Filomat 31:18 (2017), 5719–5726 https://doi.org/10.2298/FIL1718719K

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Modular Best Proximity and Equilibrium Pairs in Free Generalized Games

Nasrin Karamikabir^a, Farajollah Mohammadi Yaghoobi^a

^a Department of Mathematics, Faculty of Basic Science, Hamedan Branch, Islamic Azad University, Hamedan, Iran

Abstract. In this paper, we prove a fixed point theorem for ρ -acyclic factorizable multifunction. Some existence theorems of general best proximity pairs and equilibrium pairs are presented in modular function spaces. Moreover, some equilibrium theorems are established for free generalized *n*-person game.

1. Introduction

The theory of mappings defined on convex subsets of modular function spaces generalized by Khamsi et al. (see e.g. [4–6]).

We need the following definitions in sequel, from [7, 9]:

Let Ω be a nonempty set and Σ be a nontrivial σ -algebra of subsets of Ω . Let \mathcal{P} be a σ -ring of subsets of Ω , such that $E \cap A \in \mathcal{P}$ for any $E \in \mathcal{P}$ and $A \in \Sigma$. Assume that there exists an increasing sequence of sets $K_n \in \mathcal{P}$ such that $\Omega = \bigcup K_n$. By \mathcal{E} , we denote the linear space of all simple functions with supports in \mathcal{P} . By \mathcal{M}_{∞} , we will denote the space of all extended measurable functions, i.e. all functions $f : \Omega \to [-\infty, +\infty]$ such that there exists a sequence $\{g_n\} \subset \mathcal{E}, |g_n| \leq |f|$ and $g_n(w) \to f(w)$ for all $w \in \Omega$. By 1_A , we denote the characteristic function of the set A.

Definition 1.1. Let $\rho : \mathcal{M}_{\infty} \to [0, \infty]$ be a nontrivial, convex and even function. We say that ρ is a regular convex function pseudomodular if

- (*i*) $\rho(0) = 0;$
- (ii) ρ is monotone, i.e. $|f(w)| \leq |g(w)|$ for all $w \in \Omega$ implies $\rho(f) \leq \rho(g)$, where $f, g \in \mathcal{M}_{\infty}$;
- (iii) ρ is orthogonally subadditive, i.e. $\rho(f1_{A\cup B}) \leq \rho(f1_A) + \rho(f1_B)$ for any $A, B \in \Sigma$ such that $A \cap B \neq \emptyset, f \in \mathcal{M}_{\infty}$;
- (iv) ρ has the Fatou property, i.e. $|f_n(w)| \uparrow |f(w)|$ for all $w \in \Omega$ implies $\rho(f_n) \uparrow \rho(f)$, where $f \in \mathcal{M}_{\infty}$;
- (v) ρ is order continuous in \mathcal{E} , i.e. $g_n \in \mathcal{E}$ and $|g_n(w)| \downarrow 0$ implies $\rho(g_n) \downarrow 0$.

²⁰¹⁰ Mathematics Subject Classification. Primary 47H10 ; Secondary 91A06

Keywords. Best proximity, euilibrium pair, modular function space, free generalized game.

Received: 03 April 2017; Accepted: 31 August 2017

Communicated by Dragan S. Djordjević

Email address: n.karamikabir@iauh.ac.ir (Nasrin Karamikabir)

We say that $A \in \Sigma$ is ρ -null if $\rho(g1_A) = 0$ for every $g \in \mathcal{E}$. A property holds ρ -almost everywhere if the exceptional set is ρ -null, we define

$$\mathcal{M}(\Omega, \Sigma, \mathcal{P}, \rho) = \{ f \in \mathcal{M}_{\infty}; |f(w)| < \infty \rho - a.e. \}.$$

We will write \mathcal{M} instead of $\mathcal{M}(\Omega, \Sigma, \mathcal{P}, \rho)$.

Definition 1.2. Let ρ be a regular convex function pseudomodular. We say that ρ is a regular convex function modular if $\rho(f) = 0$ implies $f = 0 \rho$ -a.e.

The class of all nonzero regular convex function modulars defined on Ω will be denoted by \mathfrak{R} .

Definition 1.3. Let ρ be a convex function modular. A modular function space is the vector space $L_{\rho}(\Omega, \Sigma)$, or briefly L_{ρ} , defined by

$$L_{\rho} = \{ f \in \mathcal{M}; \rho(\lambda f) \to 0 \text{ as } \lambda \to 0 \}.$$

The formula

$$||f||_{\rho} = \inf\{\alpha > 0; \rho(f/\alpha) \le 1\}.$$

defines a norm in L_{ρ} which is frequently called the Luxemburg norm.

Definition 1.4. Let $\rho \in \mathfrak{R}$.

