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Abstract. In this paper, we prove a fixed point theorem for ρ-acyclic factorizable multifunction. Some
existence theorems of general best proximity pairs and equilibrium pairs are presented in modular function
spaces. Moreover, some equilibrium theorems are established for free generalized n-person game.

1. Introduction

The theory of mappings defined on convex subsets of modular function spaces generalized by Khamsi
et al. (see e.g. [4–6]).

We need the following definitions in sequel, from [7, 9]:
Let Ω be a nonempty set and Σ be a nontrivial σ-algebra of subsets of Ω. Let P be a σ-ring of subsets of
Ω, such that E ∩ A ∈ P for any E ∈ P and A ∈ Σ. Assume that there exists an increasing sequence of sets
Kn ∈ P such that Ω =

⋃
Kn. By E, we denote the linear space of all simple functions with supports in P. By

M∞, we will denote the space of all extended measurable functions, i.e. all functions f : Ω → [−∞,+∞]
such that there exists a sequence {1n} ⊂ E, |1n| ≤ | f | and 1n(w) → f (w) for all w ∈ Ω. By 1A, we denote the
characteristic function of the set A.

Definition 1.1. Let ρ :M∞ → [0,∞] be a nontrivial, convex and even function. We say that ρ is a regular convex
function pseudomodular if

(i) ρ(0) = 0;

(ii) ρ is monotone, i.e. | f (w)| ≤ |1(w)| for all w ∈ Ω implies ρ( f ) ≤ ρ(1), where f , 1 ∈ M∞;

(iii) ρ is orthogonally subadditive, i.e. ρ( f 1A∪B) ≤ ρ( f 1A) +ρ( f 1B) for any A,B ∈ Σ such that A∩B , ∅, f ∈ M∞;

(iv) ρ has the Fatou property, i.e. | fn(w)| ↑ | f (w)| for all w ∈ Ω implies ρ( fn) ↑ ρ( f ), where f ∈ M∞;

(v) ρ is order continuous in E, i.e. 1n ∈ E and |1n(w)| ↓ 0 implies ρ(1n) ↓ 0.
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We say that A ∈ Σ is ρ-null if ρ(11A) = 0 for every 1 ∈ E. A property holds ρ-almost everywhere if the
exceptional set is ρ-null, we define

M(Ω,Σ,P, ρ) = { f ∈ M∞; | f (w)| < ∞ ρ − a.e.}.

We will writeM instead ofM(Ω,Σ,P, ρ).

Definition 1.2. Let ρ be a regular convex function pseudomodular. We say that ρ is a regular convex function
modular if ρ( f ) = 0 implies f = 0 ρ-a.e.

The class of all nonzero regular convex function modulars defined on Ω will be denoted by<.

Definition 1.3. Let ρ be a convex function modular. A modular function space is the vector space Lρ(Ω,Σ), or briefly
Lρ, defined by

Lρ = { f ∈ M;ρ(λ f )→ 0 as λ→ 0}.

The formula

‖ f ‖ρ = inf{α > 0;ρ( f/α) ≤ 1}.

defines a norm in Lρ which is frequently called the Luxemburg norm.

Definition 1.4. Let ρ ∈ <.

(i) We say { fn} is ρ-convergent to f and write fn → f (ρ) if and only if ρ( fn − f )→ 0.

(ii) A subset B ⊂ Lρ is called ρ-closed if for any sequence of fn ∈ B, the convergence fn → f (ρ) implies that f
belong to B.

(iii) A nonempty subset K of Lρ is said to be ρ-compact if for any family {Aα; Aα ∈ 2Lρ , α ∈ Γ} of ρ-closed subsets
with K ∩ Aα1 ∩ · · · ∩ Aαn , ∅, for any α1, · · · , αn ∈ Γ, we have

K ∩ (
⋂
α∈Γ

Aα) , ∅.

