Characterization of Two-sided Order Preserving of Convex Majorization on $\ell^{p}(I)$

Ali Bayati Eshkaftaki ${ }^{\text {a }}$, Noha Eftekhari ${ }^{\text {a }}$
${ }^{a}$ Department of Pure Mathematics, Faculty of Mathematical Sciences, Shahrekord University, P.O.Box 115, Shahrekord, 88186-34141, Iran.

Abstract

In this paper, we consider an equivalence relation \sim_{c} on $\ell^{p}(I)$, which is said to be "convex equivalent" for $p \in[1,+\infty)$ and a nonempty set I. We characterize the structure of all bounded linear operators $T: \ell^{p}(I) \rightarrow \ell^{p}(I)$ that strongly preserve the convex equivalence relation. We prove that the rows of the operator which preserve convex equivalent, belong to $\ell^{1}(I)$. Also, we show that any bounded linear operators $T: \ell^{p}(I) \longrightarrow \ell^{p}(I)$ which preserve convex equivalent, also preserve convex majorization.

1. Introduction and Preliminaries

Majorization theory plays an important role in various areas and gives a lot of applications in the operator theory and linear algebra. For an account of the majorization theory we refer the reader to [1, 2, 4-9].

Throughout this work, I is a nonempty set, $p \in[1,+\infty)$, and $\ell^{p}(I)$ is the Banach space of all functions $f: I \rightarrow \mathbb{R}$ with the finite norm defined by

$$
\|f\|_{p}=\left(\sum_{i \in I}|f(i)|^{p}\right)^{\frac{1}{p}}
$$

For $f \in \ell^{p}(I)$, to shorten notation, we will write $\operatorname{co}(f)$, instead of the convex combination of the set $\operatorname{Im}(f)=$ $\{f(i) ; i \in I\}$.

Definition 1.1. [3] For any given $f, g \in \ell^{p}(I), f$ is said to be convex majorized by g, and denoted by $f<_{c} g$, if $\operatorname{co}(f) \subseteq \operatorname{co}(g)$. Also, f is said to be convex equivalent to g, denoted by $f \sim_{c} g$, whenever $f<_{c} g<_{c} f$, i.e., $\operatorname{co}(f)=\operatorname{co}(g)$.

It is easy to see that the relation \sim_{c} is an equivalence relation on $\ell^{p}(I)$.
Definition 1.2. [4] Let X be a linear space and \mathcal{R} be a relation on X. The linear operator $T: X \rightarrow X$ is said to preserve \mathcal{R} if for each $x, y \in X$

$$
\mathcal{R}(x, y) \text { implies } \mathcal{R}(T x, T y)
$$

[^0]Moreover, T is called two-sided(or strongly) preserve \mathcal{R} if

$$
\mathcal{R}(x, y) \text { if and only if } \mathcal{R}(T x, T y) .
$$

Let \mathcal{E} denote the set of all bounded linear operators $T: \ell^{p}(I) \rightarrow \ell^{p}(I)$ which satisfy $\operatorname{co}(T f)=\operatorname{co}(f)$, for all $f \in \ell^{p}(I)$. The set of all bounded linear operators $T: \ell^{p}(I) \rightarrow \ell^{p}(I)$ which preserve convex majorization, convex equivalent, strongly preserve convex majorization, and strongly preserve convex equivalent will be denoted by $\mathcal{P}_{c}, \mathcal{P}_{e}, \mathcal{P}_{s c}$, and $\mathcal{P}_{s e}$, respectively. It is obvious that $\mathcal{P}_{c} \subseteq \mathcal{P}_{e}$.

An element $f \in \ell^{p}(I)$ can be represented by $\sum_{i \in I} f(i) e_{i}$, where $e_{i}: I \rightarrow \mathbb{R}$ is defined by $e_{i}(j)=\delta_{i j}$, the Kronecker delta. Let $T: \ell^{p}(I) \rightarrow \ell^{p}(I)$ be a bounded linear operator. Then an easy computation shows that, T is represented by a (finite or infinite) matrix $\left(t_{i j}\right)_{i, j \in I}$ in the sense that

$$
(T f)(i)=\sum_{j \in I} t_{i j} f(j) \quad\left(f \in \ell^{p}(I), i \in I\right)
$$

where $t_{i j}=\left(T e_{j}\right)(i)$. To simplify notation, we can incorporate T to its matrix form $\left(t_{i j}\right)_{i, j \in I}$. Both the values of $\inf _{i \in I}\left\{T e_{j}(i)\right\}$ and $\sup _{i \in I}\left\{T e_{j}(i)\right\}$ are independent of the choice of $j \in I$, and we denote them by a and b, respectively [3].

