Filomat 31:18 (2017), 5791–5801 https://doi.org/10.2298/FIL1718791B

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On Warped Product Gradient η -Ricci Solitons

Adara M. Blaga^a

^a Department of Mathematics, West University of Timişoara, Bld. V. Pârvan nr. 4, 300223, Timişoara, România

Abstract. If the potential vector field of an η -Ricci soliton is of gradient type, using Bochner formula, we derive from the soliton equation a nonlinear second order PDE. In a particular case of irrotational potential vector field we prove that the soliton is completely determined by *f*. We give a way to construct a gradient η -Ricci soliton on a warped product manifold and show that if the base manifold is oriented, compact and of constant scalar curvature, the soliton on the product manifold gives a lower bound for its scalar curvature.

1. Introduction

Ricci flow, introduced by R. S. Hamilton [15], deforms a Riemannian metric *g* by the evolution equation $\frac{\partial}{\partial t}g = -2S$, called the "heat equation" for Riemannian metrics, towards a canonical metric. Modeling the behavior of the Ricci flow near a singularity, *Ricci solitons* [14] have been studied in the contexts of complex, contact and paracontact geometries [2].

The more general notion of η -*Ricci soliton* was introduced by J. T. Cho and M. Kimura [10] and was treated by C. Călin and M. Crasmareanu on Hopf hypersurfaces in complex space forms [9]. We also discussed some aspects of η -Ricci solitons in paracontact [5], [6] and Lorentzian para-Sasakian geometry [4].

A particular case of soliton arises when the potential vector field is the gradient of a smooth function. The gradient vector fields play a central rôle in the Morse-Smale theory [21]. G. Y. Perelman showed that if the manifold is compact, then the Ricci soliton is gradient [17]. In [13], R. S. Hamilton conjectured that a compact gradient Ricci soliton on a manifold *M* with positive curvature operator implies that *M* is Einstein manifold. In [11], S. Deshmukh proved that a Ricci soliton of positive Ricci curvature and whose potential vector field is of Jacobi-type, is compact and therefore, a gradient Ricci soliton. Different aspects of gradient Ricci solitons were studied in various papers. In [1], N. Basu and A. Bhattacharyya treated gradient Ricci solitons in Kenmotsu manifolds having Killing potential vector field. P. Petersen and W. Wylie discussed the rigidity of gradient Ricci solitons [19] and gave a classification imposing different curvature conditions [18].

The aim of our paper is to investigate some properties of gradient η -Ricci solitons. After deducing some results derived from the Bochner formula, we construct a gradient η -Ricci soliton on a warped product manifold and for the particular case of product manifolds, we show that if the base is oriented and of constant scalar curvature, then we obtain a lower bound for the scalar curvature of the product manifold.

²⁰¹⁰ Mathematics Subject Classification. Primary 53C21, 53C44; Secondary 53C25

Keywords. gradient η -Ricci solitons, scalar curvature, Laplacian equation

Received: 04 May 2017; Accepted: 14 July 2017

Communicated by Mića Stanković

Email address: adarablaga@yahoo.com (Adara M. Blaga)

2. Bochner Formula Revisited

Let (M, g) be an *m*-dimensional Riemannian manifold and consider ξ a gradient vector field on *M*. If $\xi := grad(f)$, for *f* a smooth function on *M*, then the *g*-dual 1-form η of ξ is closed, as $\eta(X) := g(X, \xi) = df(X)$. Then $0 = (d\eta)(X, Y) := X(\eta(Y)) - Y(\eta(X)) - \eta([X, Y]) = g(\nabla_X \xi, Y) - g(\nabla_Y \xi, X)$, hence:

$$g(\nabla_X \xi, Y) = g(\nabla_Y \xi, X), \tag{1}$$

for any $X, Y \in \chi(M)$, where ∇ is the Levi-Civita connection of g.

Also:

$$div(\xi) = \Delta(f) \tag{2}$$

and

$$div(\eta) := trace(Z \mapsto \sharp((\nabla \eta)(Z, \cdot))) = \sum_{i=1}^{m} (\nabla_{E_i} \eta) E_i = \sum_{i=1}^{m} g(E_i, \nabla_{E_i} \xi) := div(\xi),$$
(3)

for $\{E_i\}_{1 \le i \le m}$ a local orthonormal frame field with $\nabla_{E_i}E_j = 0$ in a point. From now on, whenever we make a local computation, we will consider this frame.

