Filomat 31:18 (2017), 5685–5693 https://doi.org/10.2298/FIL1718685S

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Connectedness of Ordered Rings of Fractions of *C*(*X*) **with the** *m***-Topology**

A.R. Salehi^a

^aDepartment of Science, Petroleum University of Technology, Ahvaz, Iran

Abstract. An order is presented on the rings of fractions $S^{-1}C(X)$ of C(X), where *S* is a multiplicatively closed subset of C(X), the ring of all continuous real-valued functions on a Tychonoff space *X*. Using this, a topology is defined on $S^{-1}C(X)$ and for a family of particular multiplicatively closed subsets of C(X) namely *m.c.* 3-subsets, it is shown that $S^{-1}C(X)$ endowed with this topology is a Hausdorff topological ring. Finally, the connectedness of $S^{-1}C(X)$ via topological properties of *X* is investigated.

1. Introduction

In this paper, the ring of all (bounded) real-valued continuous functions on a completely regular Hausdorff space X, is denoted by C(X) ($C^*(X)$). The space X is called pseudocompact if $C(X) = C^*(X)$. For every $f \in C(X)$ the set $Z(f) = \{f \in C(X) : f(x) = 0\}$ is said to be zero-set of f and it's complement which is denoted by $\cos f$, is called cozero-set of f. Moreover, an ideal $I \subseteq C(X)$ is said to be z-ideal if for every $f \in I$ and $g \in C(X)$, the inclusion $Z(f) \subseteq Z(g)$ implies that $g \in I$. $u \in C(X)$ is a unit (i.e., u has multiplicative inverse) if and only if $Z(u) = \emptyset$ and it is not hard to see that an element f of C(X) is zero-divisor if and only if $\operatorname{int}_X Z(f) \neq \emptyset$. The set of all units and the set of all zero-divisors of C(X) are denoted by U(X) and Zd(X)respectively.

Let βX and vX be the Stone-Čech compactification and the Hewitt realcompactification of the space X, respectively. For every $f \in C^*(X)$ the unique extension of f to a continuous function in $C(\beta X)$ is denoted by f^β and for each $p \in \beta X$, $M^p = \{f \in C(X) : p \in cl_{\beta X}Z(f)\}$ ($M^{*p} = \{f \in C^*(X) : f^\beta(p) = 0\}$) is a maximal ideal of C(X) ($C^*(X)$) and also, every maximal ideal of C(X) ($C^*(X)$) is precisely of the form M^p (M^{*p}), for some $p \in \beta X$. Moreover, for every $p \in \beta X$, $O^p = \{f \in C(X) : p \in int_{\beta X}cl_{\beta X}Z(f)\}$ is the intersection of all prime ideals of C(X) which are contained in M^p . In fact, we have;

Lemma 1.1. ([7, Theorem 7.15]) Every prime ideal P in C(X) contains O^p for some unique $p \in \beta X$, and M^p is the unique maximal ideal containing P.

Whenever $p \in X$, the ideals M^p and O^p will be the sets $\{f \in C(X) : p \in Z(f)\}$ and $\{f \in C(X) : p \in int_X Z(f)\}$ respectively and in this case, they are denoted by M_p and O_p . A maximal ideal M of C(X) is called real whenever the residue class field $\frac{C(X)}{M}$ is isomorphic with the real field \mathbb{R} . Thus, for every $p \in vX$, M^p is a

²⁰¹⁰ Mathematics Subject Classification. Primary 54C40; Secondary 54C35, 13B30

Keywords. Continuous functions, connectedness, multiplicatively closed, m-topology

Received: 04 December 2016; Accepted: 06 March 2017

Communicated by Ljubiša Kočinac

Email address: a.r.salehi@put.ac.ir (A.R. Salehi)

real maximal ideal, and conversely every real maximal ideal of C(X) is precisely of the form M^p for some $p \in vX$. Moreover, $M^p \cap C^*(X) = M^{*p}$ if and only if $p \in vX$, see 7.9 (c) in [7].

Let *R* be a commutative ring with unity and suppose that *S* is a multiplicatively closed subset or briefly an *m.c.* subset of *R*. Here $S^{-1}R$ is the ring of all equivalence classes of the formal fractions $\frac{a}{s}$ for $a \in R$ and $s \in S$, where the equivalence relation is the obvious one. Whenever *S* is the set of all non-zero-divisors of *R*, then $S^{-1}R$ is called the classical ring of quotients of *R*.

An *m.c.* subset *T* of *R* is called saturated whenever $a, b \in R$ and $ab \in T$ imply that *a* and *b* belong to *T*. For an arbitrary *m.c.* subset *S* of *R*, the intersection of all saturated *m.c.* subsets of *R* which contain *S*, is called saturation of *S* and is denoted by \overline{S} . Using 5.7 in [11] we have

$$\bar{S} = R \setminus \bigcup_{\substack{P \in \operatorname{Spec}(R) \\ P \cap S = \emptyset}} P.$$

Lemma 1.2. ([11, Exercise 5.12(iv)]) For an arbitrary m.c. subset S of a commutative ring R with unity, two rings $S^{-1}R$ and $\bar{S}^{-1}R$ are isomorphic.

In sequel, for every *m.c.* subset *S* of *C*(*X*), the ring of fractions $S^{-1}C(X)$ is often abbreviated as $S^{-1}C$.

2. An Order Relation on $S^{-1}C$

The *m*-topology on C(X) is defined by taking the sets of the form

$$B(f, u) = \{ g \in C(X) : |f(x) - g(x)| < u(x), \forall x \in X \}$$

as a base for the neighborhood system at f, for each $f \in C(X)$, where u runs through the set of all positive units of C(X). This topology on C(X) which is denoted by $C_m(X)$, was first introduced in [9] and studied more in [1–3, 5, 8, 12]. To define a topology on $S^{-1}C$, similar to the *m*-topology on C(X), we need an ordering to make $S^{-1}C$ a lattice-ordered ring. We define the order relation \leq on $S^{-1}C$ as follows:

Definition 2.1. For $\frac{f}{r} \in S^{-1}C$, we define

$$0 \le \frac{f}{r}$$
 if there exists $t \in S$ such that $0 \le (t^2 r f)(x)$ for all $x \in X$.