Theorem 1.3. [3] Let $T: \ell^{p}(I) \longrightarrow \ell^{p}(I)$ be a linear operator. Then $T \in \mathcal{P}_{c}$ if and only if
(i) For any $j \in I$, the value of $\min _{i \in I}\left\{T e_{j}(i)\right\}$ exists and independent of j is equal to a.
(ii) For any $j \in I$, the value of $\max _{i \in I}\left\{T e_{j}(i)\right\}$ exists and independent of j is equal to b.
(iii) If $a<0<b$, we have $\frac{1}{a} \sum_{j \in I^{-}} T e_{j}(i)+\frac{1}{b} \sum_{j \in I^{+}} T e_{j}(i) \leq 1$; if $a<0=b$, then we have $\sum_{j \in I} T e_{j}(i) \geq a$, and if $a=0<b$, then it implies $\sum_{j \in I} T e_{j}(i) \leq b$, where $\left(T e_{j}(i)\right)_{j \in I}$ is an arbitrary row of T and $I^{+}=\left\{j \in I ; T e_{j}(i)>0\right\}, I^{-}=\{j \in$ $\left.I ; T e_{j}(i)<0\right\}$.

Theorem 1.4. [3] Let $I \neq \emptyset$ and $T: \ell^{p}(I) \longrightarrow \ell^{p}(I)$ be a bounded linear operator. Then
(i) for finite set $I, T \in \mathcal{E}$ if and only if T is a permutation.
(ii) for infinite set $I, T \in \mathcal{E}$ if and only if for all $j \in I$, we have $\min _{i \in I}\left\{T e_{j}(i)\right\}=0, \max _{i \in I}\left\{T e_{j}(i)\right\}=1$, and for each $i \in I$ we have $0<\sum_{j \in I} T e_{j}(i) \leq 1$, when I is countable, and $0 \leq \sum_{j \in I} T e_{j}(i) \leq 1$, when I is uncountable.

We prepare this work as follows. In the next section, we consider some properties of the operators in \mathcal{P}_{e} when I is an infinite set. We prove that the rows of $T \in \mathcal{P}_{e}$ belong to $\ell^{1}(I)$. Also, we show that any operators $T: \ell^{p}(I) \longrightarrow \ell^{p}(I)$ which preserve convex equivalent, also preserve convex majorization. In the third section we proceed with the study of the structure of operators that preserve convex equivalent when I is a finite set. Section 4 is devoted to characterize strong preservers of convex majorization. For an infinite set I, we prove that any elements in $\mathcal{P}_{\text {se }}$ are nonzero constant coefficient of an element in \mathcal{E}, and $\mathcal{P}_{\text {sc }}=\mathcal{P}_{\text {se }}$.

2. Operators in \mathcal{P}_{e} when I is an Infinite Set

For each $T \in \mathcal{P}_{e}$ the values $a:=\inf T e_{j}$ and $b:=\sup T e_{j}$ are constants, independent of the choice of $j \in I$ [3].

In Theorem 1.3, Bayati et al. characterized the operators in \mathcal{P}_{c}. In this section, we consider all the operators in \mathcal{P}_{e}, in the case that I is an infinite set.

Theorem 2.1. Let I be an infinite set and $T \in \mathcal{P}_{e}$. Then
(i) The values $\left\|T e_{j}\right\|_{\infty}$ and $\left\|T e_{j_{1}}-T e_{j_{2}}\right\|_{\infty}$ are constants and equal, independent of the choice of $j_{,} j_{1}, j_{2} \in I$ with $j_{1} \neq j_{2}$.
(ii) The rows of T belong to $\ell^{1}(I)$. Moreover $\sum_{j \in I}\left|T e_{j}\left(i_{0}\right)\right| \leq\left\|T e_{j_{0}}\right\|_{\infty}$, for any fixed $i_{0}, j_{0} \in I$.

Proof. If $T \equiv 0$, then the assertions follow, otherwise let $j, i_{0}, j_{0}, j_{0}^{\prime} \in I$, with $j_{0} \neq j_{0}^{\prime}$. Set

$$
\delta_{j}= \begin{cases}1 & \text { if } T e_{j}\left(i_{0}\right) \geq 0 \\ -1 & \text { if } T e_{j}\left(i_{0}\right)<0\end{cases}
$$

and $F=\left\{j_{1}, \ldots, j_{n}\right\} \subseteq I$. Then $\sum_{j \in F} \delta_{j} e_{j}$ is convex equivalent to either $\pm e_{j_{0}}$ or $e_{j_{0}}-e_{j_{0}^{\prime}}$. Since $T \in \mathcal{P}_{e}$, it follows that $\sum_{j \in I}\left|T e_{j}\left(i_{0}\right)\right|<\infty$. Thus for each $\epsilon>0$, there exists $j^{*} \in I \backslash F$ with $\left|T e_{j^{*}}\left(i_{0}\right)\right|<\epsilon$. Now define

$$
\delta^{*}=\left\{\begin{array}{lr}
-1 & \text { if } \delta_{j_{1}}=\cdots=\delta_{j_{n}}=1 \\
1 & \text { otherwise }
\end{array}\right.
$$