In this case, the Bochner formula becomes:

$$\frac{1}{2}\Delta(|\xi|^2) = |\nabla\xi|^2 + S(\xi,\xi) + \xi(div(\xi)),$$
(4)

where *S* is the Ricci curvature of *g*. Indeed:

$$(div(\mathcal{L}_{\xi}g))(X) := trace(Z \mapsto \sharp((\nabla(\mathcal{L}_{\xi}g))(Z, \cdot, X))) = \sum_{i=1}^{m} (\nabla_{E_{i}}(\mathcal{L}_{\xi}g))(E_{i}, X) =$$
(5)

$$= \sum_{i=1}^{m} \{E_{i}((\mathcal{L}_{\xi}g)(E_{i},X)) - (\mathcal{L}_{\xi}g)(E_{i},\nabla_{E_{i}}X)\} = 2\sum_{i=1}^{m} g(\nabla_{E_{i}}\nabla_{X}\xi - \nabla_{\nabla_{E_{i}}X}\xi, E_{i}) :=$$

$$:= 2\sum_{i=1}^{m} g(\nabla_{E_{i},X}^{2}\xi, E_{i}) = 2\sum_{i=1}^{m} g(\nabla_{X,E_{i}}^{2}\xi + R(E_{i},X)\xi, E_{i}) :=$$

$$:= 2\sum_{i=1}^{m} g(\nabla_{X,E_{i}}^{2}\xi, E_{i}) + 2trace(Z \mapsto R(Z,X)\xi) := 2\sum_{i=1}^{m} g(\nabla_{X}\nabla_{E_{i}}\xi - \nabla_{\nabla_{X}E_{i}}\xi, E_{i}) + 2S(X,\xi) =$$

$$= 2\sum_{i=1}^{m} g(\nabla_{X}\nabla_{E_{i}}\xi, E_{i}) + 2S(X,\xi) = 2\sum_{i=1}^{m} X(g(\nabla_{E_{i}}\xi, E_{i})) + 2S(X,\xi) = 2X(div(\xi)) + 2S(X,\xi),$$

where *R* is the Riemann curvature and *S* is the Ricci curvature tensor fields of the metric *g* and the relation (5), for $X := \xi$, becomes:

$$(div(\mathcal{L}_{\xi}g))(\xi) = 2\xi(div(\xi)) + 2S(\xi,\xi).$$
(6)

But the Bochner formula states that for any vector field X [19]:

$$(div(\mathcal{L}_X g))(X) = \frac{1}{2} \Delta(|X|^2) - |\nabla X|^2 + S(X, X) + X(div(X))$$
(7)

and from (6) and (7) we deduce that:

$$\Delta(|\xi|^2) - 2|\nabla\xi|^2 = 2S(\xi,\xi) + 2\xi(div(\xi)).$$
(8)

Remark that (5) can be written in terms of (1, 1)-tensor fields:

$$div(L_{\xi}g) = 2d(div(\xi)) + 2i_{Q\xi}g, \tag{9}$$

where *Q* is the Ricci operator defined by g(QX, Y) := S(X, Y).

5793

3. Gradient η -Ricci Solitons

Consider now the equation:

$$\mathcal{L}_{\xi}g + 2S + 2\lambda g + 2\mu\eta \otimes \eta = 0, \tag{10}$$

where *g* is a Riemannian metric, *S* its Ricci curvature, η a 1-form and λ and μ are real constants. The data (g, ξ, λ, μ) which satisfy the equation (10) is said to be an η -*Ricci soliton* on *M* [10]; in particular, if $\mu = 0$, (g, ξ, λ) is a *Ricci soliton* [14]. If the potential vector field ξ is of gradient type, $\xi = grad(f)$, for *f* a smooth function on *M*, then (g, ξ, λ, μ) is called *gradient* η -*Ricci soliton*.

Proposition 3.1. Let (M, g) be a Riemannian manifold. If (10) defines a gradient η -Ricci soliton on M with the potential vector field $\xi := \operatorname{grad}(f)$ and η is the g-dual 1-form of ξ , then:

$$(\nabla_X Q)Y - (\nabla_Y Q)X = -\nabla_{X,Y}^2 \xi + \nabla_{Y,X}^2 \xi + \mu(df \otimes \nabla \xi - \nabla \xi \otimes df)(X,Y), \tag{11}$$

for any $X, Y \in \chi(M)$, where Q stands for the Ricci operator.

Proof. As g(QX, Y) := S(X, Y), follows:

$$\nabla \xi + Q + \lambda I_{\chi(M)} + \mu df \otimes \xi = 0. \tag{12}$$

Then:

$$(\nabla_X Q)Y = -(\nabla_X \nabla_Y \xi - \nabla_{\nabla_X Y} \xi) - \mu\{g(Y, \nabla_X \xi)\xi + df(Y)\nabla_X \xi\} :=:= -\nabla_{X,Y}^2 \xi - \mu\{g(Y, \nabla_X \xi)\xi + df(Y)\nabla_X \xi\}$$
(13)

and using (1) we get the required relation. \Box

Theorem 3.2. *If* (10) *defines a gradient* η *-Ricci soliton on the m-dimensional Riemannian manifold* (*M*, *g*) *and* η *is the g-dual* 1-*form of the gradient vector field* $\xi := grad(f)$ *, then:*

$$\frac{1}{2}(\Delta - \nabla_{\xi})(|\xi|^2) = |Hess(f)|^2 + \lambda |\xi|^2 + \mu |\xi|^2 \{|\xi|^2 - 2\Delta(f)\}.$$
(14)