Clearly $0 \le \frac{f}{r}$ if and only if $0 \le (rf)(x)$ for all $x \in \cos t$, for some $t \in S$. This definition is similar to the familiar definition of order on C(X). But here we consider restriction of each $\frac{f}{r}$ on a cozero-set of X instead of X itself. To see that the order \le is well defined, let $\frac{f}{r}, \frac{g}{s} \in S^{-1}C$, $\frac{f}{r} = \frac{g}{s}$ and $0 \le \frac{f}{r}$. Then there exist $p, q \in S$ such that qfs = qrg and $0 \le p^2rf$. Now, the inequality $0 \le (q^2s^2)(p^2rf)$ implies that $0 \le (p^2rsq)(qrg) = (p^2r^2q^2)(sg)$ and since $prq \in S$, we conclude that $0 \le \frac{g}{s}$.

Proposition 2.2. *let S be an m.c. subset of* C(X)*, then* $(S^{-1}C, \leq)$ *is a lattice-ordered ring.*

Proof. Clearly for every $\frac{f}{r} \in S^{-1}C$ if $0 \le \frac{f}{r}$ and $0 \le -\frac{f}{r}$, then $\frac{f}{r} = 0$. Now, suppose that $\frac{f}{r}, \frac{g}{s} \in S^{-1}C, 0 \le \frac{f}{r}$ and $0 \le \frac{g}{s}$. There exist $t_1, t_2 \in S$ such that $0 \le rf$ on $\cot t_1$ and $0 \le sg$ on $\cot t_2$. Therefore, $0 \le r^2s^2(s^2rf + r^2sg)$ and $0 \le r^2s^2(rfsg)$ on $\cot t_1t_2$ and thus, $0 \le \frac{s^2rf + r^2sg}{r^2s^2} = \frac{f}{r} + \frac{g}{s}$ and $0 \le \frac{rfsg}{r^2s^2} = \frac{f}{r} \cdot \frac{g}{s}$ on $\cot t_1t_2$. To prove that $S^{-1}C$ is lattice, it can be shown that

$$\frac{f}{r} \wedge \frac{g}{s} = \frac{rf}{r^2} \wedge \frac{sg}{s^2} = \frac{s^2rf}{r^2s^2} \wedge \frac{r^2sg}{r^2s^2} = \frac{s^2rf \wedge r^2sg}{s^2r^2}.$$

If *S* is an *m.c.* subset of a commutative ring *R*, then for every $n \in \mathbb{N}$, the set $S^n = \{s^n : s \in S\}$ is an *m.c.* subset of *R* and clearly two rings $(S^n)^{-1}R$ and $S^{-1}R$ are isomorphic. In fact, the map $i_n(\frac{f}{r}) = \frac{r^{n-1}f}{r^n}$ is an isomorphism from $S^{-1}R$ onto $(S^n)^{-1}R$. Now we define an ordering \leq^* on $(S^2)^{-1}C$ as follows;

Definition 2.3. For every $\frac{f}{r} \in (S^2)^{-1}C$, we define

$$0 \leq \frac{f}{r}$$
 if there exists $t \in S^2$ such that $0 \leq t(x)f(x)$ for all $x \in X$.

If *S* is an *m.c.* subset of *C*(*X*) then $S^2 \subseteq \{f \in S : 0 \le f\}$. Therefore $0 \le^* \frac{f}{r}$ if and only if $0 \le f$ on $\cos t$ for some $t \in S$. Similar to Definition 2.1, it can be shown that $((S^2)^{-1}C, \le^*)$ is a lattice-ordered ring. Moreover, we have the following result whose proof is left to the readers.

Proposition 2.4. Let *S* be an m.c. subset of C(X). Two rings $(S^{-1}C, \leq)$ and $((S^2)^{-1}C, \leq^*)$ are lattice isomorphic. In fact, the map $i_2(\frac{f}{r}) = \frac{rf}{r^2}$ from $S^{-1}C$ onto $(S^2)^{-1}C$ is an isomorphism and also order-preserving, i.e., $\frac{f}{r} \leq \frac{g}{s}$ if and only if $\frac{rf}{r^2} \leq^* \frac{sg}{s^2}$.

Now using the above proposition, without loss of generality, for every lattice-ordered ring $(S^{-1}C, \leq)$ we can assume that each member of *S* is non-negative. In addition, we can consider $0 \leq \frac{f}{r}$ whenever $0 \leq f$ on $\cos t$ for some $t \in S$.

Definition 2.5. A subset *S* of *C*(*X*) is called 3-subset whenever $f, g \in C(X)$ and $f \in S$, then Z(f) = Z(g) implies that $g \in S$.

Example 2.6. The set $C(X) \setminus Zd(X) = \{f \in C(X) : int_X Z(f) = \emptyset\}$ of all non-zero-divisor elements of C(X), is a multiplicatively closed 3-subset (or briefly an *m.c.* 3-subset) of C(X). Another example of *m.c.* 3-subset is $U(X) = \{f \in C(X) : Z(f) = \emptyset\}$, the set of all units of C(X). If $\{P_A\}_{A \in \Lambda}$ is a family of prime *z*-ideals of C(X), then $S = C(X) \setminus \bigcup_{A \in \Lambda} P_A$ is also an *m.c.* 3-subset of C(X). Note that whenever *P* is a prime ideal of C(X) which is not *z*-ideal, then $S = C(X) \setminus P_A$ is a saturated *m.c.* subset of C(X) which is not a 3-subset.

Proposition 2.7. If S is an m.c. 3-subset of C(X), then the set $T := \{f \in C(X) : Z(f) \subseteq Z(s) \text{ for some } s \in S\}$ is the saturation of S.