Since $\sum_{k=1}^{n} \delta_{j_{k}} e_{j_{k}}+\delta^{*} e_{j^{*}} \sim_{c} e_{j_{0}}-e_{j_{0}^{\prime}}$, we have

$$
\sum_{k=1}^{n} \delta_{j_{k}} T e_{j_{k}}+\delta^{*} T e_{j^{*}} \sim_{\mathcal{c}} T e_{j_{0}}-T e_{j_{0}^{\prime}}
$$

Therefore

$$
\sum_{k=1}^{n}\left|T e_{j_{k}}\left(i_{0}\right)\right|+\delta^{*} T e_{j^{*}}\left(i_{0}\right) \in \operatorname{co}\left(\sum_{k=1}^{n} \delta_{j_{k}} T e_{j_{k}}+\delta^{*} T e_{j^{*}}\right)=\operatorname{co}\left(T e_{j_{0}}-T e_{j_{0}^{\prime}}\right)
$$

which implies

$$
\operatorname{dist}\left(\sum_{k=1}^{n}\left|T e_{j_{k}}\left(i_{0}\right)\right|, \operatorname{co}\left(T e_{j_{0}}-T e_{j_{0}^{\prime}}\right)\right) \leq\left|\delta^{*} T e_{j^{*}}\left(i_{0}\right)\right|<\epsilon
$$

As ϵ is arbitrary, we have $\sum_{k=1}^{n}\left|T e_{j_{k}}\left(i_{0}\right)\right| \in \overline{\operatorname{co}\left(T e_{j_{0}}-T e_{j_{0}^{\prime}}\right)}$, which follows that

$$
\sum_{k=1}^{n}\left|T e_{j_{k}}\left(i_{0}\right)\right| \leq\left\|T e_{j_{0}}-T e_{j_{0}^{\prime}}\right\|_{\infty}
$$

Since $F \subseteq I$ is an arbitrary finite set, we conclude that

$$
\begin{equation*}
\sum_{j \in I}\left|T e_{j}\left(i_{0}\right)\right| \leq\left\|T e_{j_{0}}-T e_{j_{0}^{\prime}}\right\|_{\infty} \tag{1}
\end{equation*}
$$

That is, the rows of T belong to $\ell^{1}(I)$. The inequality (1) concludes that for any $j, i \in I$, we have $\left|T e_{j}(i)\right| \leq$ $\left\|T e_{j_{0}}-T e_{j_{0}^{\prime}}\right\|_{\infty}$, which follows

$$
\begin{equation*}
\left\|T e_{j}\right\|_{\infty} \leq\left\|T e_{j_{0}}-T e_{j_{0}^{\prime}}\right\|_{\infty} \tag{2}
\end{equation*}
$$

The proof is completed by showing that

$$
\begin{equation*}
\left\|T e_{j_{0}}-T e_{j_{0}^{\prime}}\right\|_{\infty} \leq\left\|T e_{j_{0}}\right\|_{\infty} \tag{3}
\end{equation*}
$$

Let $\epsilon>0$. Since $T e_{j} \in \ell^{p}(I)$, there are $i_{1}, \ldots, i_{M} \in I$ such that for each $i \in I \backslash\left\{i_{1}, \ldots, i_{M}\right\}$ we have $\left|T e_{j}(i)\right|<\frac{\epsilon}{2}$. On the other hand (1) shows that all the series

$$
\sum_{j \in I}\left|T e_{j}\left(i_{1}\right)\right|, \ldots, \sum_{j \in I}\left|T e_{j}\left(i_{M}\right)\right|
$$

converge. So there exist $j_{1}, \ldots, j_{N} \in I$ such that for all $j \in I \backslash\left\{j_{0}, \ldots, j_{N}\right\}$,

$$
\left|T e_{j}\left(i_{1}\right)\right|, \ldots,\left|T e_{j}\left(i_{M}\right)\right|<\frac{\epsilon}{2}
$$

Now if $j^{*} \neq j_{0}, j_{1}, \ldots, j_{N}$, then for all $i \in I$, we have

$$
\left|T e_{j_{0}}(i)-T e_{j^{*}}(i)\right| \leq\left\{\begin{array}{c}
\left|T e_{j_{0}}(i)\right|+\epsilon \\
\epsilon+\left|T e_{j^{*}}(i)\right|
\end{array} \leq\left\|T e_{j_{0}}\right\|_{\infty}+\epsilon,\right.
$$

which implies

$$
\left\|T e_{j_{0}}-T e_{j_{0}^{\prime}}\right\|_{\infty}=\left\|T e_{j_{0}}-T e_{j^{*}}\right\|_{\infty} \leq\left\|T e_{j_{0}}\right\|_{\infty}+\epsilon
$$