Proof. First remark that if $\xi = \sum_{i=1}^{m} \xi^{i} E_{i}$, for $\{E_{i}\}_{1 \le i \le m}$ a local orthonormal frame field with $\nabla_{E_{i}} E_{j} = 0$ in a point, then:

$$trace(\eta \otimes \eta) = \sum_{i=1}^{m} [df(E_i)]^2 = \sum_{1 \le i, j, k \le m} \xi^j \xi^k g(E_i, E_j) g(E_i, E_k) = \sum_{i=1}^{m} (\xi^i)^2 = \sum_{1 \le i, j \le m} \xi^i \xi^j g(E_i, E_j) = |\xi|^2.$$
(15)

Taking the trace of the equation (10), we obtain:

$$div(\xi) + scal + m\lambda + \mu |\xi|^2 = 0$$
(16)

and differentiating it:

$$d(div(\xi)) + d(scal) + \mu d(|\xi|^2) = 0.$$
(17)

Then taking the divergence of the same equation, we get:

$$div(\mathcal{L}_{\xi}g) + 2div(S) + 2\mu \cdot div(df \otimes df) = 0.$$
⁽¹⁸⁾

Substracting the relations (18) and (17) computed in ξ , considering (6), (8) and using the fact that the scalar and the Ricci curvatures satisfy [19]:

$$d(scal) = 2div(S),\tag{19}$$

we obtain:

$$\frac{1}{2}\Delta(|\xi|^2) - |\nabla\xi|^2 + S(\xi,\xi) + \mu\{2(div(df \otimes df))(\xi) - \xi(|\xi|^2)\} = 0.$$
(20)

As

$$(div(df \otimes df))(\xi) := \sum_{i=1}^{m} \{E_i(df(E_i)df(\xi)) - df(E_i)df(\nabla_{E_i}\xi)\} = \sum_{i=1}^{m} \{g(E_i,\xi)g(\nabla_{E_i}\xi,\xi) + g(\xi,\xi)g(E_i,\nabla_{E_i}\xi)\} = (21)$$
$$= g(\nabla_{\xi}\xi,\xi) + |\xi|^2 \sum_{i=1}^{m} g(\nabla_{E_i}\xi,E_i) := \frac{1}{2}\xi(|\xi|^2) + |\xi|^2 div(\xi),$$

the equation (20) becomes:

$$\frac{1}{2}\Delta(|\xi|^2) - |\nabla\xi|^2 + S(\xi,\xi) + 2\mu|\xi|^2 div(\xi) = 0.$$
(22)

From the η -soliton equation (10), we get:

$$S(\xi,\xi) = -\frac{1}{2}\xi(|\xi|^2) - \lambda|\xi|^2 - \mu|\xi|^4,$$
(23)

and the equation (22) becomes:

$$\frac{1}{2}\Delta(|\xi|^2) = |\nabla\xi|^2 + \frac{1}{2}\xi(|\xi|^2) + \lambda|\xi|^2 + \mu|\xi|^4 - 2\mu|\xi|^2 div(\xi).$$
(24)
As $\xi := grad(f)$ follows $Hess(f) = \nabla(df)$ and $|\nabla\xi|^2 = |Hess(f)|^2$. \Box

Remark 3.3. For $\mu = 0$ in Theorem 3.2, we obtain the relation for the particular case of gradient Ricci soliton [19].

Remark 3.4. *i)* Assume that $\mu \neq 0$. Denoting by $\Delta_{\xi} := \Delta - \nabla_{\xi}$, the equation (14) can be written:

$$\frac{1}{2}\Delta_{\xi}(|\xi|^{2}) = |Hess(f)|^{2} + |\xi|^{2}\{\lambda + \mu[|\xi|^{2} - 2\Delta(f)]\},\$$

