)∆, K̃3(∆) = R1(∆)β(1 + β) + 2β2∆.

Taking into account (32) and the fact that K̃3(∆) > 0, the estimate (57) becomes

Ak∆
|zk|

2
≤ |z0|

2 + K̃1(∆)
k−1∑
i=0

A(i+1)∆
|qi|

2 + (K̃2(∆) + K̃3(∆)A∆)
k−1∑
i=0

A(i+1)∆
|qi−[δ(i∆)/∆]|

2

+K̃3(∆)A∆
|q−1−[δ(0)/∆]|

2 + Mk. (58)
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By applying Lemma 1.2 to the second sum on the right-hand side of (58) and bearing in the mind that
n∗∆ = τ, the expression (58) can be estimated as

Ak∆
|zk|

2
≤ X̃ + h̃(A,∆)

k−1∑
i=0

A(i+1)∆
|qi|

2 + Mk. (59)

In the previous expression X̃ has the form (36), where K2(∆) and K3(∆) are substituted by K̃2(∆) and K̃3(∆),
respectively, while

h̃(A,∆) = K̃1(∆) + (K̃2(∆) + K̃3(∆)A∆)([(1 − η)−1] + 1)Aτ

= (1 − A−∆)(1 + β) + (−α1 + K∆ + K)∆

+
[
(α2 + K∆ + 2β2 + K)∆ + (A∆

− 1)β(1 + β) + 2β2∆A∆
]
([(1 − η)−1] + 1)Aτ. (60)

Observe that h̃ increases with respect to A, that is

d
dA

h̃(A,∆) = ∆A−∆−1(1 + β) +
[
(α2 + K∆ + 2β2 + K)∆ + (A∆

− 1)β(1 + β) + 2β2∆A∆
]
([(1 − η)−1] + 1)τAτ−1

+([(1 − η)−1] + 1)Aτ∆A∆−1β
(
(1 + β) + 2β∆

)
> 0. (61)

On the basis of the assumption (51), we have

h̃(1,∆) = (−α1 + K∆ + K)∆ +
(
K∆ + K + α2 + 4β2

)
∆([(1 − η)−1] + 1) < 0

for any ∆ ∈ (0, ∆̃∗), where ∆̃∗ = ∆̃1 ∧ 1, while

∆̃1 =
α1 − K − (K + α2 + 4β2)([(1 − η)−1] + 1)

K([(1 − η)−1] + 2)
.

So, for any ∆ ∈ (0, ∆̃∗), there exists a unique Ã = Ã(∆) > 1, for which h̃(Ã,∆) = 0, such that h̃(A,∆) ≤ 0
whenever A ∈ (1, Ã].

From (59), we conclude that, for any ∆ ∈ (0, ∆̃∗) and any A ∈ (1, Ã],

Ak∆
|zk|

2
≤ X̃ + Mk, (62)

and then, the semi-martingale convergence theorem yields

lim sup
k→∞

Ak∆
|zk|

2
≤ lim sup

k→∞
(X̃ + Mk) < ∞ a.s.

By the definition of zk, Lemma 1.1, for c = β, as well as the condition (5), we get

|zk|
2
≥

1
1 + β

|qk|
2
−

1
β
|u(qk−1−[δ((k−1)∆)/∆])|2 ≥

1
1 + β

|qk|
2
− β|qk−1−[δ((k−1)∆)/∆]|

2. (63)

Substituting (63) into (62), we get

1
1 + β

Ak∆
|qk|

2
≤ βAk∆

|qk−1−[δ((k−1)∆)/∆]|
2 + X̃ + Mk. (64)

So, for any γ̃ ∈
(
0, log Ã

)
, there exists an integer k1 such that for any integer k2 > k1,

sup
k1≤k≤k2

eγ̃k∆
|qk|

2
≤ β

(
1 + β

)
sup

k1≤k≤k2

eγ̃k∆
|qk−1−[δ((k−1)∆)/∆]|

2 + (1 + β) sup
k1≤k≤k2

(X̃ + Mk)