Since ϵ is arbitrary, it follows (3). This completes the proof.
In the following, we obtain some properties of \mathcal{P}_{e}.
Lemma 2.2. Let $T \in \mathcal{P}_{e}$ and $i \in I$. Then we have

$$
a \leq \sum_{j \in I^{-}} T e_{j}(i) \leq 0 \leq \sum_{j \in I^{+}} T e_{j}(i) \leq b
$$

where $I^{+}=\left\{j \in I ; T e_{j}(i)>0\right\}, I^{-}=\left\{j \in I ; T e_{j}(i)<0\right\}$.
Proof. Let $F \subseteq I^{+}$be a nonempty finite set. Since for $j_{0} \in I$, we have $\operatorname{co}\left(\sum_{j \in F} T e_{j}\right)=\operatorname{co}\left(T e_{j_{0}}\right)$. It implies that

$$
0 \leq \sum_{j \in F} T e_{j}(i) \in \operatorname{Im}\left(\sum_{j \in F} T e_{j}\right) \subseteq \operatorname{co}\left(\sum_{j \in F} T e_{j}\right)=\operatorname{co}\left(T e_{j_{0}}\right) .
$$

Thus $0 \leq \sum_{j \in F} T e_{j}(i) \leq \sup _{i \in I} T e_{j_{0}}(i)=b$. Since the last inequality holds for all finite subsets $F \subseteq I^{+}$, we conclude that

$$
0 \leq \sum_{j \in I^{+}} T e_{j}(i) \leq b
$$

Similar arguments apply to the other inequality.
Lemma 2.3. If $T \in \mathcal{P}_{e}$, and $j_{0} \in I$, then $0 \in \operatorname{Im}\left(T e_{j_{0}}\right)$ and $\operatorname{co}\left(T e_{j_{0}}\right)=[a, b]$.
Proof. Let $j_{0}, j_{1} \in I$ with $j_{0} \neq j_{1}$. If $a=b=0$, then $T e_{j_{0}}=0$ and we are done. Otherwise, $a<0$ or $b>0$. Since $a=\inf _{i \in I} T e_{j}(i)$ and $b=\sup _{i \in I} T e_{j}(i)$, we have $\left\|T e_{j_{1}}\right\|_{\infty}=\max \{b,-a\}>0$.
Now if $\left\|T e_{j_{1}}\right\|_{\infty}=b>0$, then there is $i_{0} \in I$ such that $T e_{j_{1}}\left(i_{0}\right)=b$. Applying Theorem 2.1, it implies that $b=\left|T e_{j_{1}}\left(i_{0}\right)\right| \leq \sum_{j \in I}\left|T e_{j}\left(i_{0}\right)\right| \leq\left\|T e_{j_{1}}\right\|_{\infty}=b$. These inequalities imply $\left|T e_{j}\left(i_{0}\right)\right|=0$ for all $j \neq j_{1}$. Therefore $T e_{j_{0}}\left(i_{0}\right)=0$, which implies $0 \in \operatorname{Im}\left(T e_{j_{0}}\right)$.
For $\left\|T e_{j_{1}}\right\|_{\infty}=-a>0$, the result follows by a similar argument.

Theorem 2.4. Let $T \in \mathcal{P}_{e}$. Then for $a<0<b$, we have

$$
\frac{1}{a} \sum_{j \in I^{-}} T e_{j}(i)+\frac{1}{b} \sum_{j \in I^{+}} T e_{j}(i) \leq 1,
$$

for $a<0=b$, we have $\sum_{j \in I} T e_{j}(i) \geq a$, and for $a=0<b$, we have $\sum_{j \in I} T e_{j}(i) \leq b$, where $\left(T e_{j}(i)\right)_{j \in I}$ is an arbitrary row of T.

Proof. The proof is similar to the proof of Theorem 18 in [3].
Theorem 2.5. Every $T: \ell^{p}(I) \rightarrow \ell^{p}(I)$ which preserves convex equivalent, preserves convex majorization, i.e. $\mathcal{P}_{c}=\mathcal{P}_{e}$.

Proof. Suppose that $T \in \mathcal{P}_{e}$. According to the first of this section, the values of $a:=\inf T e_{j}$ and $b:=\sup T e_{j}$ are constants. On the other hand Lemma 2.3 implies that $a=\min T e_{j}$ and $b=\max T e_{j}$. The proof now follows by using the previous theorem and Theorem 1.3.