- (*i*) We say $\{f_n\}$ is ρ -convergent to f and write $f_n \to f(\rho)$ if and only if $\rho(f_n f) \to 0$.
- (ii) A subset $B \subset L_{\rho}$ is called ρ -closed if for any sequence of $f_n \in B$, the convergence $f_n \to f(\rho)$ implies that f belong to B.
- (iii) A nonempty subset K of L_{ρ} is said to be ρ -compact if for any family $\{A_{\alpha}; A_{\alpha} \in 2^{L_{\rho}}, \alpha \in \Gamma\}$ of ρ -closed subsets with $K \cap A_{\alpha_1} \cap \cdots \cap A_{\alpha_n} \neq \emptyset$, for any $\alpha_1, \cdots, \alpha_n \in \Gamma$, we have

$$K \cap (\bigcap_{\alpha \in \Gamma} A_{\alpha}) \neq \emptyset$$

Let $\rho \in \mathfrak{R}$. We have $\rho(f) \leq \liminf \rho(f_n)$, whenever $f_n \to f \rho - a.e.$ This property is equivalent to the Fatou property [7, Theorem 2.1].

Definition 1.5. Let $\rho \in \mathfrak{R}$ and let *C* be nonempty ρ -closed subset of L_{ρ} . Let $T : G \to L_{\rho}$ be a map. *T* is called ρ -continuous if $\{T(f_n)\}$ ρ -converges to T(f) whenever $\{f_n\}$ ρ -converges to *f*. Also *T* will be called strongly ρ -continuous if *T* is ρ -continuous and

 $\liminf \rho(g - T(f_n)) = \rho(g - T(f)),$

for any sequence $\{f_n\} \subset C$ which ρ -converges to f and for any $g \in C$.

Definition 1.6. Let $X, Y \subseteq L_{\rho}$. A map $F : X \to 2^{Y}$ is said to be ρ -upper semi continuous if for each ρ -closed set $B \subseteq Y, F^{-}(B)$ is ρ -closed in X.

Recal the following definitions of proximity concepts. Let *X*, and *Y* be any two nonempty ρ -closed subsets of L_{ρ} , and $\rho \in \mathfrak{R}$. For $f \in X$, define $d_{\rho}(f, Y) = \inf\{||f - g||_{\rho} : g \in Y\}$, and

$$d_{\rho}(X, Y) = \inf\{\|f - g\|_{\rho} : f \in X, g \in Y\},\$$

If $X = \{f\}$ and $Y = \{g\}$, then $||f - g||_{\rho}$ denotes $d_{\rho}(X, Y)$ which is precisely $||f - g||_{\rho}$.

Let *I* be a finite or an infinite index set. For each $i \in I$, let *X* and Y_i be non-empty ρ -closed subsets of L_{ρ} . Then we can use the following notations: for each $i \in I$,

$$d_{\rho}(f, Y_{i}) = \inf\{||f - g||_{\rho} : g \in Y_{i}\},$$

$$X^{o} := \{f \in X \mid \text{for each } i \in I, \exists g_{i} \in Y_{i} \text{ such that } ||f - g_{i}||_{\rho} = d_{\rho}(X, Y_{i})\}$$

$$Y_{i}^{o} := \{g \in Y_{i} \mid \exists f \in X \text{ such that } ||f - g||_{\rho} = d_{\rho}(X, Y_{i})\}$$

Let *X*, and *Y* be any two nonempty ρ -closed subsets of L_{ρ} and $T : X \to 2^{Y}$ be a multifunction. Then the pair $(\bar{f}, T(\bar{f}))$ is called the best proximity pair for *T* if $d_{\rho}(\bar{f}, T(\bar{f})) = \|\bar{f} - \bar{g}\|_{\rho} = d_{\rho}(X, Y)$, for some $g \in T(\bar{f})$.

If $X \in L_{\rho}$ is a nonempty ρ -closed, convex and ρ -compact, then the set

$$P_X(f) = \{g \in X : \|f - g\|_{\rho} = d_{\rho}(f, X)\},\$$

of all ρ -best approximations in X to any element $f \in X$ is a nonempty ρ -closed, convex and ρ -compact subset of X and every point in $P_X(f)$ is called a best proximity point of f in X. Also, any point $f \in X$ for which $d_\rho(f, Y) = d_\rho(X, Y)$ is called a best proximity point of Y in X and the points $f \in X$, $g \in Y$ satisfying $\||f - g\|_\rho = d_\rho(X, Y)$ are called best proximity points of the pair (X, Y).

Definition 1.7. Let C be a nonempty, convex subsets of L_{ρ} . A single value function $h : C \to L_{\rho}$ is said to be quasi ρ -affine if for each real number $r \ge 0$ and $f \in L_{\rho}$ the set $\{g \in C \mid ||h(g) - f||_{\rho} \le r\}$ to be convex.

A nonempty topological space is called acyclic if all its reduced Čach homology groups over rationals vanish.

Definition 1.8. Let $X, Y \subset L_{\rho}$. A multifunction $T : X \to 2^{Y}$ is said to be ρ -acyclic multifunction if is ρ -upper semi continuous and T(x) is a nonempty ρ -compact and acyclic subset of Y.

The collection of all ρ -acyclic multifunctions from X to Y is denoted by $\mathbb{V}(X, Y)$. A multifunction $T : X \to 2^Y$ is said to be a ρ -acyclic factorizable multifunction if it can be expressed as a composition of finitely many acyclic multifunction. The collection of all ρ -acyclic factorizable multifunctions from X to Y is denoted by $\mathbb{V}_C(X, Y)$.