Proof. We show that *T* is the smallest saturated *m.c.* subset containing *S*. First, note that *T* is a saturated *m.c.* subset of *C*(*X*) containing *S*. In fact, if $f, g \in T$ then there exist s_1, s_2 in *S* such that $Z(f) \subseteq Z(s_1)$ and $Z(g) \subseteq Z(s_2)$. Therefore, $Z(fg) = Z(f) \cup Z(g) \subseteq Z(s_1s_2)$ which implies $fg \in T$. Moreover, if $fg \in T$ then $Z(fg) \subseteq Z(s)$, for some $s \in S$. Thus $Z(f) \subseteq Z(s)$ and also $Z(g) \subseteq Z(s)$ which imply that $f, g \in T$. Next, let *T'* be a saturated *m.c.* subset of *C*(*X*) containing *S* and suppose that $f \in T$. Hence $Z(f) \subseteq Z(s)$, for some $s \in S$ and thus $Z(fs) = Z(f) \cup Z(s) = Z(s)$. Since *S* is a 3-subset, $fs \in S \subseteq T'$ and so $f \in T'$, i.e., $T \subseteq T'$ which complete the proof. \Box

Corollary 2.8. Let *S* be an m.c. subset of C(X). *S* is a saturated m.c. 3-subset if and only if for every $f \in C(X)$ and $s \in S$, the inclusion $Z(f) \subseteq Z(s)$ implies that $f \in S$.

Corollary 2.9. The saturation of every m.c. 3-subset of C(X) is a 3-subset.

Example 2.10. Let f(x) = |x| - 1 be a function of $C(\mathbb{R})$. Then $S_1 = \{1, f, f^2, ...\}$ is an *m.c.* subset of X which is not 3-subset nor saturated. In fact,

$$S_2 = \{g \in C(\mathbb{R}) : Z(g) = \emptyset \text{ or } Z(g) = \{1, -1\}\}$$

is the smallest *m.c.* 3-subset of $C(\mathbb{R})$ containing S_1 and for saturation of S_2 we have

$$\bar{S}_2 = \{ g \in C(\mathbb{R}) : Z(g) \subseteq \{1, -1\} \}.$$

Moreover, it is easy to see that $S_1 \subsetneq S_2 \subsetneq \overline{S}_2$.

Similarly to the order relation \leq , for every $\frac{f}{r} \in S^{-1}C$ we define $0 < \frac{f}{r}$ if 0 < f on $\cos t$ for some $t \in S$.

Proposition 2.11. The set $U^+ = \{\frac{f}{r} \in S^{-1}C : 0 < \frac{f}{r}\}$ is closed with respect to the operations \lor and \land . Moreover, if S is an m.c. 3-subset, then every member of U^+ is a unit of $S^{-1}C$.

Proof. If $\frac{f}{r}, \frac{g}{s} \in U^+$, then there exist $t_1, t_2 \in S$ such that 0 < f on $\cot t_1$ and 0 < g on $\cot t_2$. Since $0 \le r, s$ we have $0 < sf \land rg$ on $\cot t_1 t_2 rs$ which implies that $0 < \frac{sf \land rg}{rs} = \frac{f}{r} \land \frac{g}{s}$. To prove the second part of the proposition, let $0 < \frac{f}{r}$. We have 0 < f on $\cot t$ for some $t \in S$ and so $\cot t \subseteq \cot f$. Therefore, $\cot t = \cot t f$ and since *S* is an *m.c.* 3-subset, then $tf \in S$. Now, $\frac{f}{r} = \frac{tf}{tr} \in S^{-1}C$ implies that $\frac{f}{r}$ is a unit. \Box

3. The *m*-Topology on $S^{-1}C$

Before defining the *m*-topology on $S^{-1}C$, we note that $\left|\frac{f}{r}\right| = \frac{f}{r} \vee \left(\frac{-f}{r}\right) = \frac{f \vee (-f)}{r} = \frac{|f|}{r}$. Now, for each $\frac{f}{r} \in S^{-1}C$ and each $\frac{u}{t} \in U^+$ if we consider the set $B(\frac{f}{r}, \frac{u}{t}) := \left\{\frac{g}{s} : \left|\frac{f}{r} - \frac{g}{s}\right| < \frac{u}{t}\right\}$, then clearly we have:

$$B(\frac{f}{r},\frac{u}{t}) = \{\frac{g}{s} : |\frac{f}{r}(x) - \frac{g}{s}(x)| < \frac{u}{t}(x) \text{ for all } x \in \operatorname{coz} q \subseteq \operatorname{coz} rstu \text{ for some } q \in S\}$$

The collection $\mathcal{B} = \{B(\frac{f}{r}, \frac{u}{t}) : \frac{f}{r} \in S^{-1}C \text{ and } \frac{u}{t} \in U^+\}$ is a base for a topology on $S^{-1}C$. In fact, $\frac{f}{r} \in B(\frac{f}{r}, \frac{u}{t})$ and $B(\frac{f}{r}, \frac{u}{t} \land \frac{v}{s}) \subseteq B(\frac{f}{r}, \frac{u}{t}) \cap B(\frac{f}{r}, \frac{v}{s})$ for every $\frac{u}{t}, \frac{v}{s} \in U^+$. Moreover, if $\frac{g}{s} \in B(\frac{f}{r}, \frac{u}{t})$, then $\frac{p}{q} := \frac{u}{t} - |\frac{f}{r} - \frac{g}{s}| \in U^+$ and we have $B(\frac{g}{s}, \frac{p}{q}) \subseteq B(\frac{f}{r}, \frac{u}{t})$. As the *m*-topology on C(X), this topology on $S^{-1}C$ is called the *m*-topology and $S^{-1}C$ endowed with this topology is denoted by $S_m^{-1}C$. This topology is in fact a generalization of the *m*-topology on C(X). Note that whenever S = U(X) then $S_m^{-1}C = C_m(X)$.

Recall that a topological ring is simply a ring furnished with a topology for which its algebraic operations are continuous, see [13]. We also notice that a Hausdorff topological ring is completely regular, see 8.1.17 in [6]. To prove that $S_m^{-1}C$ is a Hausdorff topological ring we need the following lemmas.

Lemma 3.1. Let *S* be an m.c. 3-subset of *C*(*X*). For every $0 \le \frac{f}{r} \in S^{-1}C$ there exists $\frac{g}{s} \in S^{-1}C$ such that $0 \le g, s \le 1$ and $\frac{f}{r} = \frac{g}{s}$.

Proof. Consider $s = \frac{r}{1+r+|f|}$ and $g = \frac{|f|}{1+r+|f|}$. Clearly Z(s) = Z(r) implies $s \in S$ and we have $\frac{g}{s} = \frac{|f|}{r} = |\frac{f}{r}| = \frac{f}{r}$.

Lemma 3.2. If S is an m.c. 3-subset of C(X), then the set $\{B(\frac{f}{r}, \frac{v}{1}) : f \in C(X), r, v \in S \text{ and } 0 \le v \le 1\}$ is a base for the *m*-topology on $S^{-1}C$.