3. The Structure of the Operators in \mathcal{P}_{e} when I is a Finite set

In this section, we wish to investigate the structure of the operators on $\ell^{p}(I)$ that preserve convex equivalent when I is a finite set. Let $\operatorname{card}(I)=n \in \mathbb{N}$. Using Remark 22 in [3], one can replace \mathbb{R}^{n} with $\ell^{p}(I)$ and assume that $I=\{1, \ldots, n\}$. In this section, we assume that $\left(t_{i j}\right)_{i, j \in I}$ is the matrix representation of the linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. We recall that for each $T \in \mathcal{P}_{e}$ the values $a:=\inf T e_{j}$ and $b:=\sup T e_{j}$ are constants, independent of the choice of $j \in I$.

Now for $n=1$, it is easy to see that every linear map $T: \mathbb{R} \rightarrow \mathbb{R}$ lies in \mathcal{P}_{e}, and for $n=2$ an easy computation shows that a linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ belongs to \mathcal{P}_{e}, if and only if the matrix representation of T is either of the form

$$
T=\left[\begin{array}{ll}
\alpha & \alpha \\
\beta & \beta
\end{array}\right] \quad \text { or } \quad T=\left[\begin{array}{ll}
\alpha & \beta \\
\beta & \alpha
\end{array}\right]
$$

for some $\alpha, \beta \in \mathbb{R}$. For the case $n \geq 3$, we will show that $T \in \mathcal{P}_{e}$, if and only if T is a coefficient of a permutation on \mathbb{R}^{n} [3].

Lemma 3.1. Let $n \geq 3, T \in \mathcal{P}_{e}$ and $b>0$. If $I_{j}:=\left\{i \in I ; T e e_{j}(i)=b\right\}$ for $j=1, \ldots, n$, then each I_{j} is a singleton and $\cup_{j \in I} I_{j}=I$.

Proof. For each $j \in I$, the relation $\operatorname{co}\left(T e_{j}\right)=[a, b]$ implies that there exists $i \in I$ such that $T e_{j}(i)=b$. Thus each I_{j} is a nonempty set. Suppose that $i_{0} \in I_{j_{1}} \cap I_{j_{2}}$, for some distinct elements $j_{1}, j_{2} \in I$. Then

$$
2 b=T e_{j_{1}}\left(i_{0}\right)+T e_{j_{2}}\left(i_{0}\right) \in \operatorname{co}\left(T e_{j_{1}}+T e_{j_{2}}\right)=[a, b]
$$

that implies $2 b \leq b$. This contradiction shows $I_{j_{1}} \cap I_{j_{2}}=\emptyset$, for $j_{1} \neq j_{2}$. Therefore by using the relations

$$
n \leq \operatorname{card}\left(I_{1}\right)+\cdots+\operatorname{card}\left(I_{n}\right)=\operatorname{card}\left(\cup_{j \in I} I_{j}\right) \leq \operatorname{card}(I)=n
$$

each I_{j} must be a singleton.
Lemma 3.2. Let $n \geq 3, T \in \mathcal{P}_{e}$, and $b>0$. If $t_{i_{0} j_{0}}=b$ for some $i_{0}, j_{0} \in I$, then $t_{i_{0} j}=0$, for all $j \neq j_{0}$ in I.
Proof. Let $j \in I$ and $j \neq j_{0}$. For each $\lambda \in[0,1]$, we have $T e_{j_{0}}+\lambda T e_{j} \sim_{c} T e_{j_{0}}$, since $e_{j_{0}}+\lambda e_{j} \sim_{c} e_{j_{0}}$. Therefore

$$
\max \left(T e_{j_{0}}+\lambda T e_{j}\right)=\max \left\{t_{1 j_{0}}+\lambda t_{1 j}, \ldots, t_{n j_{0}}+\lambda t_{n j}\right\}=\max \left(T e_{j_{0}}\right)=b
$$

This shows that for infinite values of $\lambda \in[0,1]$ and for a constant $i \in I$, we have $t_{i j_{0}}+\lambda t_{i j}=b$. Thus $t_{i j}=0$ and $t_{i j_{0}}=b$. Now, by the assumption $t_{i_{0} j_{0}}=b$ and Lemma 3.1, it implies $i=i_{0}$. Therefore $t_{i_{0} j}=0$, for all $j \neq j_{0}$.

Theorem 3.3. For $n \geq 3, T \in \mathcal{P}_{e}$ if and only if T is a coefficient of a permutation.
Proof. Suppose that $T \in \mathcal{P}_{e}$. If $T=0$, then the assertion is clear. Let $0 \not \equiv T \in \mathcal{P}_{e}$. By replacing $-T$ by T if necessary, we can assume that $b>0$. Since $I=\cup_{j \in I} I_{j}$, where I_{j} is as in Lemma 3.1, then for each $i \in I$ there is $j \in I$ with $i \in I_{j}$. So we have $t_{i j}=b$. Moreover, the previous lemma implies $t_{i j_{1}}=0$, for each $j_{1} \neq j$. This means that in any row of T, we have exactly one time b and other entries of this row are equal to zero. Now, if b appears more than one time in some columns of T, then there is at least one column that is completely zero, which is not possible. Thus in each row and column of T, b appears exactly one time and other entries are all zero. Thus T is a coefficient of a permutation. The converse is obvious.