Now we recall the following equilibrium pair concept of [8]. Let *I* be a finite or an infinite set of locations or agents. For each $i \in I$, let X_i nonempty set of manufacturing commodities and Y_i be a nonempty set of selling commodities. A free generalized game or free abstract economy $\Gamma = (X_i, Y_i, A_i, P_i)_{i \in I}$ is defined as a family of ordered quadruples, where X_i and Y_i are nonempty subsets of L_{ρ} , $A_i : X = \prod_{j \in I} X_j \rightarrow 2^{Y_i}$ is a constraint correspondence and $P_i : Y = \prod_{j \in I} Y_j \rightarrow 2^{Y_i}$ is a preference correspondence. An equilibrium pair for Γ is a pair of points $(\bar{f}, \bar{g}) = ((\bar{f}_i)_{i \in I}, (\bar{g}_i)_{i \in I}) \in X \times Y$ such that for each $i \in I$

$$\bar{g}_i \in A_i(\bar{f})$$
 with $\|\bar{f}_i - \bar{g}_i\|_{\rho} = d_{\rho}(X_i, Y_i)$ and $A_i(\bar{f}) \cap P_i(\bar{g}) = \emptyset$.

In particular, when $I = \{1, \dots, n\}$, we may call Γ a free *n*-person game. When $X_i = Y_i$ for each $i \in I$, then the previous definitions can be reduced to the standard definitions of equilibrium theory in mathematical economics.

Section 2 is devoted to fixed point theorem and some existence theorems for best proximity pairs in modular function spaces. In the last section, some equilibrium theorems are proved for free *n*-person game.

2. General Best Proximity Pairs

Here, first we established the following existence theorem of general best proximity.

Theorem 2.1. For each $I = \{1, \dots, n\}$, let X and Y_i be nonempty ρ -compact and convex subsets of L_ρ , and let $T_i : X \to 2^{Y_i}$ be a ρ -upper semi continuous multifunction in X^o such that $T_i(f)$ is a nonempty ρ -closed and convex subset of Y_i for each $f \in X$. Assume that $T_i(f) \cap Y_i^o \neq \emptyset$ for each $f \in X^o$. Then there exists a system of best proximity pairs $\{\overline{f}_i\} \times T_i(f_i) \subseteq X \times Y_i$, i.e., for each $i \in I$, $d_\rho(\overline{f}_i, T(\overline{f}_i)) = d_\rho(X, Y_i)$.

Proof. Let $f_1, f_2 \in X^o$ be arbitrary. Then, for each $i \in I$, there exist $g_i^1, g_i^2 \in Y_i$ such that $||f_i - g_i^j||_{\rho} = d_{\rho}(X, Y_i)$ for each j = 1, 2. For any $\lambda \in (0, 1)$, we let $\hat{f} = \lambda f_1 + (1 - \lambda)f_2$ and $\hat{g}_i = \lambda g_i^1 + (1 - \lambda)g_i^2$. Since Y_i is convex, $\hat{g}_i \in Y_i$. Then we have

$$\begin{split} \|\hat{f} - \hat{g}_i\|_{\rho} &= \|(\lambda f_1 + (1 - \lambda)f_2) - (\lambda g_i^1 + (1 - \lambda)g_i^2)\|_{\rho} \\ &= \|\lambda (f_1 - g_i^1) + (1 - \lambda)(f_2 - g_i^2)\|_{\rho} \\ &\leq \lambda \|f_1 - g_i^1\|_{\rho} + (1 - \lambda)\|f_2 - g_i^2\|_{\rho} \\ &= \lambda d_{\rho}(X, Y_i) + (1 - \lambda)d_{\rho}(X, Y_i) \\ &= d_{\rho}(X, Y_i), \end{split}$$

so $\hat{f} \in X^o$. Hence X^o is convex. Similarly, the convexity for Y_i^o can be proved. Now we show that X^o is a ρ -closed subset of X. Let $(f_n)_{n \in \mathbb{N}}$ be a sequence in X^o , which converges to $\tilde{f} \in X$. If $i \in I$ be fixed and $k_i = d_\rho(X, Y_i) = \inf\{||f - g_i||_\rho : f \in X, g_i \in Y_i\}$ then, for each $n \in \mathbb{N}$ there exists $g_n^i \in Y_i$ such that $||f_n - g_n^i||_\rho = k_i$. Since Y_i is compact, there exists a convergent subsequence (g_n^i) of (g_n^i) which converges to $\tilde{g}_i \in Y_i$. Also

$$k_{i} \leq \|\tilde{f} - \tilde{g}_{i}\|_{\rho} = \|\tilde{f} - f_{n_{k}} + f_{n_{k}} - g_{n_{k}}^{i} + g_{n_{k}}^{i} - \tilde{g}_{i}\|_{\rho}$$

$$\leq \|\tilde{f} - f_{n_{k}}\|_{\rho} + \|f_{n_{k}} - g_{n_{k}}^{i}\|_{\rho} + \|g_{n_{k}}^{i} - \tilde{g}_{i}\|_{\rho}.$$