Proof. By Lemma 3.1, for each $B(\frac{f}{r}, \frac{u}{t})$ there exist $v, s \in S$ such that $0 \le v, s \le 1$, and $\frac{u}{t} = \frac{v}{s}$. But $s(x)v(x) \le v(x)$ for all $x \in \cos sv$, then $\frac{v}{1} \le \frac{v}{s}$ and so $\frac{f}{r} \in B(\frac{f}{r}, \frac{v}{1}) \subseteq B(\frac{f}{r}, \frac{v}{s}) = B(\frac{f}{r}, \frac{u}{t})$. \Box

Proposition 3.3. Let S be an m.c. 3-subset of C(X). Then $S_m^{-1}C$ is a Hausdorff topological ring.

Proof. To prove the continuity of addition and multiplication, let $\frac{f}{r}, \frac{g}{s} \in S^{-1}C$ and $\frac{u}{1} \in U^+$. Then

$$+ \left(B\left(\frac{f}{r}, \frac{u}{2}\right) \times B\left(\frac{g}{s}, \frac{u}{2}\right) \right) \subseteq B\left(\frac{f}{r} + \frac{g}{s}, \frac{u}{1}\right)$$
$$\cdot \left(B\left(\frac{f}{r}, \frac{v}{1}\right) \times B\left(\frac{g}{s}, \frac{v}{1}\right) \right) \subseteq B\left(\frac{f}{r} \cdot \frac{g}{s}, \frac{u}{1}\right)$$

where $\frac{v}{1} \in U^+$ such that $\left(\frac{1}{1} + \frac{u}{1} + |\frac{f}{r}| + |\frac{g}{s}|\right)\frac{v}{1} < \frac{u}{1}$. In fact, if we consider $w := \left(\frac{1}{1} + \frac{u}{1} + |\frac{f}{r}| + |\frac{g}{s}|\right)$, then $\frac{1}{1} < w \in U^+$, $w^{-1} < \frac{1}{1}$ and $w^{-1} \in U^+$. Now, it is enough to take $\frac{v}{1} = w^{-1}\frac{u}{2}$. To show that $S_m^{-1}C$ is Hausdorff, let $\frac{f}{r}, \frac{g}{s} \in S^{-1}C$ and $\frac{f}{r} \neq \frac{g}{s}$. Thus, $fs \neq rg$ on $\cos rs$ and $\sin \cos \cos rs \subseteq \cos(fs - rg)$. Therefore, $\cos rs = \cos rs(fs - rg)$ and since S is an m.c. 3-subset and $rs \in S$, we have $t := |rs(fs - rg)| \in S$. Now, it is not hard to see that $B(\frac{f}{r}, \frac{t}{2r^2s^2})$ and $B(\frac{g}{s}, \frac{t}{2r^2s^2})$ are disjoint. \Box

Corollary 3.4. Let S be an m.c. 3-subset of C(X). Then $S^{-1}C$ with the m-topology is a completely regular Hausdorff space.

4. Connectedness of $S_m^{-1}C$

In this section, in imitate of [2], we first find the component of zero in $S_m^{-1}C$, where *S* is an *m.c.* \mathfrak{z} -subset. Next using this, we give a necessary and sufficient condition for connectedness of $S_m^{-1}C$.

Definition 4.1. A member $\frac{f}{r} \in S^{-1}C$ is called bounded if there exists $k \in \mathbb{N}$ such that $|\frac{f}{r}| \le \frac{k}{1}$, i.e., $|f(x)| \le k|r(x)|$ for all $x \in \operatorname{coz} t$ for some $t \in S$.

Clearly the set $(S^{-1}C)^*$ of all bounded elements of $S^{-1}C$ is a subring of $S^{-1}C$.

Lemma 4.2. $(S^{-1}C)^*$ is a clopen subset of $S_m^{-1}C$.

Proof. If $\frac{f}{r} \in (S^{-1}C)^*$, then $B(\frac{f}{r}, \frac{1}{1}) \subseteq (S^{-1}C)^*$. In fact, $|\frac{f}{r} - \frac{g}{s}| < \frac{1}{1}$ implies that $|\frac{g}{s}| < |\frac{f}{r}| + \frac{1}{1} \le \frac{k}{1} + \frac{1}{1}$ for some $k \in \mathbb{N}$ and hence $\frac{g}{s}$ is bounded. On the other hand, if $\frac{f}{r} \notin (S^{-1}C)^*$, then $B(\frac{f}{r}, \frac{1}{1}) \cap (S^{-1}C)^* = \emptyset$. \Box

Lemma 4.3. $J_{\psi} = \{\frac{f}{r} \in S^{-1}C : \frac{f}{r} \cdot \frac{s}{t} \text{ is bounded for each } \frac{s}{t} \in U^+\}$ is an ideal of $S^{-1}C$.

Proof. It is not hard to see that J_{ψ} is closed with respect to addition. Let $\frac{f}{r} \in J_{\psi}, \frac{g}{s} \in S^{-1}C$ and $\frac{p}{q} \in U^+$. We claim that $\frac{fgp}{rsq}$ is bounded and so $\frac{fg}{rs} \in J_{\psi}$. Since $\frac{p}{q} \in U^+$, 0 < p on $\cos t$ for some $t \in S$ and so 0 < (1 + |g|)p on $\cos t$. Therefore, $\frac{(1+|g|)p}{sq} \in U^+$. Now by our hypothesis, $\frac{f}{r} \cdot \frac{(1+|g|)p}{sq}$ is bounded which implies that $\frac{f|g|p}{rsq} = (\frac{f}{r} \cdot \frac{(1+|g|)p}{sq})(\frac{|g|}{1+|g|})$ is bounded and $\frac{fgp}{rsq}$ is bounded as well. \Box

Using Lemmas 3.1 and 3.2 we have $J_{\psi} = \{\frac{f}{r} \in S^{-1}C : \frac{f}{t} \text{ is bounded}, \forall t \in U^+, 0 \le t \le 1\}$

Lemma 4.4. Let *S* be an m.c. 3-subset of C(X) and consider $\frac{f}{r} \in J_{\psi}$. The function $\varphi_{\frac{f}{r}} : \mathbb{R} \longrightarrow S^{-1}C$ defined by $\varphi_{\underline{f}}(a) = \frac{af}{r}$ is continuous.