where $\xi := \operatorname{grad}(f)$. If $\lambda \ge \mu[2\Delta(f) - |\xi|^2]$, then $\Delta_{\xi}(|\xi|^2) \ge 0$ and from the maximum principle follows that $|\xi|^2$ is constant in a neighborhood of any local maximum. If $|\xi|$ achieve its maximum, then M is quasi-Einstein. Indeed, since Hess(f) = 0, from (10) we have $S = -\lambda g - \mu df \otimes df$. Moreover, in this case, $|\xi|^2 \{\lambda + \mu[|\xi|^2 - 2\Delta(f)] = 0$, which implies either $\xi = 0$, so M is Einstein, or $|\xi|^2 = 2\Delta(f) - \frac{\lambda}{\mu} \ge 0$. Since $\Delta(f) = -scal - m\lambda - \mu|\xi|^2$ we get $\mu(2\mu+1)|\xi|^2 = -(2\mu \cdot scal + 2m\lambda\mu + \lambda)$. If $\mu = -\frac{1}{2}$, the scalar curvature equals to $\lambda(1-m)$ and if $\mu \neq -\frac{1}{2}$, it is either locally upper (or lower) bounded by $-\frac{\lambda(1+2m\mu)}{2\mu}$, for $\mu < -\frac{1}{2}$ ($\mu > -\frac{1}{2}$, respectively). On the other hand, if the potential vector field is of constant length, then $2\mu \Delta(f) \ge \lambda + \mu |\xi|^2$ equivalent to $\mu(2\mu + 1)|\xi|^2 + (2\mu \cdot scal + 2m\lambda\mu + \lambda) \le 0$ with equality for $\Delta(f) = \frac{\lambda}{2\mu} + \frac{|\xi|^2}{2} \ge \frac{\lambda}{2\mu}$ and Hess(f) = 0 which yields the quasi-Einstein case. *ii*) For $\mu = 0$, we get the Ricci soliton case [19].

Proposition 3.5. Let (M, g) be an m-dimensional Riemannian manifold and η be the g-dual 1-form of the gradient vector field $\xi := grad(f)$. If ξ satisfies $\nabla \xi = I_{\chi(M)} - \eta \otimes \xi$, where ∇ is the Levi-Civita connection associated to g, then:

- 1. $Hess(f) = g \eta \otimes \eta;$
- 2. $R(X, Y)\xi = \eta(X)Y \eta(Y)X$, for any $X, Y \in \chi(M)$;
- 3. $S(\xi,\xi) = (1-m)|\xi|^2$.

The condition satisfied by the potential vector field ξ , namely, $\nabla \xi = I_{\chi(M)} - \eta \otimes \xi$, naturally arises if $(M, \varphi, \xi, \eta, g)$ is for example, Kenmotsu manifold [16]. In this case, *M* is a quasi-Einstein manifold.

Example 3.6. Let $M = \{(x, y, z) \in \mathbb{R}^3, z > 0\}$, where (x, y, z) are the standard coordinates in \mathbb{R}^3 . Set

$$\begin{split} \varphi &:= -\frac{\partial}{\partial y} \otimes dx + \frac{\partial}{\partial x} \otimes dy, \ \xi &:= -z\frac{\partial}{\partial z}, \ \eta &:= -\frac{1}{z}dz, \\ g &:= \frac{1}{z^2}(dx \otimes dx + dy \otimes dy + dz \otimes dz). \end{split}$$

Then (φ, ξ, η, g) *is a Kenmotsu structure on M.*

Consider the linearly independent system of vector fields:

$$E_1 := z \frac{\partial}{\partial x}, \ E_2 := z \frac{\partial}{\partial y}, \ E_3 := -z \frac{\partial}{\partial z}.$$

Follows

$$\varphi E_1 = -E_2, \ \varphi E_2 = E_1, \ \varphi E_3 = 0,$$

 $\eta(E_1) = 0, \ \eta(E_2) = 0, \ \eta(E_3) = 1,$
 $[E_1, E_2] = 0, \ [E_2, E_3] = E_2, \ [E_3, E_1] = -E_1$

and the Levi-Civita connection ∇ is deduced from Koszul's formula

$$2g(\nabla_X Y, Z) = X(g(Y, Z)) + Y(g(Z, X)) - Z(g(X, Y)) - g(X, [Y, Z]) + g(Y, [Z, X]) + g(Z, [X, Y])$$

precisely

$$\begin{aligned} \nabla_{E_1} E_1 &= -E_3, \ \nabla_{E_1} E_2 &= 0, \ \nabla_{E_1} E_3 &= E_1, \\ \nabla_{E_2} E_1 &= 0, \ \nabla_{E_2} E_2 &= -E_3, \ \nabla_{E_2} E_3 &= E_2, \\ \nabla_{E_3} E_1 &= 0, \ \nabla_{E_3} E_2 &= 0, \ \nabla_{E_3} E_3 &= 0. \end{aligned}$$

Then the Riemann and the Ricci curvature tensor fields are given by:

$$\begin{aligned} R(E_1, E_2)E_2 &= -E_1, \ R(E_1, E_3)E_3 &= -E_1, \ R(E_2, E_1)E_1 &= -E_2, \\ R(E_2, E_3)E_3 &= -E_2, \ R(E_3, E_1)E_1 &= -E_3, \ R(E_3, E_2)E_2 &= -E_3, \\ S(E_1, E_1) &= S(E_2, E_2) &= S(E_3, E_3) &= -2. \end{aligned}$$

From (10) computed in (E_i, E_i) :

$$2[g(E_i, E_i) - \eta(E_i)\eta(E_i)] + 2S(E_i, E_i) + 2\lambda g(E_i, E_i) + 2\mu \eta(E_i)\eta(E_i) = 0,$$

for all $i \in \{1, 2, 3\}$, we have:

$$2(1 - \delta_{i3}) - 4 + 2\lambda + 2\mu\delta_{i3} = 0 \iff \lambda - 1 + (\mu - 1)\delta_{i3} = 0,$$

for all $i \in \{1, 2, 3\}$. Therefore, $\lambda = \mu = 1$ define an η -Ricci soliton on $(M, \varphi, \xi, \eta, g)$. Moreover, it is a gradient η -Ricci soliton, as the potential vector field ξ is of gradient type, $\xi = grad(f)$, where $f(x, y, z) := -\ln z$.