Since $\|\tilde{f} - f_{n_k}\|_{\rho} \to 0$, $\|g_{n_k}^i - \tilde{g}_i\|_{\rho} \to 0$ and $\|f_{n_k} - g_{n_k}^i\|_{\rho} = k_i$ we have $k_i = \|\tilde{f} - \tilde{g}_i\|_{\rho}$ so that $\tilde{f} \in X^o$. Therefore X^o is ρ -closed. Similarly the closedness of Y_i^o can be shown. Also, the metric projection map $P_X : l_{\rho} \to 2^X$ is upper semicontinuous in L_{ρ} such that $P_X(z)$ is a nonempty ρ -compact convex subset of X for each $h \in L_{\rho}$. For each $i \in I$, we define a multifunction $T'_i : X^o \to 2^{Y^o}$ by

$$T'_i(f) := T_i(f) \cap Y^o_i$$
 for each $f \in X^o$.

Then, by assumptions, each $T'_i(f)$ is a nonempty and ρ -compact convex in Y^o_i . Also, T'_i is ρ -upper semi continuous in X^o . Next, we claim that if $g \in Y^o_i$, then $P_X(g)$ is a nonempty subset of X^o . In fact, if $g \in Y^o_i$, then there exists $f_i \in X$ such that $||f_i - g||_{\rho} = d_{\rho}(X, Y_i)$. Let $f \in P_X(g)$ be arbitrary. Thus $||g - f||_{\rho} = d_{\rho}(g, X) \le ||f_i - g||_{\rho} = d_{\rho}(X, Y_i)$ so that $||g - f||_{\rho} = d_{\rho}(X, Y_i)$ for each $i \in I$ and hence $f \in X^o$. That is, $P_X(Y^o_i) \subseteq X^o$. Now we define the following multifunctions $T' : \prod_{i \in I} X^o \to 2^{\prod_{i \in I} Y^o_i}$ by

$$T'(f_1, \cdots f_n) = \prod_{i \in I} T'_i(f_i)$$
 for each $(f_1, \cdots f_n) \in \prod_{i \in I} X^o$

and $P'_X: \prod_{i\in I} Y^o_i :\to 2^{\prod_{i\in I} X^o}$ by

$$P'_X(g_1, \cdots g_n) = \prod_{i \in I} P_X(g_i)$$
 for each $(g_1, \cdots g_n) \in \prod_{i \in I} Y_i^o$.

Then T' and P'_X are both ρ -upper semi continuous such that each $T'(f_1, \dots f_n)$ is nonempty ρ -compact and convex in $\prod_{i \in I} Y_i^o$, and each $P'(g_1, \dots g_n)$ is nonempty ρ -compact and convex in $\prod_{i \in I} X^o$. Hence, T' and P'_X are Kakutani multifunctions so that the composition map $P'_X \circ T' : \prod_{i \in I} X^o \to 2^{\prod_{i \in I} X^o}$ is a Kakutani factorizable

multifunction. Therefore there exists a fixed point $\bar{f} = (\bar{f}_1 \cdots, \bar{f}_n) \in \prod_{i \in I} X^o$ such that $\bar{f} \in (P'_X \circ T')(\bar{f})$. Then $(\bar{f}_1 \cdots, \bar{f}_n) \in P'_X(T'(\bar{f}_1 \cdots, \bar{f}_n))$ so that there exists a $(\bar{g}_1 \cdots, \bar{g}_n) \in \prod_{i \in I} Y^o_i$ such that $(\bar{g}_1 \cdots, \bar{g}_n) \in T'(\bar{f}_1 \cdots, \bar{f}_n) = \prod_{i \in I} (T_i(\bar{f}_i) \cap Y^o_i)$ and $\bar{f}_1 \in P_X(\bar{g}_1), \cdots, \bar{f}_n \in P_X(\bar{g}_n)$. Since each \bar{g}_i is an element in Y^o_i , there exists an $f'_i \in X$ such that $||f'_i - \bar{g}_i||_\rho = d_\rho(X, Y_i)$ for each $i \in I$. Therefore, for each $i \in I$, we have

$$d_{\rho}(f_{i}, T_{i}(f_{i})) \leq ||f_{i} - \bar{g}_{i}||_{\rho} = d_{\rho}(\bar{g}_{i}, X) \leq ||\bar{g}_{i} - f_{i}'||_{\rho} = d_{\rho}(X, Y_{i}),$$

so that $d_{\rho}(\bar{f}_i, T_i(\bar{f}_i)) = d_{\rho}(X, Y_i)$, which is completes the proof. \Box

Theorem 2.2. Let X be a nonempty ρ -compact convex subset of L_{ρ} , then any ρ -acyclic factorizable multifunction $T: X \to 2^X$ has a fixed point, i.e., if $T \in \mathbb{V}_C(X, X)$, then there exists a point $\hat{f} \in X$ such that $\hat{f} \in T(\hat{f})$.