≤ β(1 + β)eγ̃(τ+1) sup
k1≤k≤k2

eγ̃(k−1−[δ((k−1)∆)/∆])∆
|qk−1−[δ((k−1)∆)/∆]|

2 + (1 + β) sup
k1≤k≤k2

(X̃ + Mk)

≤ β(1 + β)

eγ̃(τ+1) sup
k1−n∗−1≤k≤k1−1

eγ̃k∆
|qk|

2 + eγ̃(τ+1) sup
k1≤k≤k2

eγ̃k∆
|qk|

2

 + (1 + β) sup
k1≤k≤k2

(X̃ + Mk).
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On the basis of the condition (50), that is β ∈
(
0, −1+

√
5

2

)
, for any

γ̃ ∈
(
0,−

1
τ + 1

log(β(1 + β)) ∧ log Ã
)
,

we have that

sup
k1≤k≤k2

eγ̃k∆
|qk|

2
≤

(
1 − β(1 + β)eγ̃(τ+1)

)−1
β(1 + β)

eγ̃(τ+1) sup
k1−n∗−1≤k≤k1−1

eγ̃k∆
|qk|

2

 + (1 + β) sup
k1≤k≤k2

(X̃ + Mk)

 . (65)

Letting k2 → +∞ in (65), we obtain

sup
k1≤k<∞

eγ̃k∆
|qk|

2
≤

(
1 − β(1 + β)eγ̃(τ+1)

)−1
β(1 + β)

eγ̃(τ+1) sup
k1−n∗−1≤k≤k1−1

eγ̃k∆
|qk|

2

 + (1 + β) sup
k1≤k<∞

(X̃ + Mk)

 ,
which yields

lim sup
k→∞

eγ̃k∆
|qk|

2 < ∞.

Following the procedure from the proof of Theorem 2.4, we obtain

lim sup
k→∞

log |qk|

k∆
≤ −

γ̃

2

for any ∆ ∈ (0,∆∗) and any γ̃ ∈
(
0,− 1

τ+1 log(β(1 + β)) ∧ log Ã
)
.

4. Numerical Simulations

In order to illustrate the previous theoretical result, when θ ∈ (0, 1
2 ], we present an example.

Example 4.1. Consider the following scalar neutral stochastic differential equation with time-dependent delay

d
[
x(t) −

1
50

x(t − δ(t))
]

(66)

=
(
−

1
20

x(t) −
1
40

sin x(t − δ(t))
)
dt +

1

10
√

10

x(t − δ(t))
1 + x4(t − δ(t))

cos x(t)dw(t), t ∈ [0, 50],

with the initial conditionϕ(t) = −1, t ∈ [−τ, 0],where τ = 0.5 andϕ ∈ Cb
F0

([−τ, 0]; R).Obviously, the drift coefficient
f (x, y) = − 1

20 x − 1
40 sin y satisfies the linear growth conditionA1 for K = 2

202 , while the function u(x) = 1
50 x, x ∈ R

satisfies the assumption A2 for β = 1
50 . Assume that the delay function is of the form δ(t) = 1

4 −
1
4 sin t, t ∈ [0, 50].

Then,

|δ′(t)| =
∣∣∣∣ − 1

4
cos t

∣∣∣∣ ≤ 1
4

= η,

|δ(t) − δ(s)| ≤
1
4
|t − s|, t, s ∈ [0, 50]

and we find thatA3 hold with η = 1
4 . In order to verifyA4, note that

2(x − u(y)) f (x, y) + |1(x, y)|2 = −
2

20
x2
−

2
40

x sin y +
2

20 · 50
xy +

2
40 · 50

y sin y +
1

1 000
y2

(1 + y4)2 cos2 x

≤ −
2
20

x2 +
1
40

(x2 + y2) +
1

1 000
(x2 + y2) +

1
1 000

y2 +
1

1 000
y2

≤ −
37
500

x2 +
14
500

y2.
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So, α1 = 37
500 and α2 = 14

500 . Moreover, we have that

α2

1 − η
=

14
375

<
37

500
= α1.