4. Characterization of Strong Preservers of Convex Majorization

We first recall that $\mathcal{P}_{s c}$ is denoted for the set of all bounded linear operators $T: \ell^{p}(I) \rightarrow \ell^{p}(I)$ which strongly preserve convex majorization, i.e. $f<_{c} g$, if and only if $T f<_{c} T g$, for $f, g \in \ell^{p}(I)$. We also use the notation $\mathcal{P}_{\text {se }}$ for the set of all operators $T: \ell^{p}(I) \rightarrow \ell^{p}(I)$ which strongly preserve convex equivalent, that is $f \sim_{c} g$ if and only if $T f \sim_{c} T g$.

Let us mention some direct consequences of $\mathcal{P}_{s c}, \mathcal{P}_{s e}$, and \mathcal{E}.

- $\mathcal{E} \subseteq \mathcal{P}_{s c} \subseteq \mathcal{P}_{s e}$.
- $\mathcal{P}_{s c}$ and $\mathcal{P}_{s e}$ are both closed under the combination and (nonzero) scaler multiplication.
- If $T \in \mathcal{P}_{\text {se }}$, then $\operatorname{ker}(T)=\{0\}$.

Example 4.1. Suppose $\left(T_{n}\right)$ is a sequence of operators on $\ell^{p}:=\ell^{p}(\mathbb{N})$, which is defined by $T_{n}(f)=\left(\frac{1}{n} f_{1}, f_{1}, f_{2}, \ldots\right)$, for each $f=\left(f_{1}, f_{2}, f_{3}, \ldots\right) \in \ell^{p}$. The sequence $\left(T_{n}\right)$ converges to $T: \ell^{p} \rightarrow \ell^{p}$, where $T f=\left(0, f_{1}, f_{2}, \ldots\right)$, the right shift operator. By using Theorem 1.3, we have $T_{n}, T \in \mathcal{P}_{c}$, and so $T_{n}, T \in \mathcal{P}_{e}$.

Example 4.2. Let $T: \ell^{p} \rightarrow \ell^{p}$ be the bounded linear operator represented by the matrix form

$$
T=\left[\begin{array}{ccc}
1 & 0 & \cdots \\
-1 & 0 & \cdots \\
0 & 1 & \cdots \\
0 & -1 & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right]
$$

Then $T f=\left(f_{1},-f_{1}, f_{2},-f_{2}, \ldots\right)$, for each $f=\left(f_{1}, f_{2}, \ldots\right) \in \ell^{p}$. Theorem 1.3 implies that $T \in \mathcal{P}_{c}$. However, $T \notin \mathcal{P}_{\text {se }}$, since $T e_{1} \sim_{c} T\left(-e_{1}\right)$, but e_{1} is not convex equivalent to $-e_{1}$.

Lemma 4.3. If $T \in \mathcal{P}_{\text {se }}$, then $a \neq-b$.
Proof. On the contrary, suppose that $a=-b$. Since $\operatorname{co}\left(T e_{j}\right)=\operatorname{co}\left(T\left(-e_{j}\right)\right)=[a, b]$, it follows that $T e_{j} \sim_{c} T\left(-e_{j}\right)$, but we have $e_{j} \chi_{c}-e_{j}$.

Example 4.4. Let $T: \ell^{p} \rightarrow \ell^{p}$ be presented by the matrix form

$$
T=\left[\begin{array}{ccc}
1 & 0 & \cdots \\
-2 & 0 & \cdots \\
0 & 1 & \cdots \\
0 & -2 & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right]
$$

For $f=\left(-2, \frac{1}{2}, 0,0, \ldots\right)$ and $g=(-2,1,0,0, \ldots)$ in ℓ^{p}, we have

$$
T f=\left(-2,4, \frac{1}{2},-1,0,0, \ldots\right) \sim_{c}(-2,4,1,-2,0,0, \ldots)=T g
$$

however, $f \varkappa_{c} g$. Therefore $T \notin \mathcal{P}_{\text {se }}$.
Lemma 4.5. Let $T \in \mathcal{P}_{c}, a<0<b, \alpha \leq \min \left\{\frac{a}{b}, \frac{b}{a}\right\}$, and $j_{1}, j_{2} \in I$ be such that $j_{1} \neq j_{2}$, then for $g=\alpha e_{j_{1}}+e_{j_{2}}$, we have