Proof. Since *T* is ρ -upper semi continuous for each neighborhood *V* of 0 in L_{ρ} , there exist $f_V, g_V \in X$ such that $g_V \in T(f_V)$ and $f_V, g_V \in X$ and $g_V - f_V \in V$. But T(X) is relatively ρ -compact, we may assume that g_V converges to some \hat{f} . Since the graph of *T* is ρ -closed in $X \times \overline{T(X)}$, we have $\hat{f} \in T(\hat{f})$. \Box

Using Theorem 2.2, we obtain the following existence theorem for general best proximity pairs.

Theorem 2.3. For each $I = \{1, \dots, n\}$, let X and Y_i be nonempty ρ -compact and convex subsets of L_ρ and X^o is a nonempty subset of X. Let $T_i : X \to 2^{Y_i}$ be a ρ -upper semi continuous multifunction in X^o such that $T_i(f)$ is a nonempty ρ -compact and $T_i(f) \cap Y_i^o$ is a ρ -acyclic subset of Y_i and let $g : X^o \to X^o$ be a ρ -continuous, proper, quasi ρ -affine, and surjective mapping on X^o . Assume that for each $f \in X^o$, there exists $(g_1, \dots g_n) \in \prod_{i \in I} T_i(f)$ such that

$$\exists f_0 \in X \quad with \quad \|f_0 - g_i\|_{\rho} = d_{\rho}(X, Y_i) \quad \text{for each} \quad i \in I, \qquad (*)$$

and $\bigcap_{i \in I} P_X(g_i)$ is nonempty for each $(g_1, \dots, g_n) \in \prod_{i \in I} Y_i^o$. Then there exists a point $\overline{f} \in X$ satisfying the system of best proximity pairs, i.e., for each $i \in I$, $\{g(\overline{f})\} \times T_i(\overline{f}) \subseteq X \times Y_i$ such that $d_\rho(g(\overline{f}), T_i(\overline{f}) = d_\rho(X, Y_i))$.

Proof. As shown in the proof of Theorem 2.1, we can see that X^o and Y_i^o are nonempty ρ -compact and convex. Also since X is nonempty ρ -compact and convex, it is known that the metric projection map $P_X : L_\rho \to 2^X$ is ρ -upper semi continuous in L_ρ such that $P_X(h)$ is a nonempty ρ -compact and convex subset of X for each $h \in L_\rho$. Now we define a multifunction $T'_i : X^o \to 2^{Y^o}$ by

$$T'_i(f) := T_i(f) \cap Y^o_i$$
 for each $f \in X^o$.

Then, by assumption, T'_i is ρ -upper semi continuous in X^o such that each $T'_i(f)$ is a nonempty ρ -compact and ρ -acyclic subset in Y^o_i . Also $P_X(Y^o_i) \subseteq X^o$ as in the proof of Theorem 2.1. Now we introduce the multifunctions $T' : X^o \to 2^{\prod_{i \in I} Y^o_i}$ by

$$T'(f) := \prod_{i \in I} T'_i(f)$$
 for each $f \in X^o$,

and $P'_X : \prod_{i \in I} Y^o_i : \rightarrow 2^{X^o}$ by

$$P'_X(g_1, \cdots g_n) = \bigcap_{i \in I} P_X(g_i) \text{ for each } (g_1, \cdots g_n) \in \prod_{i \in I} Y_i^o$$

Then T' is ρ -upper semi continuous in X^o such that each T'(f) is a nonempty ρ -compact and ρ -acyclic subset in $\prod_{i \in I} Y_i^o$. By assumption (*) each $P'_X(g_1, \dots, g_n)$ is a nonempty ρ -closed convex subset in X^o and we can see that the multifunction $g^{-1} \circ P'_X : \prod_{i \in I} Y_i^o \to 2^{X^o}$ is a ρ -acyclic multifunction. Therefore the composition map $(g^{-1} \circ P'_X) \circ T' : X^o \to X^o$ is a ρ -acyclic factorizable multifunction in X^o . Therefore by Theorem 2.2 there exists a fixed point $\overline{f} \in X^o$ such that $\overline{f} \in ((g^{-1} \circ P'_X) \circ T')(\overline{f})$, that is, $g(\overline{x}) \in (P'_X \circ T')(\overline{f})$. Then

 $g(\bar{f}) \in P'_X(T'_1(\bar{f}), \dots, T'_n(\bar{f}))$ so that there exists $(\bar{g}_1, \dots, \bar{g}_n) \in \prod_{i \in I} (T_i(\bar{f}) \cap Y_i^o)$ such that $g(\bar{f}) \in P'_X(\bar{g}_1, \dots, \bar{g}_n) = \bigcap_{i \in I} P_X(\bar{g}_i)$. Since each \bar{g}_i is an element in Y_i^o , there exists an $f'_i \in X$ such that $||f'_i - \bar{g}_i||_\rho = d_\rho(X, Y_i)$ for each $i \in I$. Therefore, for each $i \in I$,

$$d_{\rho}(g(\bar{f}), T_{i}(\bar{f})) \leq d_{\rho}(g(\bar{f}), \bar{g}_{i}) = d_{\rho}(\bar{g}_{i}, X) \leq d_{\rho}(\bar{g}_{i}, f_{i}') = d_{\rho}(X, Y_{i})$$

so that $d_{\rho}(g(\bar{f}), T_i(\bar{f})) = d_{\rho}(X, Y_i)$, which completes the proof. \Box