Thus we conclude thatA4 holds, as well as (8), that is, f (0, 0) = 1(0, 0) = u(0) = 0.
Observing that, for any x1, x2, y ∈ Rd,

〈x1 − x2, f (x1, y) − f (x2, y)〉 = −
1

20
〈x1 − x2, x1 − x2〉 = −

1
20
|x1 − x2|

2,

〈x1 − x2, f (y, x1) − f (y, x2)〉 = −
1

40
〈x1 − x2, sin x1 − sin x2〉 ≤

1
40
|x1 − x2|

2,

we conclude that C1 holds for any positive µ1 and µ2 = 1
40 . So, we will choose µ1 = µ2 = 1

40 , such that θ((µ1 +µ2)∆ +

β) < 1 for any ∆ ∈ (0, 1) and any θ ∈ (0, 1
2 ]. Thus, Lemma 2.2 guarantees that the corresponding θ-Euler-Maruyama

approximate equations have unique solutions. Bearing in mind (15), for θ = 1
4 and any ∆ ∈ (0, 1), we have that

qk = ϕ(k∆), k = −n∗,−n∗ + 1, ..., 0 and for k = 0, 1, 2, ...,

qk+1 = qk +
1

200
qk+1−[δ((k+1)∆)/∆] +

1
100

qk−[δ(k∆)/∆] −
3

200
qk−1−[δ((k−1)∆)/∆] −

1
80

qk+1∆ −
3

80
qk∆

−
1

160
sin qk+1−[δ((k+1)∆)/∆]∆ −

3
160

sin qk−[δ(k∆)/∆]∆ +
1

10
√

10

qk−[δ(k∆)/∆]

1 + q4
k−[δ(k∆)/∆]

cos qk∆wk. (67)

In Figure 1, we plotted several trajectories of the θ-Euler-Maruyama solution (67).

50
t

-1

q

Figure 1: Trajectories of the θ-Euler-Maruyama solution with ∆ = 0.01

Moreover, the assumption (22) holds since 1
50 = β ∈

(
0, −1+

√
3

2

)
. Also,

37
500

= α1 > max
{

K +
(
K + α2 + 4β2(1 − θ)2

)
([(1 − η)−1] + 1), 2θK + α2 + 4β2 (1 − θ)2

θ

}
= 0.0728,

that is, the condition (23) is fulfilled.
In order to find the scope of ∆ for which the θ-Euler-Maruyama solution (67) is a.s. exponentially stable, we need

to calculate ∆1, defined in (40). Since ∆1 = 0.16, in the sequel we will deal with ∆ ∈ (0, 0.16). So, we may choose
∆ = 0.01. Then, we need to calculate Ā = Ā(0.01), which is the unique solution of the equation h(A, 0.01) = 0, where
h(A,∆) is given in (37). By direct computation we obtain that Ā = 1.0009. Bearing in mind (48), on the basis of
Theorem 2.4, we conclude that for any

γ ∈
(
0, 1.0623 ∧ 0.2302 ∧ 0.0009

)
,
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that is, for γ ∈ (0, 0.0009), the θ-Euler-Maruyama solution satisfies

lim sup
k→∞

log |qk|

k∆
≤ −

γ

2
a.s.

In order to illustrate that the previous inequality holds, we simulated the trajectories of the ratio on the left-hand side
of the inequality, which correspond to the trajectories plotted in Figure 1. We plotted those trajectories against the
line z = −0.00045, that is the lower bound of the expression on the right-hand side of the inequality. The result of this
simulation is presented in Figure 2.

50
t-0.00045

-0.15

0.035
z

Figure 2: Trajectories of the ratio log |qk |
k∆ , k = 1, ..., 5 000, against the line z = −0.00045, with ∆ = 0.01
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