Assume now that (10) defines a gradient η -Ricci soliton on (M, g) with $\mu \neq 0$. Under the hypotheses of the Proposition 3.5, the equation (24) simplifies a lot. Compute:

$$|\nabla\xi|^{2} := \sum_{i=1}^{m} g(\nabla_{E_{i}}\xi, \nabla_{E_{i}}\xi) = \sum_{i=1}^{m} \{1 + (|\xi|^{2} - 2)[\eta(E_{i})]^{2}\} = m + |\xi|^{2}(|\xi|^{2} - 2),$$
(25)

for $\{E_i\}_{1 \le i \le m}$ a local orthonormal frame field with $\nabla_{E_i} E_i = 0$ in a point,

$$\xi(|\xi|^2) = \xi(g(\xi,\xi)) = 2g(\nabla_{\xi}\xi,\xi) = 2(|\xi|^2 - |\xi|^4),$$
(26)

$$\xi(|\xi|^4) = 2|\xi|^2 \xi(|\xi|^2) = 4(|\xi|^4 - |\xi|^6).$$
⁽²⁷⁾

From the equation (10) we obtain:

$$S(\xi,\xi) = -(\lambda+1)|\xi|^2 - (\mu-1)|\xi|^4.$$
(28)

Using Proposition 3.5 and the relation (28), we get:

$$|\xi|^2 = (m-1-\lambda)|\xi|^2 - (\mu-1)|\xi|^4, \tag{29}$$

so $|\xi|^2(\mu - 1) = m - 2 - \lambda$ i.e. ξ is of constant length. Using (26) we get $|\xi| = 1$. It follows $\lambda + \mu = m - 1$ and we deduce:

Theorem 3.7. Under the hypotheses of the Proposition 3.5, if (10) defines a gradient η -Ricci soliton on (M, g) with $\mu \neq 0$, then the Laplacian equation (24) becomes:

$$\Delta(f) = \frac{m-1}{\mu}.\tag{30}$$

Therefore, the existence of a gradient η -Ricci soliton defined by (10) with the potential vector field $\xi := grad(f)$, yields the Laplacian equation (30), and the soliton is completely determined by f.

4. Warped Product η -Ricci Solitons

Consider (B, g_B) and (F, g_F) two Riemannian manifolds of dimensions n and m, respectively. Denote by π and σ the projection maps from the product manifold $B \times F$ to B and F and by $\tilde{\varphi} := \varphi \circ \pi$ the lift to $B \times F$ of a smooth function φ on B. In this context, we shall call B the base and F the fiber of $B \times F$, the unique element \tilde{X} of $\chi(B \times F)$ that is π -related to $X \in \chi(B)$ and to the zero vector field on F, the *horizontal lift of* X and the unique element \tilde{V} of $\chi(B \times F)$ that is σ -related to $V \in \chi(F)$ and to the zero vector field on B, the *vertical lift of* V. For simplicity, we shall simply denote by X the horizontal lift of $X \in \chi(B)$ and by V the vertical lift of $V \in \chi(F)$. Also, denote by $\mathcal{L}(B)$ the set of all horizontal lifts of vector fields on F, by \mathcal{H} the orthogonal projection of $T_{(p,q)}(B \times F)$ onto its horizontal subspace $T_{(p,q)}(B \times \{q\})$ and by V the orthogonal projection of $T_{(p,q)}(B \times F)$ onto its vertical subspace $T_{(p,q)}(\{p\} \times F)$.

Let $\varphi > 0$ be a smooth function on *B* and

$$g := \pi^* g_B + (\varphi \circ \pi)^2 \sigma^* g_F \tag{31}$$

be a Riemannian metric on $B \times F$.

Definition 4.1. [3] The product manifold of B and F together with the Riemannian metric g defined by (31) is called the warped product of B and F by the warping function φ (and is denoted by $(M := B \times_{\varphi} F, g)$).

If φ is constant equal to 1, the warped product becomes the usual product of the Riemannian manifolds.