3. Equilibrium Pair for the Free *n*-person Game

Let *X* be a topological space, *Y* be a nonempty subset of L_{ρ} , $\theta : X \to L_{\rho}$ be a map, $\phi : X \to 2^{Y}$ be a correspondence and *con A* denoted the convex hull of *A*. Then

- (1) ϕ is said to be of class ρL_{θ}^* , if for every $f \in X$, $\phi(f) \subset Y$ and $\theta(f) \notin \phi(f)$ and for each $g \in Y$, $\phi^{-1}(g) = \{f \in X : g \in \phi(g)\}$ is ρ -open in X;
- (2) A correspondence $\phi_f : X \to 2^{\gamma}$ is said to be an ρL_{θ}^* majorant of ϕ at f if there exists an ρ -open neighborhood N_f of f in X such that (a) for each $h \in N_f$, $\phi(h) \subset \phi_f(h)$ and $\theta(h) \notin \phi_f(h)$, (b) for each $h \in X$, con $\phi_f(h) \subset Y$ and (c) for each $g \in Y$, $\phi_f^{-1}(g)$ is ρ -open in X;
- (3) ϕ is ρL_{θ}^* majorized if for each $f \in X$ with $\phi(f) \neq \emptyset$, there exists an ρL_{θ}^* majorant of ϕ at f.

Theorem 3.1. Let Y be a nonempty ρ -compact and convex subset of L_{ρ} . If $\Phi : Y \to 2^{Y}$ be $\rho - \mathcal{L}^{*}$ -majorized then there exists a point $\overline{g} \in \operatorname{con} Y \subset Y$ such that $\Phi(\overline{g}) = \emptyset$.

Proof. suppose the contrary, then the set $\{g \in \operatorname{con} Y : \Phi(g) \neq \emptyset\} = \operatorname{con} Y$ is ρ -compact and there exists a correspondence $\phi : \operatorname{con} Y \to 2^Y$ of class $\rho - \mathcal{L}^*$ such that $\Phi(g) \subset \phi(g)$ for each $g \in \operatorname{con} Y$. It is easy to see that ϕ satisfies all hypothesis of [1, Theorem5.3] and hence there exists a point $\overline{g} \in \operatorname{con} Y \subset Y$ such that $\phi(\overline{g}) = \emptyset$; it is follows that $\Phi(\overline{g}) = \emptyset$ which contradicts our assumption. Hence the conclusion must hold. \Box

Before starting the existence of equilibrium pair for the free *n*-person game, we shall need the following lemma.

Lemma 3.2. Let $\Gamma = (Y_i, \Phi_i)_{i \in I}$ be a qualitative game where *I* is a (possibly infinite) set of agents such that for each $i \in I$,

- (1) Y_i is a nonempty ρ -compact and convex subset of L_{ρ} ,
- (2) the correspondence $\Phi_i: Y = \prod_{i \in I} Y_i \to 2^{Y_i}$ is $\rho \mathcal{L}^*$ -majorized in Y,
- (3) the set $W_i := \{g \in Y : \Phi_i(g) \neq \emptyset\}$ is (possibly empty) ρ -open in Y.

Then there exists $\bar{g} \in Y$ such that for each $i \in I$, $\Phi_i(\bar{g}) = \emptyset$.

Proof. For each $f \in Y$, let $I(g) = \{i \in I : \Phi_i(g) \neq \emptyset\}$. Define a correspondence $\Phi : Y \to 2^Y$ by

$$\Phi(g) := \begin{cases} \bigcap_{i \in I(g)} \Phi'_i(g) & \text{if } I(g) \neq \emptyset, \\ \emptyset & \text{if } I(g) = \emptyset. \end{cases}$$

where $\Phi'_i(g) = \prod_{i \neq j, j \in I} Y_j \otimes \Phi_i(g)$ for each $g \in Y$. Then for each $g \in Y$ with $I(g) \neq \emptyset$, $\Phi(g) \neq \emptyset$. Let $g \in Y$ be such that $\Phi(g) \neq \emptyset$. Then $\Phi'_i(g) \neq \emptyset$ for all $i \in I(g)$. Fix one $i \in I(g)$. By assumption (2), there exists a ρ -open neighborhood $N_\rho(g)$ of g in Y and $\rho - \mathcal{L}^*$ -majorant ϕ_i of Φ at g such that

- (i) for each $h \in N_{\rho}(g)$, $\Phi_i(h) \subset \phi_i(h)$ and $h \notin con \phi_i(h)$,
- (ii) for each $h \in Y$, $con \phi_i(h) \subset Y_i$,

(iii) for each $g \in Y_i$, $\phi_i^{-1}(h)$ is ρ -open in Y.