Let ρ ∈ <. We have ρ( f ) ≤ lim infρ( fn), whenever fn → f ρ − a.e. This property is equivalent to the Fatou
property [7, Theorem 2.1].

Definition 1.5. Let ρ ∈ < and let C be nonempty ρ-closed subset of Lρ. Let T : G → Lρ be a map. T is called ρ-
continuous if {T( fn)} ρ-converges to T( f ) whenever { fn} ρ-converges to f . Also T will be called strongly ρ-continuous
if T is ρ-continuous and

lim inf
n→∞

ρ(1 − T( fn)) = ρ(1 − T( f )),

for any sequence { fn} ⊂ C which ρ-converges to f and for any 1 ∈ C.

Definition 1.6. Let X,Y ⊆ Lρ. A map F : X → 2Y is said to be ρ-upper semi continuous if for each ρ-closed set
B ⊆ Y, F−(B) is ρ-closed in X.

Recal the following definitions of proximity concepts. Let X, and Y be any two nonempty ρ-closed
subsets of Lρ, and ρ ∈ <. For f ∈ X, define dρ( f ,Y) = inf{‖ f − 1‖ρ : 1 ∈ Y}, and

dρ(X,Y) = inf{‖ f − 1‖ρ : f ∈ X, 1 ∈ Y},
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If X = { f } and Y = {1}, then ‖ f − 1‖ρ denotes dρ(X,Y) which is precisely ‖ f − 1‖ρ.

Let I be a finite or an infinite index set. For each i ∈ I, let X and Yi be non-empty ρ-closed subsets of Lρ.
Then we can use the following notations: for each i ∈ I,

dρ( f ,Yi) = inf{‖ f − 1‖ρ : 1 ∈ Yi},

Xo := { f ∈ X | for each i ∈ I,∃1i ∈ Yi such that ‖ f − 1i‖ρ = dρ(X,Yi)}

Yo
i := {1 ∈ Yi | ∃ f ∈ X such that ‖ f − 1‖ρ = dρ(X,Yi)}

Let X, and Y be any two nonempty ρ-closed subsets of Lρ and T : X→ 2Y be a multifunction. Then the pair
( f̄ ,T( f̄ )) is called the best proximity pair for T if dρ( f̄ ,T( f̄ )) = ‖ f̄ − 1̄‖ρ = dρ(X,Y), for some 1 ∈ T( f̄ ).

If X ∈ Lρ is a nonempty ρ-closed, convex and ρ-compact, then the set

PX( f ) = {1 ∈ X : ‖ f − 1‖ρ = dρ( f ,X)},

of all ρ-best approximations in X to any element f ∈ X is a nonempty ρ-closed, convex and ρ-compact
subset of X and every point in PX( f ) is called a best proximity point of f in X. Also, any point f ∈ X for
which dρ( f ,Y) = dρ(X,Y) is called a best proximity point of Y in X and the points f ∈ X , 1 ∈ Y satisfying
‖ f − 1‖ρ = dρ(X,Y) are called best proximity points of the pair (X,Y).

Definition 1.7. Let C be a nonempty, convex subsets of Lρ. A single value function h : C → Lρ is said to be quasi
ρ-affine if for each real number r > 0 and f ∈ Lρ the set {1 ∈ C | ‖h(1) − f ‖ρ 6 r} to be convex.

A nonempty topological space is called acyclic if all its reduced Čach homology groups over rationals
vanish.

Definition 1.8. Let X,Y ⊂ Lρ. A multifunction T : X→ 2Y is said to be ρ-acyclic multifunction if is ρ-upper semi
continuous and T(x) is a nonempty ρ-compact and acyclic subset of Y.

The collection of all ρ-acyclic multifunctions from X to Y is denoted byV(X,Y). A multifunction T : X→ 2Y

is said to be a ρ-acyclic factorizable multifunction if it can be expressed as a composition of finitely many
acyclic multifunction. The collection of all ρ-acyclic factorizable multifunctions from X to Y is denoted by
VC(X,Y).