Due to a result of J. Case, Y.-J. Shu and G. Wei [7], we know that for a gradient η -Ricci soliton $(g, \xi := grad(f), \lambda, \mu)$ with $\mu \in (-\infty, 0)$ and $\eta = df$ the *g*-dual of ξ , on a connected *n*-dimensional Riemannian manifold $(M, g), e^{2\mu f} [\Delta(f) - |\xi|^2 - \frac{\lambda}{\mu}]$ is constant. Choosing properly an Einstein manifold, a smooth function and considering the warped product manifold, we can characterize the gradient η -Ricci soliton on the base manifold as follows [7]. Let (B, g_B) be an *n*-dimensional connected Riemannian manifold, λ and μ real constants such that $-\frac{1}{\mu}$ is a natural number, *f* a smooth function on *B*, $k := \mu e^{2\mu f} [\Delta(f) - |\xi|^2 - \frac{\lambda}{\mu}]$ and (F, g_F) an *m*-dimensional Riemannian manifold with $m = -\frac{1}{\mu}$ and $S_F = kg_F$. Then $(g, \xi := grad(f), \lambda, \mu)$ is a gradient η -Ricci soliton on (B, g_B) with $\eta = df$ the *g*-dual of ξ , if and only if the warped product manifold $(M := B \times_{\varphi} F, g)$ with the warping function $\varphi = e^{-\frac{f}{m}}$ is Einstein manifold with $S = \lambda g$.

Let *S*, *S*_{*B*}, *S*_{*F*} the Ricci tensors on *M*, *B* and *F* and \widetilde{S}_B , \widetilde{S}_F the lift on *M* of *S*_{*B*} and *S*_{*F*}, which satisfy:

Lemma 4.2. [3] If $(M := B \times_{\varphi} F, g)$ is the warped product of B and F by the warping function φ and m > 1, then for any X, $Y \in \mathcal{L}(B)$ and any V, $W \in \mathcal{L}(F)$, we have:

- 1. $S(X, Y) = S_B(X, Y) \frac{m}{\overline{\omega}} H^{\varphi}(X, Y)$, where H^{φ} is the lift on M of Hess(φ);
- 2. S(X, V) = 0;
- 3. $S(V,W) = \widetilde{S}_F(V,W) \pi^* [\frac{\Delta(\varphi)}{\varphi} + (m-1)\frac{|grad(\varphi)|^2}{\varphi^2}]|_F g(V,W).$

Notice that the lift on *M* of the gradient and the Hessian of any smooth function *f* on *B* satisfy:

$$grad(f) = grad(f),$$

$$(Hess(\widetilde{f}))(X, Y) = (Hess(\widetilde{f}))(X, Y), \text{ for any } X, Y \in \mathcal{L}(B).$$
(32)
(33)

We shall construct a gradient
$$\eta$$
-Ricci soliton on a warped product manifold following [12].

Let (B, q_B) be a Riemannian manifold, $\varphi > 0$ and f two smooth functions on B such that:

$$S_B + Hess(f) - \frac{m}{\varphi} Hess(\varphi) + \lambda g_B + \mu df \otimes df = 0,$$
(34)

where λ , μ and m > 1 are real constants.

Take (F, g_F) an *m*-dimensional manifold with $S_F = kg_F$, for $k := \pi^* [-\lambda \varphi^2 + \varphi \Delta(\varphi) + (m-1)|grad(\varphi)|^2 - \varphi(grad(f))(\varphi)]|_F$, where π and σ be the projection maps from the product manifold $B \times F$ to B and F, respectively, and $g := \pi^* g_B + (\varphi \circ \pi)^2 \sigma^* g_F$ a Riemannian metric on $B \times F$. Then, for $\xi := grad(f \circ \pi)$, if consider $\mu = 0$ in (34), (g, ξ, λ) is a gradient Ricci soliton on $B \times_{\varphi} F$ called the *warped product Ricci soliton* [12].

With the above notations, we prove that:

Theorem 4.3. Let (B, g_B) be a Riemannian manifold, $\varphi > 0$, f two smooth functions on B, let m > 1, λ , μ be real constants satisfying (34) and (F, g_F) an m-dimensional Riemannian manifold. Then (g, ξ, λ, μ) is a gradient η -Ricci soliton on the warped product manifold $(B \times_{\varphi} F, g)$, where $\xi = grad(\widetilde{f})$ and the 1-form η is the g-dual of ξ , if and only if:

$$S_B = -Hess(f) + \frac{m}{\varphi}Hess(\varphi) - \lambda g_B - \mu df \otimes df$$
(35)

and

$$S_F = kg_F, ag{36}$$

where $k := \pi^* [-\lambda \varphi^2 + \varphi \Delta(\varphi) + (m-1)|grad(\varphi)|^2 - \varphi(grad(f))(\varphi)]|_F.$