Now, by assumption (3), we may assume $N_{\rho}(g) \subset Y_i$, so that $\Phi_i(h) \neq \emptyset$ for all $h \in N_{\rho}(g)$. we define $\Psi_g : Y \to 2^Y$ by

$$\Psi_g(h) = \prod_{i \neq j, j \in I} \Upsilon_j \otimes \phi_i(h) \quad \text{for all} \quad h \in Y.$$

We claim that Ψ_q is an $\rho - \mathcal{L}^*$ -majorant of Φ at g. Indeed, for each $h \in N_\rho(g)$, by (i),

$$\Phi(h) = \bigcap_{j \in I(h)} \Phi'_j(h) \subset \Phi'_i(h) \subset \Psi_g(h),$$

and

 $h \notin con \Psi_q(h).$

By (*ii*), for each $h \in Y$

$$con\Psi_g(h) \subset \prod_{i \neq j, j \in I} con Y_j \otimes con \phi_i(h) \subset Y.$$

Since for each $f \in Y$,

$$\Phi_g^{-1}(f) = \begin{cases} \phi_i^{-1}(f_i) & \text{if } f_i \in Y_j \text{ for all } j \neq i, \\ \emptyset & \text{if } f_i \notin Y_j \text{ for some } j \neq i, \end{cases}$$

and $\phi_i^{-1}(f_i)$ is ρ -open in Y, $\Phi_g^{-1}(f)$ is also ρ -open in Y. Therefore, Φ_g^{-1} is a $\rho - \mathcal{L}^*$ -majorant of Φ at g. This shows that Φ is $\rho - \mathcal{L}^*$ -majorized. By Theorem 3.1 there exists a point $\overline{g} \in Y$ so that $I(g) = \emptyset$ and hence for each $i \in I$, $\Phi_i(\overline{g}) = \emptyset$. \Box

Next, using Lemma 3.2, we shall prove the existence of equilibrium pairs for free *n*-person game as follows:

Theorem 3.3. Let $\Gamma = (X, Y_i, A_i, P_i)_{i \in I}$ be a free *n*-person game such that for each $i \in I = \{1, \dots, n\}$

- (1) Let X, Y be nonempty ρ -compact and convex subsets of L_{ρ} , X^o a nonempty subset of X, Y_i and Y := $\prod_{i \in I} Y_i$;
- (2) $A_i: X \to 2^{Y_i}$ is a ρ -upper semi continuous correspondence such that each $A_i(f)$ is a nonempty ρ -closed and convex subsets of Y_i and satisfies in condition (*) in Theorem 2.3;
- (3) $P_i: Y \to 2^{Y_i}$ is a preference correspondence which is $\rho \mathcal{L}^*$ -majorized in Y;
- (4) $P_i(g)$ is nonempty for each $g = (g_i)_{i \in I} \in Y$ with $g_i \in Y \setminus \mathcal{A}_{if}$, whenever $\mathcal{A}_{if} = \{h \in Y_i : h \in A_i(f) \text{ and } ||f-h||_{\rho} = d_{\rho}(X, Y_i)\}$ is nonempty;
- (5) the set $W_i = \{g \in Y : A_i(f) \cap P_i(g) \neq \emptyset\}$ is ρ -open in Y whenever \mathcal{A}_{if} is nonempty.

Then there exists an equilibrium pair $(\bar{f}, \bar{g}) = (\bar{f}, (\bar{g}_i)_{i \in I}) \in X \times Y$ for Γ , i.e., for each $i \in I$, $\bar{g}_i \in A_i(\bar{f})$ and $\|\bar{f} - \bar{g}_i\|_{\rho} = d_{\rho}(X, Y_i)$ such that $A_i(\bar{f}) \cap P_i(\bar{g}) \neq \emptyset$.

Proof. For each $i \in I$, since A_i satisfies the whole assumption of Theorem 2.3 in case $g = id_{X^o}$, there exists a point $\overline{f} \in X$ satisfying the system of best proximity pairs, i.e., for each $i \in I$, $\{\overline{f}\} \times A_i(\overline{f}) \subseteq X \times Y_i$ such that $d_\rho(\overline{f}, A_i(\overline{f})) = d_\rho(X, Y_i)$.

Now, we may denote the nonempty best proximity set of the correspondence A_i at \overline{f} simply by

$$\mathcal{A}_i = \{h \in Y_i : h \in A_i(\bar{f}) \text{ and } \|\bar{f} - h\|_\rho = d_\rho(X, Y_i)\}.$$