Now we recall the following equilibrium pair concept of [8]. Let I be a finite or an infinite set of locations
or agents. For each i ∈ I, let Xi nonempty set of manufacturing commodities and Yi be a nonempty set of
selling commodities. A free generalized game or free abstract economy Γ = (Xi,Yi,Ai,Pi)i∈I is defined as
a family of ordered quadruples, where Xi and Yi are nonempty subsets of Lρ, Ai : X =

∏
j∈I X j → 2Yi is a

constraint correspondence and Pi : Y =
∏

j∈I Y j → 2Yi is a preference correspondence. An equilibrium pair
for Γ is a pair of points ( f̄ , 1̄) = (( f̄i)i∈I, (1̄i)i∈I) ∈ X × Y such that for each i ∈ I

1̄i ∈ Ai( f̄ ) with ‖ f̄i − 1̄i‖ρ = dρ(Xi,Yi) and Ai( f̄ ) ∩ Pi(1̄) = ∅.

In particular, when I = {1, · · · ,n}, we may call Γ a free n-person game.
When Xi = Yi for each i ∈ I, then the previous definitions can be reduced to the standard definitions of
equilibrium theory in mathematical economics.

Section 2 is devoted to fixed point theorem and some existence theorems for best proximity pairs in
modular function spaces. In the last section, some equilibrium theorems are proved for free n-person game.
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2. General Best Proximity Pairs

Here, first we established the following existence theorem of general best proximity.

Theorem 2.1. For each I = {1, · · · ,n}, let X and Yi be nonempty ρ-compact and convex subsets of Lρ, and let
Ti : X → 2Yi be a ρ-upper semi continuous multifunction in Xo such that Ti( f ) is a nonempty ρ-closed and convex
subset of Yi for each f ∈ X. Assume that Ti( f )∩Yo

i , ∅ for each f ∈ Xo. Then there exists a system of best proximity
pairs { f̄i} × Ti( fi) ⊆ X × Yi , i.e., for each i ∈ I, dρ( f̄i,T( f̄i)) = dρ(X,Yi).

Proof. Let f1, f2 ∈ Xo be arbitrary. Then, for each i ∈ I, there exist 11
i , 1

2
i ∈ Yi such that ‖ fi − 1

j
i‖ρ = dρ(X,Yi)

for each j = 1, 2. For any λ ∈ (0, 1), we let f̂ = λ f1 + (1 − λ) f2 and 1̂i = λ11
i + (1 − λ)12

i . Since Yi is convex,
1̂i ∈ Yi. Then we have

‖ f̂ − 1̂i‖ρ = ‖(λ f1 + (1 − λ) f2) − (λ11
i + (1 − λ)12

i )‖ρ
= ‖λ( f1 − 11

i ) + (1 − λ)( f2 − 12
i )‖ρ

≤ λ‖ f1 − 11
i ‖ρ + (1 − λ)‖ f2 − 12

i ‖ρ

= λdρ(X,Yi) + (1 − λ)dρ(X,Yi)
= dρ(X,Yi),

so f̂ ∈ Xo. Hence Xo is convex. Similarly, the convexity for Yo
i can be proved. Now we show that Xo is

a ρ-closed subset of X. Let ( fn)n∈N be a sequence in Xo, which converges to f̃ ∈ X. If i ∈ I be fixed and
ki = dρ(X,Yi) = inf{‖ f − 1i‖ρ : f ∈ X, 1i ∈ Yi} then, for each n ∈N there exists 1i

n ∈ Yi such that ‖ fn − 1i
n‖ρ = ki.

Since Yi is compact, there exists a convergent subsequence (1i
nk

) of (1i
n) which converges to 1̃i ∈ Yi. Also

ki ≤ ‖ f̃ − 1̃i‖ρ = ‖ f̃ − fnk + fnk − 1
i
nk

+ 1i
nk
− 1̃i‖ρ

≤ ‖ f̃ − fnk‖ρ + ‖ fnk − 1
i
nk
‖ρ + ‖1i

nk
− 1̃i‖ρ.