$$
\alpha b \leq \inf T g \leq \sup T g \leq \alpha a
$$

Proof. Let $0<\epsilon \leq \min \{-a, b\}$. Then there exists a finite set $F \subseteq I$ with $\left|T e_{j_{1}}(i)\right|<\frac{\epsilon}{-\alpha} \leq \epsilon$, for each $i \in I \backslash F$. By using Theorem 8 in [3], each rows of T lies in $\ell^{1}(I)$. On the other hand, F is a finite set. Thus there exists $j_{0} \in I$ (with $j_{0} \neq j_{1}$) such that $\left|T e_{j_{0}}(i)\right|<\epsilon$, for each $i \in F$. Now we consider the following two cases for $i \in I$: Case 1. Let $i \in F$. Then $a \leq T e_{j_{1}}(i) \leq b$ and $\left|T e_{j_{0}}(i)\right|<\epsilon$. So, we have

$$
\begin{equation*}
\alpha b-\epsilon \leq \alpha T e_{j_{1}}(i)+T e_{j_{0}}(i) \leq \alpha a+\epsilon \tag{4}
\end{equation*}
$$

Case 2. Let $i \in I \backslash F$. Then $\left|T e_{j_{1}}(i)\right|<\frac{\varepsilon}{-\alpha}$ and $a \leq T e_{j_{0}}(i) \leq b$. Therefore

$$
\begin{equation*}
a-\epsilon \leq \alpha T e_{j_{1}}(i)+T e_{j_{0}}(i) \leq b+\epsilon \tag{5}
\end{equation*}
$$

Thus (4) and (5) imply that

$$
\begin{aligned}
\alpha b-\epsilon & =\min \{\alpha b-\epsilon, a-\epsilon\} \leq \alpha T e_{j_{1}}(i)+T e_{j_{0}}(i) \\
& \leq \max \{\alpha a+\epsilon, b+\epsilon\}=\alpha a+\epsilon .
\end{aligned}
$$

Since ϵ is arbitrary, we have

$$
\operatorname{co}(T g)=\operatorname{co}\left(\alpha T e_{j_{1}}+T e_{j_{2}}\right)=\operatorname{co}\left(\alpha T e_{j_{1}}+T e_{j_{0}}\right) \subseteq[\alpha b, \alpha a]
$$

which proves the assertion.
Lemma 4.6. Let $T \in \mathcal{P}_{c}$ and $\min T e_{j}=a<0<b=\max T e_{j}$. Then $T \notin \mathcal{P}_{s e}$.
Proof. For $\alpha:=\min \left\{\frac{a}{b}, \frac{b}{a}\right\}$ and for any distinct elements $j_{1}, j_{2} \in I$, define $f=\alpha e_{j_{1}}$ and $g=\alpha e_{j_{1}}+e_{j_{2}}$. Then $T f=\alpha T e_{j_{1}}$, which implies

$$
\operatorname{co}(T f)=\operatorname{co}\left(\alpha T e_{j_{1}}\right)=\alpha[a, b]=[\alpha b, \alpha a]
$$

On the other hand, there exist $i_{1}, i_{1}^{*} \in I$ with $T e_{j_{1}}\left(i_{1}\right)=a$ and $T e_{j_{1}}\left(i_{1}^{*}\right)=b$. Hence Theorem 1.3 implies that $T e_{j_{2}}\left(i_{1}\right)=T e_{j_{2}}\left(i_{1}^{*}\right)=0$, and so

$$
\begin{align*}
& \alpha a=\alpha T e_{j_{1}}\left(i_{1}\right)+T e_{j_{2}}\left(i_{1}\right) \in \operatorname{co}(T g), \tag{6}\\
& \alpha b=\alpha T e_{j_{1}}\left(i_{1}^{*}\right)+T e_{j_{2}}\left(i_{1}^{*}\right) \in \operatorname{co}(T g) . \tag{7}
\end{align*}
$$

Lemma 4.5 implies that

$$
\alpha b \leq \inf T g \leq \sup T g \leq \alpha a
$$

From (6) and (7) we conclude that

$$
\operatorname{co}(T g)=[\alpha b, \alpha a]=\operatorname{co}(T f)
$$

It follows that $T f \sim_{c} T g$, although $f \propto_{c} g$. That is $T \notin \mathcal{P}_{\text {se }}$.
Lemma 4.7. Let $T \in \mathcal{P}_{\text {se }}$. Then $a=0<b$ or $a<0=b$.
Proof. It is clear that $a \leq 0 \leq b$. Now Lemma 4.6 implies that $a=0 \leq b$, or $a \leq b=0$. This gives the claim, because if $a=b=0$, then T must be zero, and so is not a strong preserver of \sim_{c}.

Lemma 4.8. Let I be an infinitely countable set and $T \in \mathcal{P}_{\text {se }}$. Then (the matrix representation of) T does not contain any zero row.