Proof. Using Lemma 3.2, for every $a \in \mathbb{R}$ and $\frac{v}{1} \in U^+$, we must show that $\varphi_{\frac{f}{r}}^{-1}(B(\frac{af}{r},\frac{v}{1}))$ contains a neighborhood of a in \mathbb{R} . Since $\frac{f}{r} \in J_{\psi}$, there exists $k \in \mathbb{N}$ such that $|\frac{f}{r}\frac{1}{v}| \leq \frac{k}{1}$. Now, we show that the interval $(a - \frac{1}{k}, a + \frac{1}{k})$ is contained in $\varphi_{\frac{f}{r}}^{-1}(B(\frac{af}{1}, \frac{v}{1}))$. In fact, $b \in (a - \frac{1}{k}, a + \frac{1}{k})$ implies that $\frac{|b-a|}{1}|\frac{f}{r}|\frac{1}{v} \leq \frac{1}{k} \cdot \frac{k}{1} = \frac{1}{1}$ and hence $|\frac{bf}{r} - \frac{af}{r}| < \frac{v}{1}$, i.e. $b \in \varphi_{\frac{f}{L}}^{-1}(B(\frac{af}{r}, \frac{v}{1}))$. \Box

The following theorem is in fact a generalization of Corollary 3.3 in [2].

Theorem 4.5. Let S be an m.c. 3-subset of C(X). The ideal J_{ψ} is the component of zero in $S_m^{-1}C$.

Proof. First, since \mathbb{R} is connected, using Lemma 4.4, $\varphi_{\frac{f}{r}}(\mathbb{R})$ is a connected set containing 0 for every $\frac{I}{r} \in J_{\psi}$. Therefore, $J_{\psi} = \bigcup_{\frac{f}{r} \in J_{\psi}} \varphi_{\frac{f}{r}}(\mathbb{R})$ is a connected set containing 0. Next, If *I* is the component of 0 in $S_m^{-1}C$, then $J_{\psi} \subseteq I$. Moreover, since $S_m^{-1}C$ is topological ring, *I* is an ideal of $S_m^{-1}C$. To complete the proof, it is enough to show that $I \subseteq J_{\psi}$. On the contrary, let $\frac{f}{r} \in I \setminus J_{\psi}$. By Lemma 4.3, there exists $\frac{s}{t} \in U^+$ such that $\frac{f}{r} \frac{s}{t} \notin (S^{-1}C)^*$. Consider the sets $I \cap (S^{-1}C)^*$ and $I \setminus (S^{-1}C)^*$. By Lemma 4.2, these two sets are open in *I* and since $0 \in I \cap (S^{-1}C)^*$ and $\frac{f}{r} \frac{s}{t} \in I \setminus (S^{-1}C)^*$, they are non-empty disjoint open subsets of the connected set *I*, a contradiction. \Box

Corollary 4.6. Let S be an m.c. 3-subset of C(X). $S_m^{-1}C$ is connected if and only if $S_m^{-1}C = J_{\psi}$, i.e., for every $f \in C(X)$ and each $r \in S$, there exist $k \in \mathbb{N}$ and $t \in S$ such that $|f(x)| \le kr(x)$ for all $x \in coz t$.

Motivated by the previous corollary, we are going to investigate the connectedness of $S_m^{-1}C$ via topological properties of X for some particular *m.c.* 3-subsets of X. For example, let $p \in \beta X$ and put $S_p = C(X) \setminus M^p$ or more generally, suppose that $A \subseteq \beta X$ and $S_A := C(X) \setminus \bigcup_{p \in A} M^p$. Clearly S_A is an *m.c.* 3-subset of C(X) and $S_A = \{f \in C(X) : p \notin cl_{\beta X}Z(f) \text{ for each } p \in A\} = \{f \in C(X) : A \cap cl_{\beta X}Z(f) = \emptyset\}$. Now, it is natural to ask the following questions.

When is the topological ring $(S_A)_m^{-1}C$ connected? what can we say about the connectedness of $(S_A)_m^{-1}C$ if we replace $\bigcup_{p \in A} M^p$ in S_A by an arbitrary union of family of particular prime ideals of C(X)? We will address such questions in the next section.

5. Connectedness of $S_A^{-1}C$ with the *m*-Topology

In this section, we study the connectedness of $S_m^{-1}C$, where $S = C(X) \setminus \bigcup_{\lambda \in \Lambda} P_\lambda$, and $\{P_\lambda\}_{\lambda \in \Lambda}$ is a family of prime *z*-ideals of *C*(*X*). Using this, we conclude that *C*(*X*) with the *m*-topology is connected if and only if *X* is pseudocompact. Also, It is shown that the classical ring of quotients of *C*(*X*) endowed with the *m*-topology, is connected if and only if every dense cozero-set of *C*(*X*) is pseudocompact.

We use the following lemma frequently. But, before that, we review some results which are needed in sequel. First, notice that for every $f \in C(X)$ we have

$$\operatorname{coz} f \subseteq \beta X \backslash \operatorname{cl}_{\beta X} Z(f) \subseteq \operatorname{cl}_{\beta X} \operatorname{coz} f.$$
(1)

The proof of the first inclusion is clear. To prove the second, let $x \notin cl_{\beta X}Z(f)$. There exists an open neighborhood *G* of *x* in βX such that $G \subseteq \beta X \setminus Z(f)$. Now, for an arbitrary open subset *H* of βX containing *x*, we have

$$\emptyset \neq X \cap (G \cap H) \subseteq (X \cap H) \cap (\beta X \setminus Z(f)) = H \cap \operatorname{coz} f$$

which implies that $x \in cl_{\beta X} coz f$. Next, by part (1), we conclude that

$$cl_{\beta X} coz f = cl_{\beta X}(\beta X \setminus cl_{\beta X} Z(f)) = \beta X \setminus int_{\beta X} cl_{\beta X} Z(f).$$
(2)

Finally, if $f \in C^*(X)$, then $\cos f = X \cap \cos f^\beta$ and in this case, we have

$$cl_{\beta X} coz f = cl_{\beta X} coz f^{\beta} = \beta X \setminus int_{\beta X} Z(f^{\beta}).$$

Using part (2), the next lemma is now evident.