Since ‖ f̃ − fnk‖ρ → 0, ‖1i
nk
− 1̃i‖ρ → 0 and ‖ fnk − 1

i
nk
‖ρ = ki we have ki = ‖ f̃ − 1̃i‖ρ so that f̃ ∈ Xo. Therefore

Xo is ρ-closed. Similarly the closedness of Yo
i can be shown. Also, the metric projection map PX : lρ → 2X

is upper semicontinuous in Lρ such that PX(z) is a nonempty ρ-compact convex subset of X for each h ∈ Lρ.
For each i ∈ I, we define a multifunction T′i : Xo

→ 2Yo
by

T′i ( f ) := Ti( f ) ∩ Yo
i for each f ∈ Xo.

Then, by assumptions, each T′i ( f ) is a nonempty and ρ-compact convex in Yo
i . Also, T′i is ρ-upper semi

continuous in Xo. Next, we claim that if 1 ∈ Yo
i , then PX(1) is a nonempty subset of Xo. In fact, if 1 ∈ Yo

i ,
then there exists fi ∈ X such that ‖ fi − 1‖ρ = dρ(X,Yi). Let f ∈ PX(1) be arbitrary. Thus ‖1 − f ‖ρ = dρ(1,X) ≤
‖ fi − 1‖ρ = dρ(X,Yi) so that ‖1 − f ‖ρ = dρ(X,Yi) for each i ∈ I and hence f ∈ Xo. That is, PX(Yo

i ) ⊆ Xo. Now
we define the following multifunctions T′ :

∏
i∈I Xo

→ 2
∏

i∈I Yo
i by

T′( f1, · · · fn) =
∏
i∈I

T′i ( fi) for each ( f1, · · · fn) ∈
∏
i∈I

Xo;

and P′X :
∏

i∈I Yo
i :→ 2

∏
i∈I Xo

by

P′X(11, · · · 1n) =
∏
i∈I

PX(1i) for each (11, · · · 1n) ∈
∏
i∈I

Yo
i .

Then T′ and P′X are both ρ-upper semi continuous such that each T′( f1, · · · fn) is nonempty ρ-compact and
convex in

∏
i∈I Yo

i , and each P′(11, · · · 1n) is nonempty ρ-compact and convex in
∏

i∈I Xo. Hence, T′ and P′X are
Kakutani multifunctions so that the composition map P′X ◦ T′ :

∏
i∈I Xo

→ 2
∏

i∈I Xo
is a Kakutani factorizable
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multifunction. Therefore there exists a fixed point f̄ = ( f̄1 · · · , f̄n) ∈
∏

i∈I Xo such that f̄ ∈ (P′X ◦ T′)( f̄ ). Then
( f̄1 · · · , f̄n) ∈ P′X(T′( f̄1 · · · , f̄n)) so that there exists a (1̄1 · · · , 1̄n) ∈

∏
i∈I Yo

i such that (1̄1 · · · , 1̄n) ∈ T′( f̄1 · · · , f̄n) =∏
i∈I(Ti( f̄i)∩ Yo

i ) and f̄1 ∈ PX(1̄1), · · · f̄n ∈ PX(1̄n). Since each 1̄i is an element in Yo
i , there exists an f ′i ∈ X such

that ‖ f ′i − 1̄i‖ρ = dρ(X,Yi) for each i ∈ I. Therefore, for each i ∈ I, we have

dρ( f̄i,Ti( f̄i)) 6 ‖ f̄i − 1̄i‖ρ = dρ(1̄i,X) 6 ‖1̄i − f ′i ‖ρ = dρ(X,Yi),

so that dρ( f̄i,Ti( f̄i)) = dρ(X,Yi), which is completes the proof.