Proof. The gradient η -Ricci soliton (g, ξ, λ, μ) on $(B \times_{\varphi} F, g)$ is given by:

$$Hess(f) + S + \lambda g + \mu \eta \otimes \eta = 0. \tag{37}$$

Then for any $X, Y \in \mathcal{L}(B)$ and for any $V, W \in \mathcal{L}(F)$, from Lemma 4.2 we get:

$$H^{f}(X,Y) + \widetilde{S}_{B}(X,Y) - \frac{m}{\widetilde{\varphi}}H^{\varphi}(X,Y) + \lambda g_{B}(X,Y) + \mu df(X)df(Y) = 0$$

$$H^{f}(V,W) + \widetilde{S}_{F}(V,W) - \pi^{*}[\varphi\Delta(\varphi) + (m-1)|grad(\varphi)|^{2} - \lambda\varphi^{2}]|_{F}g(V,W) = 0$$

and using the fact that

$$H^{f}(V,W) = (Hess(\widetilde{f}))(V,W) = g(\nabla_{V}(grad(\widetilde{f})),W) = \pi^{*}[\frac{(grad(f))(\varphi)}{\varphi}]|_{F}\widetilde{\varphi}^{2}g_{F}(V,W),$$

we obtain:

$$S_F(V,W) = \pi^* [\varphi \Delta(\varphi) + (m-1)|grad(\varphi)|^2 - \varphi(grad(f))(\varphi) - \lambda \varphi^2]|_F g_F(V,W).$$

Conversely, notice that the left-hand side term in (37) computed in (*X*, *V*), for $X \in \mathcal{L}(B)$ and $V \in \mathcal{L}(F)$ vanishes identically and using again Lemma 4.2, for each situation (*X*, *Y*) and (*V*, *W*), we can recover the equation (37) from (35) and (36). \Box

5798

Remark 4.4. In the case of product manifold (for $\varphi = 1$), notice that the equation (34) defines a gradient η -Ricci soliton on B and the chosen manifold (F, g_F) is Einstein (S_F = $-\lambda g_F$), so a gradient η -Ricci soliton on the product manifold B × F can be naturally obtained by "lifting" a gradient η -Ricci soliton on B.

Remark 4.5. If for the function φ and f on B there exists two constants a and b such that $\nabla(grad(\varphi)) = \varphi[aI_{\chi(B)} + bdf \otimes grad(f)]$, then $Hess(\varphi) = \varphi(ag_B + bdf \otimes df)$ and $(g_B, grad(f), \lambda - ma, \mu - mb)$ is a gradient η -Ricci soliton on B.

Let us make some remark on the class of manifolds that satisfy the condition (34):

$$S_B + Hess(f) - \frac{m}{\varphi} Hess(\varphi) + \lambda g_B + \mu df \otimes df = 0,$$
(38)

for $\varphi > 0$, f smooth functions on the oriented and compact Riemannian manifold (B, g_B) , λ , μ and m > 1 real constants. Denote by $\xi := grad(f)$.

Taking the trace of (38), we obtain:

$$scal_B + \Delta(f) - m\frac{\Delta(\varphi)}{\varphi} + n\lambda + \mu|\xi|^2 = 0.$$
(39)

Remark that:

$$|Hess(f) - \frac{\Delta(f)}{n}g_B|^2 := \sum_{1 \le i,j \le n} [Hess(f)(E_i, E_j) - \frac{\Delta(f)}{n}g_B(E_i, E_j)]^2 =$$

$$= |Hess(f)|^2 - 2\frac{\Delta(f)}{n}\sum_{i=1}^n g_B(\nabla_{E_i}\xi, E_i) + \frac{(\Delta(f))^2}{n} = |Hess(f)|^2 - \frac{(\Delta(f))^2}{n}.$$
(40)

Also:

$$(div(Hess(f)))(\xi) := \sum_{i=1}^{n} (\nabla_{E_i}(Hess(f)))(E_i, \xi) = \sum_{i=1}^{n} [E_i(Hess(f)(E_i, \xi)) - Hess(f)(E_i, \nabla_{E_i}\xi)] =$$
$$= \sum_{i=1}^{n} E_i(g_B(\nabla_{E_i}\xi, \xi)) - \sum_{i=1}^{n} g_B(\nabla_{E_i}\xi, \nabla_{E_i}\xi) = \sum_{i=1}^{n} g_B(\nabla_{E_i}\nabla_{\xi}\xi, E_i) - |\nabla\xi|^2 := div(\nabla_{\xi}\xi) - |Hess(f)|^2$$

and

$$div(\nabla_{\xi}\xi) := \sum_{i=1}^{n} g_{B}(\nabla_{E_{i}}\nabla_{\xi}\xi, E_{i}) = \sum_{i=1}^{n} E_{i}(g_{B}(\nabla_{\xi}\xi, E_{i})) = \sum_{i=1}^{n} E_{i}(Hess(f)(\xi, E_{i})) = \sum_{i=1}^{n} (\nabla_{E_{i}}(Hess(f)(\xi)))E_{i} := div(Hess(f)(\xi)),$$

therefore:

$$(div(Hess(f)))(\xi) = div(Hess(f)(\xi)) - |Hess(f)|^2.$$
(41)