Lemma 5.1. Let $f \in C(X)$ and $p \in \beta X$. $f \notin O^p$ if and only if $p \in cl_{\beta X} coz f$.

Proposition 5.2. Let S be an m.c. 3-subset of C(X) and consider $S_p := C(X) \setminus M^p$, for some $p \in \beta X \setminus vX$. If $S_p \subseteq S$ then $S_m^{-1}C$ is disconnected.

Proof. Let $p \in \beta X \setminus vX$. By 8.7.(b) in [7], there exists $r \in C^*(X)$ such that $Z(r) = \emptyset$, while $r^{\beta}(p) = 0$. Since *S* is a 3-subset and Z(r) = Z(1), then $r \in S$ and so $\frac{1}{r} \in S^{-1}C$. To complete the proof, we claim that $\frac{1}{r}$ is unbounded on $\operatorname{coz} t$ for every $t \in S$. Let \overline{S} be the saturation of *S*. Recall that $\overline{S} = C(X) \setminus \bigcup_{P \cap S = \emptyset} P$ where each *P* is a prime ideal of C(X). Furthermore, for every prime ideal *P* which doesn't intersect *S*, we have $P \subseteq C(X) \setminus S \subseteq C(X) \setminus S_p = M^p$. Now, for every $t \in S$, $tr \in S \subseteq \overline{S}$ and so, there exists a prime ideal $P_{\circ} \subseteq M^p$ such that $tr \notin P_{\circ}$ and consequently $tr \notin O^p$. Thus by Lemma 5.1, $p \in \operatorname{cl}_{\beta X} \operatorname{coz} tr$ and hence there exists a net $\{x_{\lambda}\}$ contained in $\operatorname{coz} tr = \operatorname{coz} t \cap \operatorname{coz} r$ which converges to *p*. Since r^{β} is continuous, $r^{\beta}(x_{\lambda}) \to r^{\beta}(p) = 0$ and this implies that the function *r* converges to zero on $\operatorname{coz} tr \subseteq \operatorname{coz} r$ and so the fraction $\frac{1}{r} \in S^{-1}C$ is not bounded on $\operatorname{coz} tr \subseteq \operatorname{coz} r$. Therefore, the claim is true and so $S_m^{-1}C$ is disconnected. \Box

Proposition 5.3. Let P be a prime z-ideal of C(X) and suppose that $S = C(X) \setminus P$. The topological ring $S_m^{-1}C$ is connected if and only if P is a real maximal ideal.

Proof. We first prove the necessity. By contrary, assume that *P* is not real maximal ideal. Now, using 7.15 in [7], let $p \in \beta X$ and M^p be the unique maximal ideal of C(X) containing *P*. We consider two cases:

Case 1. $p \in \beta X \setminus v X$. In this case, Proposition 5.2 implies that $S_m^{-1}C$ is disconnected, a contradiction.

Case 2. let $p \in vX$. In this case, using 7.9.(c) in [7], we have $M^p \cap C^*(X) = M^{*p}$. On the other hand, $P \subsetneq M^p$ by our assumption. Then there exists a function $r \in C^*(X)$ such that $r \in M^p \setminus P$ and so $\frac{1}{r} \in S^{-1}C$. Moreover, $r \in M^p \cap C^*(X)$ implies $r^{\beta}(p) = 0$. Now, for every $t \in S$, $tr \notin P$ which shows that $tr \notin O^p$ and hence $p \in cl_{\beta X} \cot tr$, by Lemma 5.1. Finally, similar to the proof of the Proposition 5.2, we conclude that $\frac{1}{r}$ is unbounded on $\cot tr \subseteq \cot t$ and consequently using the Corollary 4.6, $S_m^{-1}C$ is not connected, a contradiction.

Next, to prove the sufficiency, let $p \in \beta X$, M^p be a real maximal ideal of C(X) and $S = C(X) \setminus M^p$. suppose that $\frac{f}{r} \in S^{-1}C$. By Lemma 3.1, we can assume that $f, r \in C^*(X)$. Since $r \notin M^p$ and M^p is real, we have $r \notin M^{*p}$, by 7.9.(c) in [7], and hence $r^{\beta}(p) \neq 0$. Moreover, for every $f \in C(X)$, $f^{\beta}(p)$ does not approach to infinity. Now, consider the open subset $H = \{x \in \cos r^{\beta} : |\frac{f^{\beta}}{r^{\beta}}(x) - \frac{f^{\beta}}{r^{\beta}}(p)| < 1\}$ of $\cos r^{\beta} \subseteq \beta X$. We observe that H is an open neighborhood of p in βX and since $\{\cos t^{\beta} : t \in C^*(X)\}$ is a base for the space βX , there exists $t \in C^*(X)$ such that $p \in \cos t^{\beta} \subseteq H$. Thus, for every $x \in \cos t^{\beta}, |\frac{f^{\beta}}{r^{\beta}}(x)| < |\frac{f^{\beta}}{r^{\beta}}(p)| + 1$ and hence for every $x \in X \cap \cot t^{\beta} = \cot t$, we have $|\frac{f}{r}(x)| < |\frac{f^{\beta}}{r^{\beta}}(p)| + 1$ which implies that $\frac{f}{r}$ is bounded on $\cot t$. Therefore, by Corollary 4.6, $S^{-1}C$ with the *m*-topology, i.e., $S_m^{-1}C$ is connected. \Box

The following result is an immediate consequence of the previous proposition.

Corollary 5.4. Let $p \in \beta X$. $S_p^{-1}C$ with the *m*-topology is connected if and only if $p \in vX$.

By 8A.4 in [7], $vX = \beta X$ if and only if X is pseudocompact. Using this and corollary 5.4 the following result is now evident.

Corollary 5.5. $S_p^{-1}C$ with the *m*-topology is connected for every $p \in \beta X$ if and only if X is pseudocompact.

Recall that whenever \overline{S} is the saturation of an *m.c.* subset *S* of *C*(*X*), then two rings $S^{-1}C$ and $(\overline{S})^{-1}C$ are isomorphic. By Corollary 2.9, the saturation of every *m.c.* \mathfrak{z} -subset *S* of *C*(*X*) is a \mathfrak{z} -subset. If we consider $S = C(X) \setminus \bigcup_{\lambda \in \Lambda} P_{\lambda}$ where $\{P_{\lambda}\}_{\lambda \in \Lambda}$ is a family of prime ideals of *C*(*X*), then for every $\lambda \in \Lambda$, we have $P_{\lambda} \cap S = \emptyset$ and conversely, for each prime ideal *P* disjoint from *S* there exists $\lambda \in \Lambda$ such that $P = P_{\lambda}$.