Theorem 2.2. Let X be a nonempty ρ-compact convex subset of Lρ, then any ρ-acyclic factorizable multifunction
T : X→ 2X has a fixed point,i.e., if T ∈ VC(X,X), then there exists a point f̂ ∈ X such that f̂ ∈ T( f̂ ).

Proof. Since T is ρ-upper semi continuous for each neighborhood V of 0 in Lρ, there exist fV, 1V ∈ X such
that 1V ∈ T( fV) and fV, 1V ∈ X and 1V − fV ∈ V. But T(X) is relatively ρ-compact, we may assume that 1V

converges to some f̂ . Since the graph of T is ρ-closed in X × T(X), we have f̂ ∈ T( f̂ ).

Using Theorem 2.2, we obtain the following existence theorem for general best proximity pairs.

Theorem 2.3. For each I = {1, · · · ,n}, let X and Yi be nonempty ρ-compact and convex subsets of Lρ and Xo is
a nonempty subset of X. Let Ti : X → 2Yi be a ρ-upper semi continuous multifunction in Xo such that Ti( f ) is a
nonempty ρ-compact and Ti( f ) ∩ Yo

i is a ρ-acyclic subset of Yi and let 1 : Xo
→ Xo be a ρ-continuous, proper, quasi

ρ-affine, and surjective mapping on Xo. Assume that for each f ∈ Xo, there exists (11, · · · 1n) ∈
∏

i∈I Ti( f ) such that

∃ f0 ∈ X with ‖ f0 − 1i‖ρ = dρ(X,Yi) for each i ∈ I, (∗)

and ∩i∈IPX(1i) is nonempty for each (11, · · · 1n) ∈
∏

i∈I Yo
i . Then there exists a point f̄ ∈ X satisfying the system of

best proximity pairs, i.e., for each i ∈ I, {1( f̄ )} × Ti( f̄ ) ⊆ X × Yi such that dρ(1( f̄ ),Ti( f̄ ) = dρ(X,Yi).

Proof. As shown in the proof of Theorem 2.1, we can see that Xo and Yo
i are nonempty ρ-compact and convex.

Also since X is nonempty ρ-compact and convex, it is known that the metric projection map PX : Lρ → 2X

is ρ-upper semi continuous in Lρ such that PX(h) is a nonempty ρ-compact and convex subset of X for each
h ∈ Lρ. Now we define a multifunction T′i : Xo

→ 2Yo
by

T′i ( f ) := Ti( f ) ∩ Yo
i for each f ∈ Xo.

Then, by assumption, T′i is ρ-upper semi continuous in Xo such that each T′i ( f ) is a nonempty ρ-compact
and ρ-acyclic subset in Yo

i . Also PX(Yo
i ) ⊆ Xo as in the proof of Theorem 2.1. Now we introduce the

multifunctions T′ : Xo
→ 2

∏
i∈I Yo

i by

T′( f ) :=
∏
i∈I

T′i ( f ) for each f ∈ Xo,

and P′X :
∏

i∈I Yo
i :→ 2Xo

by

P′X(11, · · · 1n) = ∩i∈IPX(1i) for each (11, · · · 1n) ∈
∏
i∈I

Yo
i .

Then T′ is ρ-upper semi continuous in Xo such that each T′( f ) is a nonempty ρ-compact and ρ-acyclic
subset in

∏
i∈I Yo

i . By assumption (∗) each P′X(11, · · · , 1n) is a nonempty ρ-closed convex subset in Xo and
we can see that the multifunction 1−1

◦ P′X :
∏

i∈I Yo
i → 2Xo

is a ρ-acyclic multifunction. Therefor the
composition map (1−1

◦ P′X) ◦ T′ : Xo
→ Xo is a ρ-acyclic factorizable multifunction in Xo. Therefore by