Proof. Without loss of generality we may assume that $I=\mathbb{N}$. On the contrary, suppose that there exists $i_{0} \in I$ such that the i_{0} th row of T is equal to zero. Define $f=\left(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\right)$. Then for each $j \in I$ we have

$$
\operatorname{co}\left(T e_{j}\right)=[a, 0]=\operatorname{co}(T f), \text { or } \operatorname{co}\left(T e_{j}\right)=[0, b]=\operatorname{co}(T f)
$$

that is $T f \sim_{c} T e_{j}$, but $f \varkappa_{c} e_{j}$. This implies that $T \notin \mathcal{P}_{s e}$.
Notice that whenever I is an uncountable set, then T may contain a zero row.
In the next theorem, we characterize the elements of $\mathcal{P}_{\text {se }}$.
Theorem 4.9. Let I be an infinite set. Then $\mathcal{P}_{\text {se }}=\{\lambda T ; \lambda \neq 0, T \in \mathcal{E}\}$.
Proof. It is easily verified that $\{\lambda T ; \lambda \neq 0, T \in \mathcal{E}\} \subseteq \mathcal{P}_{s e}$. To prove $\mathcal{P}_{s e} \subseteq\{\lambda T ; \lambda \neq 0, T \in \mathcal{E}\}$, we consider the following two cases. Let I be a countable set, then by using Theorem 1.4 and Lemma 4.8 , we have $\frac{1}{b} T \in \mathcal{E}$, when $a=0<b$, and $\frac{1}{a} T \in \mathcal{E}$, whenever $a<0=b$.
Now, let I be an uncountable set, then the assertion follows by using Theorem 29[3], Lemmas 4.7 and 4.8.
Theorem 4.10. Let I be an infinite set. Then $\mathcal{P}_{s c}=\mathcal{P}_{s e}$.
Proof. It is easily seen that $\mathcal{P}_{\text {sc }} \subseteq \mathcal{P}_{\text {se }}$. Now let $T \in \mathcal{P}_{\text {se }}$. Hence Theorem 4.9 yields $T=\lambda T_{1}$, for some $\lambda \neq 0$, and $T_{1} \in \mathcal{E}$. So

$$
\operatorname{co}(T f)=\operatorname{co}\left(\lambda T_{1}(f)\right)=\lambda \operatorname{co}\left(T_{1}(f)\right)=\lambda \operatorname{co}(f)
$$

Therefore $f{<_{c}} g$ if and only if $\operatorname{co}(T f)=\lambda \operatorname{co}(f) \subseteq \lambda \operatorname{co}(g)=\operatorname{co}(T g)$. That is $T \in \mathcal{P}_{s c}$.

Acknowledgments

The authors would like to thank Shahrekord University for financial support.

References

[1] T. Ando, Majorization, doubly stochastic matrices, and comparison of eigenvalues, Linear Algebra and its Applications 118 (1989) 163-248.
[2] F. Bahrami, A. Bayati Eshkaftaki, S.M. Manjegani, Linear preservers of majorization on $\ell^{p}(I)$, Linear Algebra and its Applications 436 (2012) 3177-3195.
[3] A. Bayati Eshkaftaki, N. Eftekhari, Convex majorization on discrete ℓ^{p} spaces, Linear Algebra and its Applications 474 (2015) 124-140.
[4] L. B. Beasley, S. -G. Lee and Y. -H. Lee, A characterization of strong preservers of matrix majorization, Linear Algebra and its Applications 367 (2003) 341--346.
[5] V. Kaftal and G. Weiss, An infinite dimensional Schur-Horn theorem and majorization theory, Journal of Functional Analysis 259 (2010) 3115-3162.
[6] F. Khalooei, M. Radjabalipour and P. Torabian, Linear preservers of left matrix majorization, Electronic Journal of Linear Algebra 17 (2008) 304-315.
[7] F. Khalooei and A. Salemi, The structure of linear preservers of left matrix majorizations on \mathbb{R}^{p}, Electronic Journal of Linear Algebra 18 (2009) 88-97.
[8] M. Ljubenović, Weak majorization and doubly substochastic operators on $\ell^{p}(I)$, Linear Algebra and its Applications 486 (2015) 295-316.
[9] R. Pereira and S. Plosker, Extending a characterization of majorization to infinite dimensions, Linear Algebra and its Applications 468 (2015) 80-86.

[^0]: 2010 Mathematics Subject Classification. Primary 15A86; Secondary 47B60, 47L07
 Keywords. Convex majorization, Convex equivalent, Two-sided preserver.
 Received: 14 April 2017; Accepted: 27 September 2017
 Communicated by Dragan S. Djordjević
 Research supported by Shahrekord University.
 Email addresses: bayati.ali@sci.sku.ac.ir, a.bayati@math.iut.ac.ir (Ali Bayati Eshkaftaki), eftekharinoha@yahoo.com, eftekhari-n@sci.sku.ac.ir (Noha Eftekhari)