Definition 5.6. An ideal *I* of *C*(*X*) is called real whenever every maximal ideal containing *I*, is real.

As 7O in [7], for an ideal *I* in C(X) if we define $\theta(I) = \{p \in \beta X : I \subseteq M^p\}$, then $\theta(I) = \bigcap_{f \in I} cl_{\beta X} Z(f)$. Thus, an ideal of C(X) is real ideal if and only if $\theta(I) \subseteq vX$ or equivalently $\bigcap_{f \in I} cl_{\beta X} Z(f) \subseteq vX$.

Proposition 5.7. Let $\{P_{\lambda}\}_{\lambda \in \Lambda}$ be a family of prime *z*-ideals of C(X) and take $S := C(X) \setminus \bigcup_{\lambda \in \Lambda} P_{\lambda}$. Then *S* is an *m.c.* 3-subset of C(X) and if $S_m^{-1}C$ is connected, then for every $\lambda \in \Lambda$ the ideal P_{λ} is real. Moreover, $\bigcup_{\lambda \in \Lambda} P_{\lambda} = \bigcup_{p \in \Lambda} M^p$ where $A = \bigcup_{\lambda \in \Lambda} \theta(P_{\lambda})$.

Proof. By contrary, suppose that $S_m^{-1}C$ is connected but at least one of the prime ideals is not real. Thus, there exists $\lambda_o \in \Lambda$ and $p \in \beta X \setminus vX$ such that $P_{\lambda_o} \subseteq M^p$. Since $p \notin vX$, there is a function $r \in C^*(X)$ such that $Z(r) = \emptyset$ and $r^{\beta}(p) = 0$. Now, similar to the proof of Proposition 5.2, we conclude that $\frac{1}{r} \in S^{-1}C$ and for every $t \in S$ we have $tr \notin O^p$, since $tr \notin P_{\lambda_o}$. So by Lemma 5.1, $p \in cl_{\beta X} coz tr$. Therefore, $\frac{1}{r}$ is not bounded on coz t and thus $S_m^{-1}C$ is not connected, by Corollary 4.6, a contradiction.

To prove the last part of the proposition, by contrary, let $r \in \bigcup_{p \in A} M^p \setminus \bigcup_{\lambda \in \Lambda} P_{\lambda}$. As above, for every $t \in S$ it can be shown that $\frac{1}{r}$ is unbounded on $\cos t$ and so $S_m^{-1}C$ is disconnected, a contradiction. \Box

Corollary 5.8. Let $p \in \beta X$ and $\{P_{\lambda}^{p}\}_{\lambda \in \Lambda}$ be a family of prime z-ideals of C(X) contained in the maximal ideal M^{p} and suppose that $S = C(X) \setminus \bigcup_{\lambda \in \Lambda} P_{\lambda}^{p}$. Then $S_{m}^{-1}C$ is connected if and only if $p \in vX$ and $M^{p} = \bigcup_{\lambda \in \Lambda} P_{\lambda}^{p}$.

Corollary 5.9. Let $A \subseteq \beta X$ and suppose that $S_A = C(X) \setminus \bigcup_{p \in A} M^p$. If $S^{-1}C$ with the *m*-topology is connected, then $A \subseteq vX$.

The following theorem which is in fact a generalization of Corollary 5.4, shows that whenever *A* is a compact subset of βX , the converse of the previous corollary is also true. But, we were unable to answer the converse of the corollary.

Theorem 5.10. Let A be a compact subset of βX and consider $S_A = C(X) \setminus \bigcup_{p \in A} M^p$. Then $S_A^{-1}C$ with the m-topology is connected if and only if $A \subseteq vX$.

Proof. Necessity is clear by Corollary 5.9. To prove the sufficiency, let *A* be a compact subset of *vX*. Using Corollary 4.6, it is enough to show that for every $\frac{f}{r} \in S_A^{-1}C$, there exists $t \in S_A$ such that $\frac{f}{r}$ is bounded on $\cos t$. Since $r \in S_A$, then for every $p \in A \subseteq vX$, $r \notin M^p \cap C^*(X) = M^{*p}$ and so $r^\beta(p) \neq 0$. Moreover, $p \in vX$ implies that $f^\beta(p) \neq \infty$ and thus for each $p \in A$, $\frac{f^\beta}{r^\beta}(p)$ is a real number. As in the proof of Proposition 5.3, the subset $H = \{x \in \cos r^\beta : | \frac{f^\beta}{r^\beta}(x) - \frac{f^\beta}{r^\beta}(p) < 1\}$ is an open neighborhood of p in $\cos r^\beta$ and hence in βX as well. Thus, there exists $t \in C^*(X)$ such that $p \in \cot t^\beta_p \subseteq H \subseteq \cot r^\beta$ and so we conclude that $\frac{f}{r}$ is bounded on $\cos t_p$. In fact, for every $x \in \cot t_p$ we have $|\frac{f}{r}(x)| < |\frac{f^\beta}{r^\beta}(p)| + 1$. Now, since *A* is compact and $A \subseteq \bigcup_{p \in A} \cot t^\beta_p$, there are functions $t_{p_1}, ..., t_{p_n}$ in $C^*(X)$ such that $A \subseteq \bigcup_{i=1}^n \cot t^\beta_{p_i}$. We claim that $t = t^2_{p_1} + ... + t^2_{p_n}$ is the function which we look for.

First, note that for every $p \in A$ we have $t \notin M^p$. Otherwise, if for some $q \in A$ we have $t \in M^q$, then $Z(t) \subseteq Z(t_{p_i})$ $(1 \le i \le n)$ implies that $t_{p_i} \in M^q$ for every $1 \le i \le n$, (since M^q is a *z*-ideal) which contradicts $q \in A \subseteq \bigcup_{i=1}^n \cos t_{p_i}^\beta$.