Theorem 2.2 there exists a fixed point f̄ ∈ Xo such that f̄ ∈ ((1−1
◦P′X)◦T′)( f̄ ), that is, 1(x̄) ∈ (P′X ◦T′)( f̄ ). Then
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1( f̄ ) ∈ P′X(T′1( f̄ ), · · · ,T′n( f̄ )) so that there exists (1̄1, · · · , 1̄n) ∈
∏

i∈I(Ti( f̄ )∩Yo
i ) such that 1( f̄ ) ∈ P′X(1̄1, · · · , 1̄n) =

∩i∈IPX(1̄i). Since each 1̄i is an element in Yo
i , there exists an f ′i ∈ X such that ‖ f ′i − 1̄i‖ρ = dρ(X,Yi) for each

i ∈ I. Therefore, for each i ∈ I,

dρ(1( f̄ ),Ti( f̄ )) ≤ dρ(1( f̄ ), 1̄i) = dρ(1̄i,X) ≤ dρ(1̄i, f ′i ) = dρ(X,Yi)

so that dρ(1( f̄ ),Ti( f̄ )) = dρ(X,Yi), which completes the proof.

3. Equilibrium Pair for the Free n-person Game

Let X be a topological space, Y be a nonempty subset of Lρ, θ : X → Lρ be a map, φ : X → 2Y be a
correspondence and con A denoted the convex hull of A. Then

(1) φ is said to be of class ρ − L∗θ, if for every f ∈ X, φ( f ) ⊂ Y and θ( f ) < φ( f ) and for each 1 ∈ Y,
φ−1(1) = { f ∈ X : 1 ∈ φ(1)} is ρ-open in X;

(2) A correspondence φ f : X → 2Y is said to be an ρ − L∗θ majorant of φ at f if there exists an ρ-open
neighborhood N f of f in X such that (a) for each h ∈ N f , φ(h) ⊂ φ f (h) and θ(h) < φ f (h), (b) for each
h ∈ X, conφ f (h) ⊂ Y and (c) for each 1 ∈ Y, φ−1

f (1) is ρ-open in X;

(3) φ is ρ − L∗θ majorized if for each f ∈ X with φ( f ) , ∅, there exists an ρ − L∗θ majorant of φ at f .

Theorem 3.1. Let Y be a nonempty ρ-compact and convex subset of Lρ. If Φ : Y → 2Y be ρ − L∗-majorized then
there exists a point 1̄ ∈ con Y ⊂ Y such that Φ(1̄) = ∅.

Proof. suppose the contrary, then the set {1 ∈ con Y : Φ(1) , ∅} = con Y is ρ-compact and there exists a
correspondence φ : con Y→ 2Y of class ρ−L∗ such that Φ(1) ⊂ φ(1) for each 1 ∈ con Y. It is easy to see that
φ satisfies all hypothesis of [1, Theorem5.3] and hence there exists a point 1̄ ∈ con Y ⊂ Y such that φ(1̄) = ∅;
it is follows that Φ(1̄) = ∅which contradicts our assumption. Hence the conclusion must hold.

Before starting the existence of equilibrium pair for the free n-person game, we shall need the following
lemma.

Lemma 3.2. Let Γ = (Yi,Φi)i∈I be a qualitative game where I is a (possibly infinite) set of agents such that for each
i ∈ I,

(1) Yi is a nonempty ρ-compact and convex subset of Lρ,

(2) the correspondence Φi : Y =
∏

j∈I Y j → 2Yi is ρ − L∗-majorized in Y,

(3) the set Wi := {1 ∈ Y : Φi(1) , ∅} is (possibly empty) ρ-open in Y.

Then there exists 1̄ ∈ Y such that for each i ∈ I, Φi(1̄) = ∅.