Then, it is easy to see that each \mathcal{A}_i is ρ -closed and convex subset of a ρ -compact convex set $A_i(\bar{f})$. It remains to show that there exists a point $g = (g_i)_{i \in I} \in Y$ such that for each $i \in I$, $\bar{g}_i \in A_i(\bar{f})$ and $A_i(\bar{f}) \cap P_i(\bar{g}) \neq \emptyset$. For each $i \in I$, we now define a multifunction $\phi : Y \to 2^{Y_i}$ by

$$\phi_i(g) := \begin{cases} P_i(g) & \text{if } g_i \notin \mathcal{A}_i, \\ A_i(\bar{f}) \cap P_i(g) & \text{if } g_i \in \mathcal{A}_i, \end{cases}$$

for each $g = (g_1, \dots, g_n) \in Y$. In order to apply Lemma 3.2 to ϕ_i for each $i \in I$, we should chek the assumption (2) and (3) of Lemma 3.2. We first show that the set $\{g \in Y : \phi_i(g) \neq \emptyset\}$ is ρ -open in Y for each $i \in I$. By assumption (5) the set $W_i = \{g \in Y : A_i(\bar{f}) \cap P_i(g) \neq \emptyset\}$ is ρ -open in Y. Note that the projection map $\pi_i : Y \to Y_i$ defined by $\pi_i(g_1, \dots, g_n) = g_i$ is ρ -open in Y. Then we have

$$\{g \in Y : \phi_i(g) \neq \emptyset\} = \{g \in Y \setminus \pi_i^{-1}(\mathcal{A}_i) : \phi_i(g) \neq \emptyset\} \cup \{g \in \pi_i^{-1}(\mathcal{A}_i) : \phi_i(g) \neq \emptyset\}$$

= $\{g \in Y \setminus \pi_i^{-1}(\mathcal{A}_i) : P_i(g) \neq \emptyset\} \cup \{g \in \pi_i^{-1}(\mathcal{A}_i) : A_i(\bar{f}) \cap P_i(g) \neq \emptyset\}$
= $(Y \setminus \pi_i^{-1}(\mathcal{A}_i)) \cup (W_i \cap \pi_i^{-1}(\mathcal{A}_i)) = (Y \setminus \pi_i^{-1}(\mathcal{A}_i)) \cup W_i.$

Since the projection mapping π_i is ρ -open and \mathcal{A}_i is ρ -compact, we have $\pi_i^{-1}(\mathcal{A}_i)$ is ρ -closed so that the set $\{g \in Y : \phi_i(g) \neq \emptyset\}$ is ρ -open in Y by the assumption (5).

Next we shal show that ϕ_i is $\rho - \mathcal{L}^*$ -majorized in Y. By assumption (4), for each $g \in Y$ with $g_i \notin \mathcal{A}_i$, $\phi_i(g) = P_i(g)$ is nonempty so that there exists a $\rho - \mathcal{L}^*$ -majorant ψ_i of ϕ_i in Y by the assumption (3). For each $g \in Y$ with $g_i \in \mathcal{A}_i$, $\phi_i(g) = A_i(\bar{f}) \cap P_i(g)$. If $A_i(\bar{f}) \cap P_i(g) \neq \emptyset$ then $P_i(g) \neq \emptyset$. Again by the assumption (3), there exist a $\rho - \mathcal{L}^*$ -majorant ψ_i of P_i in Y. Since $\phi_i(g) \subset P_i(g)$ for each $g \in Y$ with $g_i \in \mathcal{A}_i$, ψ_i is also $\rho - \mathcal{L}^*$ -majorant ϕ_i in Y. Therefore ϕ_i is $\rho - \mathcal{L}^*$ -majorized in Y for each $i \in I$ and hence the whole hypotheseses of Lemma 3.2 are stisfied so that there exists a point $\bar{g} = (\bar{g}_i)_{i \in I} \in Y$ such that for each $i \in I$, $\Phi_i(\bar{g}) = \emptyset$ for each $i \in I$. If $\bar{g}_i \notin \mathcal{A}_i$ for some $i \in I$ then by assumption (4), $\phi_i(\bar{g}) = P_i(\bar{g})$ is a nonempty subset of Y_i , which is a contradiction. Therefore for each $i \in I$, we must have $\bar{g}_i \in \mathcal{A}_i$ and $\phi_i(\bar{g}) = A_i(\bar{f}) \cap P_i(\bar{g}) \neq \emptyset$. This completed the proof. \Box

References

- [1] X. P. Ding, W. K. Kim and K. K. Tan, A selection theorem and its applications, Bull. Austral. Math. Soc. 46 (1992) 205-212.
- [2] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Nicolaus Copernicus University, Toruń, Poland, 2006.
- [3] N. Karamikabir, A. Razani, Some KKN theorems in modular function spaces, Filomat, 28:7 (2014) 1307-1313.
 [4] M. A. Khamsi, W. M. Kozlowski, On asymptotic pointwise contractions in modular function spaces, Nonlinear Anal 73 (2010)
- 2957-2967.
- [5] M. A. Khamsi, W. M. Kozlowski and C. Shutao, Some geometrical properties and fixed point theorems in Orlicz spaces, J. Math. Appl 155 (1991) 393-412.
- [6] M. A. Khamsi, A convexity property in modular function spaces, Math Japonica 44.2 (1996) 269-279.
- [7] M. A. Khamsi, A. Latif and H. Al-Sulami, KKM and Ky Fan theorems in modular function spaces, Fixed Point Theory Appl 1 (2011) 1-8.
- [8] W. K. Kim, K. H. Lee, Existence of best proximity pairs and equilibrium pairs, J. Math. Anal. Appl.316 (2006) 433-446.
- [9] W.M. Kozlowski, Modular Function Spaces, M.Dekker, 1988.