Next, because $\frac{f}{r}$ is bounded on every $\cos t_{p_i}$ $(1 \le i \le n)$, it is bounded on $\cos t = \cos(t_{p_1}^2 + ... + t_{p_n}^2) = \bigcup_{i=1}^n \cos t_{p_i}$ too, which completes the proof. \Box

Whenever a subset *A* of *X* is completely separated from every zero-set disjoint from it, in particular, if *A* is a zero-set or a *C*-embedded subset of *X*, then for every $f \in C(X)$, $cl_{\beta X}A \cap cl_{\beta X}Z(f) = \emptyset$ if and only if $A \cap cl_{\beta X}Z(f) = \emptyset$, see Theorems 1.18 and 6.5 in [7]. Therefore, $S_A = S_{cl_{\beta X}A}$ and since $cl_{\beta X}A$ is a compact subset of βX , the following result is now evident by Theorem 5.10.

Corollary 5.11. Let a subset $A \subseteq X$ be completely separated from every zero-set disjoint from it. Then $S_A^{-1}C$ with the *m*-topology is connected if and only if $cl_{\beta X}A \subseteq vX$.

If we consider $S = C(X) \setminus \bigcup_{p \in \beta X} M^p$, then *S* is the set of all units of C(X) and so $S_m^{-1}C = C_m(X)$. Therefore, by Theorem 5.10, $C_m(X)$ is connected if and only if $\beta X \subseteq vX$. Now, using 8A.4 in [7], the following results is evident.

Corollary 5.12. ([2, Proposition 3.12]) *C*(X) with the *m*-topology is connected if and only if X is pseudocompact.

Using Proposition 5.7 and Theorem 5.10, we conclude the paper by another proof for Corollary 3.11 in [3]. First, we recall that a point $p \in X$ is called an almost *P*-point, if every G_{δ} -set (zero-set) containing *p* has nonempty interior and a space *X* is called an almost *P*-space if each point of *X* is an almost *P*-point. Thus, *X* is an almost *P*-space if and only if every non-zero-divisor of C(X) is unit, i.e., $U(X) = C(X) \setminus Zd(X) = C(X) \setminus \bigcup P$, where *P* is a prime ideal of C(X) contained in Zd(X). It is proved that $p \in X$ is an almost *P*-point if and only if whenever $f \in C(X)$ and $p \in Z(f)$ imply that $p \in cl_X int_X Z(f)$. In fact, if *p* is an almost *P*-point, then $M_p \subseteq Zd(X)$ and thus, for every $f \in C(X)$ if $p \in Z(f)$, then the ideal (O_p, f) generated by $O_p \cup \{f\}$, is contained in M_p . Now, using Corollary 3.3 in [4] we conclude that $p \in cl_X int_X Z(f)$. See [10] for more information about almost *P*-spaces.

Corollary 5.13. ([3, Corollary 3.11]) *The classical ring of quotients of* C(X) *with the m-topology is connected if and only if* X *is a pseudocompact almost* P*-space.*

Proof. Let $S^{-1}C$ be the classical ring of quotients of C(X) and for every $p \in \beta X$, suppose that $\{P_{\lambda}^{p}\}_{\lambda \in \Lambda_{p}}$ is the family of all prime ideals of C(X) contained in $M^{p} \cap Zd(X)$. It is not hard to see that $Zd(X) = \bigcup_{\substack{\lambda \in \Lambda_{p} \\ p \in \beta X}} P_{\lambda}^{p}$

and so, $S = C(X) \setminus \bigcup_{\lambda \in \Lambda_p} P_{\lambda}^p$. Now, Using Proposition 5.7, if $S_m^{-1}C$ is connected, then every P_{λ}^p is real ideal which implies that $\beta X \subseteq vX$, i.e., X is pseudocompact. On the other hand, since for every $\lambda \in \Lambda_p$ we have $\theta(P_{\lambda}^p) = \{p\}$, using the same proposition, we conclude that $Zd(X) = \bigcup_{p \in \beta X} M^p$. Thus, each non-unit of C(X) is zero-divisor and this means that X is almost p-space.

Conversely, let *X* be pseudocompact almost *P*-space. Since *X* is an almost *P*-space, $Zd(X) = \bigcup_{p \in \beta X} M^p$ and by pseudocompactness of *X* we conclude that $\beta X = vX$. Now, by Theorem 5.10, $S_m^{-1}C$ is connected for $S = C(X) \setminus Zd(X)$. \Box

Acknowledgement. The author is grateful to the referee for certain comments and corrections towards the improvement of the paper.

References

- [1] F. Azarpanah, F. Manshoor, R. Mohamadian, A generalization of the *m*-topology on *C*(*X*) finer than the *m*-topology, Filomat, to appear.
- [2] F. Azarpanah, F. Manshoor, R. Mohamadian, Connectedness and compactness in C(X) with the *m*-topology and generalized *m*-topology, Topology Appl. 159 (2012) 3486–3493.
- [3] F. Azarpanah, M. Paimann, A.R. Salehi, Connectedness of some rings of quotients of C(X) with the *m*-topology, Comment. Math. Univ. Carolinae 56 (2015) 63–76.
- [4] F. Azarpanah, A. R. Salehi, Ideal structure of the classical ring of quotients of C(X), Topology Appl. 209 (2016) 170–180.
- [5] G. Di Maio, L. Hola, D. Holy, R.A. McCoy, Topology on the space of continuous functions, Topology Appl. 86 (1998) 105–122.
- [6] R. Engelking, General Topology, Sigma Ser. Pure Math., vol. 6, Heldermann Verlag, Berlin, 1989.
- [7] L. Gillman, M. Jerison, Rings of Continuous Functions, Springer-Verlag, New York, 1976.
- [8] J. Gomez-Perez, W.W. McGovern, The *m*-topology on $C_m(X)$ revisited, Topology Appl. 153 (2006) 1838–1848.
- [9] E. Hewitt, Rings of real-valued continuous functions I, Trans. Amer. Math. Soc. 48(64) (1948) 54-99.
- [10] R. Levy, Almost P-spaces, Cannad. J. Math. 29 (1977) 284-288.
- [11] R.Y. Sharp, Steps in Commutative Algebra, Cambridge University Press, 1990.
- [12] E. van Douwen, Nonnormality or hereditary paracompactness of some spaces of real functions, Topology Appl. 39 (1991) 3–32.
- [13] S. Warner, Topological Rings, North Holland Math. Stud., 1993.