Proof. For each f ∈ Y, let I(1) = {i ∈ I : Φi(1) , ∅}. Define a correspondence Φ : Y→ 2Y by

Φ(1) :=
{
∩i∈I(1)Φ

′

i (1) if I(1) , ∅,
∅ if I(1) = ∅.

where Φ′i (1) =
∏

i, j, j∈I Y j ⊗ Φi(1) for each 1 ∈ Y. Then for each 1 ∈ Y with I(1) , ∅, Φ(1) , ∅. Let 1 ∈ Y be
such that Φ(1) , ∅. Then Φ′i (1) , ∅ for all i ∈ I(1). Fix one i ∈ I(1). By assumption (2), there exists a ρ-open
neighborhood Nρ(1) of 1 in Y and ρ − L∗-majorant φi of Φ at 1 such that

(i) for each h ∈ Nρ(1), Φi(h) ⊂ φi(h) and h < conφi(h),

(ii) for each h ∈ Y, conφi(h) ⊂ Yi,



N. Karamikabir, F. M. Yaghoobi / Filomat 31:18 (2017), 5719–5726 5725

(iii) for each 1 ∈ Yi, φ−1
i (h) is ρ-open in Y.

Now, by assumption (3), we may assume Nρ(1) ⊂ Yi, so that Φi(h) , ∅ for all h ∈ Nρ(1). we define
Ψ1 : Y→ 2Y by

Ψ1(h) =
∏

i, j, j∈I

Y j ⊗ φi(h) for all h ∈ Y.

We claim that Ψ1 is an ρ − L∗-majorant of Φ at 1. Indeed, for each h ∈ Nρ(1), by (i),

Φ(h) = ∩ j∈I(h)Φ
′

j(h) ⊂ Φ′i (h) ⊂ Ψ1(h),

and

h < con Ψ1(h).

By (ii), for each h ∈ Y
conΨ1(h) ⊂

∏
i, j, j∈I

con Y j ⊗ conφi(h) ⊂ Y.

Since for each f ∈ Y,

Φ−1
1 ( f ) =

{
φ−1

i ( fi) if fi ∈ Y j for all j , i,
∅ if fi < Y j for some j , i,

and φ−1
i ( fi) is ρ-open in Y, Φ−1

1 ( f ) is also ρ-open in Y. Therefore, Φ−1
1 is a ρ − L∗-majorant of Φ at 1. This

shows that Φ is ρ − L∗-majorized. By Theorem 3.1 there exists a point 1̄ ∈ Y so that I(1) = ∅ and hence for
each i ∈ I, Φi(1̄) = ∅.

Next, using Lemma 3.2, we shall prove the existence of equilibrium pairs for free n-person game as follows:

Theorem 3.3. Let Γ = (X,Yi,Ai,Pi)i∈I be a free n-person game such that for each i ∈ I = {1, · · · ,n}

(1) Let X,Y be nonempty ρ-compact and convex subsets of Lρ, Xo a nonempty subset of X, Yi and Y :=
∏

j∈I Y j;

(2) Ai : X → 2Yi is a ρ-upper semi continuous correspondence such that each Ai( f ) is a nonempty ρ-closed and
convex subsets of Yi and satisfies in condition (∗) in Theorem 2.3;

(3) Pi : Y→ 2Yi is a preference correspondence which is ρ − L∗-majorized in Y;

(4) Pi(1) is nonempty for each 1 = (1i)i∈I ∈ Y with 1i ∈ Y\Ai f , wheneverAi f = {h ∈ Yi : h ∈ Ai( f ) and ‖ f −h‖ρ =
dρ(X,Yi)} is nonempty;

(5) the set Wi = {1 ∈ Y : Ai( f ) ∩ Pi(1) , ∅} is ρ-open in Y wheneverAi f is nonempty.

Then there exists an equilibrium pair ( f̄ , 1̄) = ( f̄ , (1̄i)i∈I) ∈ X × Y for Γ, i.e., for each i ∈ I , 1̄i ∈ Ai( f̄ ) and
‖ f̄ − 1̄i‖ρ = dρ(X,Yi) such that Ai( f̄ ) ∩ Pi(1̄) , ∅.

Proof. For each i ∈ I, since Ai satisfies the whole assumption of Theorem 2.3 in case 1 = idXo , there exists a
point f̄ ∈ X satisfying the system of best proximity pairs, i.e., for each i ∈ I, { f̄ } × Ai( f̄ ) ⊆ X × Yi such that
dρ( f̄ ,Ai( f̄ )) = dρ(X,Yi).
Now, we may denote the nonempty best proximity set of the correspondence Ai at f̄ simply by

Ai = {h ∈ Yi : h ∈ Ai( f̄ ) and ‖ f̄ − h‖ρ = dρ(X,Yi)}.

Then, it is easy to see that eachAi is ρ-closed and convex subset of a ρ-compact convex set Ai( f̄ ). It remains
to show that there exists a point 1 = (1i)i∈I ∈ Y such that for each i ∈ I, 1̄i ∈ Ai( f̄ ) and Ai( f̄ ) ∩ Pi(1̄) , ∅.
For each i ∈ I, we now defie a multifunction φ : Y→ 2Yi by

φi(1) :=
{

Pi(1) if 1i < Ai,
Ai( f̄ ) ∩ Pi(1) if 1i ∈ Ai,
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for each 1 = (11, · · · , 1n) ∈ Y. In order to apply Lemma 3.2 to φi for each i ∈ I, we should chek the assump-
tion (2) and (3) of Lemma 3.2. We first show that the set {1 ∈ Y : φi(1) , ∅} is ρ-open in Yfor each i ∈ I.
By assumption (5) the set Wi = {1 ∈ Y : Ai( f̄ ) ∩ Pi(1) , ∅} is ρ-open in Y. Note that the projection map
πi : Y→ Yi defined by πi(11, · · · , 1n) = 1i is ρ-open in Y. Then we have

{1 ∈ Y : φi(1) , ∅} = {1 ∈ Y \ π−1
i (Ai) : φi(1) , ∅} ∪ {1 ∈ π−1

i (Ai) : φi(1) , ∅}

= {1 ∈ Y \ π−1
i (Ai) : Pi(1) , ∅} ∪ {1 ∈ π−1

i (Ai) : Ai( f̄ ) ∩ Pi(1) , ∅}

= (Y \ π−1
i (Ai)) ∪ (Wi ∩ π

−1
i (Ai)) = (Y \ π−1

i (Ai)) ∪Wi.

Since the projection mapping πi is ρ-open andAi is ρ-compact, we have π−1
i (Ai) is ρ-closed so that the set

{1 ∈ Y : φi(1) , ∅} is ρ-open in Y by the assumption (5).
Next we shal show that φi is ρ − L∗-majorized in Y. By assumption (4), for each 1 ∈ Y with 1i < Ai,
φi(1) = Pi(1) is nonempty so that there exists a ρ−L∗-majorant ψi of φi in Y by the assumption (3). For each
1 ∈ Y with 1i ∈ Ai, φi(1) = Ai( f̄ )∩Pi(1). If Ai( f̄ )∩Pi(1) , ∅ then Pi(1) , ∅. Again by the assumption (3), there
exist a ρ−L∗-majorant ψi of Pi in Y. Since φi(1) ⊂ Pi(1) for each 1 ∈ Y with 1i ∈ Ai, ψi is also ρ−L∗-majorant
φi in Y. Therefore φi is ρ−L∗-majorized in Y for each i ∈ I and hence the whole hypotheseses of Lemma 3.2
are stisfied so that there exists a point 1̄ = (1̄i)i∈I ∈ Y such that for each i ∈ I, Φi(1̄) = ∅ for each i ∈ I. If 1̄i < Ai
for some i ∈ I then by assumption (4), φi(1̄) = Pi(1̄) is a nonempty subset of Yi, which is a contradiction.
Therefore for each i ∈ I, we must have 1̄i ∈ Ai and φi(1̄) = Ai( f̄ ) ∩ Pi(1̄) , ∅. This completed the proof.
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[2] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Nicolaus Copernicus University, Toruń, Poland, 2006.
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