Applying the divergence to (38), computing it in ξ and considering (21), we get:

$$(div(Hess(f)))(\xi) = -(div(S_B))(\xi) + m(div(\frac{Hess(\varphi)}{\varphi}))(\xi) - \mu(\frac{1}{2}d(|\xi|^2) + \Delta(f)df)(\xi) =$$
(42)

$$= -\frac{d(scal_B)(\xi)}{2} + \frac{m}{\varphi}(div(Hess(\varphi)))(\xi) - \frac{m}{\varphi^2}Hess(\varphi)(grad(\varphi),\xi) - \mu[\frac{1}{2}d(|\xi|^2)(\xi) + \Delta(f)|\xi|^2] = -\frac{d(scal_B)(\xi)}{2} + m \cdot div(Hess(\varphi)(\frac{\xi}{\varphi})) - \frac{m}{\varphi}\langle Hess(f), Hess(\varphi) \rangle - \mu[\frac{1}{2}d(|\xi|^2)(\xi) + \Delta(f)|\xi|^2].$$

From (39), (40), (41) and (42), we obtain:

$$div(Hess(f)(\xi)) = |Hess(f) - \frac{\Delta(f)}{n}g_B|^2 - \frac{scal_B}{n}\Delta(f) + \frac{m}{n}\frac{\Delta(\varphi)}{\varphi}\Delta(f) - div(\lambda\xi) - (43)$$
$$-\frac{d(scal_B)(\xi)}{2} + m \cdot div(Hess(\varphi)(\frac{\xi}{\varphi})) - \frac{m}{\varphi}\langle Hess(f), Hess(\varphi) \rangle - \frac{\mu}{2}d(|\xi|^2)(\xi) - \frac{n+1}{n}\mu|\xi|^2\Delta(f).$$

Integrating with respect to the canonical measure on *B*, we have:

$$\int_{B} d(scal_{B})(\xi) = \int_{B} \langle grad(scal_{B}), \xi \rangle = -\int_{B} \langle scal_{B}, div(\xi) \rangle = -\int_{B} scal_{B} \cdot \Delta(f)$$

and similarly:

$$\int_{B} d(|\xi|^{2})(\xi) = \int_{B} \langle grad(|\xi|^{2}), \xi \rangle = - \int_{B} \langle |\xi|^{2}, div(\xi) \rangle = - \int_{B} |\xi|^{2} \cdot \Delta(f).$$

Using:

$$|\xi|^2 \cdot div(\xi) = div(|\xi|^2\xi) - |\xi|^2$$

and integrating (43) on *B*, from the above relations and the divergence theorem, we obtain:

$$\frac{n-2}{2n} \int_{B} \langle grad(scal_{B}), \xi \rangle = \int_{B} |Hess(f) - \frac{\Delta(f)}{n} g_{B}|^{2} - m \int_{B} \frac{1}{\varphi} \langle Hess(f), Hess(\varphi) \rangle + + \frac{m}{n} \int_{B} \frac{\Delta(\varphi)}{\varphi} \Delta(f) + \frac{n+2}{2n} \mu \int_{B} |\xi|^{2}.$$

$$(44)$$

Proposition 4.6. Let (B, g_B) be an oriented and compact Riemannian manifold, f a smooth function on B, let m > 1, λ , μ be real constants satisfying (34) (for $\varphi = 1$) and (F, g_F) be an m-dimensional Einstein manifold with $S_F = -\lambda g_F$. If (q, ξ, λ, μ) is a gradient η -Ricci soliton on the product manifold $(B \times F, q)$, where $\xi = qrad(f)$ and the 1-form η is *the g-dual of* ξ *, then:*

$$\frac{n-2}{2n}\int_{B}\langle grad(scal_{B}),\xi\rangle = \int_{B}|Hess(f) - \frac{\Delta(f)}{n}g_{B}|^{2} + \frac{n+2}{2n}\mu\int_{B}|\xi|^{2}.$$
(45)

Let now consider the product manifold $B \times F$, in which case (39) (for $\varphi = 1$) becomes:

$$scal_B + \Delta(f) + n\lambda + \mu|\xi|^2 = 0 \tag{46}$$

and integrating it on *B*, we get:

$$\mu \int_{B} |\xi|^{2} = -\int_{B} scal_{B} - n\lambda \cdot vol(B).$$
(47)

Replacing it in (45), we obtain:

$$\frac{n-2}{2n}\int_{B}\langle grad(scal_{B}),\xi\rangle + \frac{n+2}{2n}\int_{B}scal_{B} = \int_{B}|Hess(f) - \frac{\Delta(f)}{n}g_{B}|^{2} - \frac{n+2}{2}\lambda \cdot vol(B).$$

$$\tag{48}$$

Proposition 4.7. Let (B, q_B) be an oriented, compact and complete n-dimensional (n > 1) Riemannian manifold of constant scalar curvature, $\varphi > 0$, f two smooth functions on B, let m > 1, λ , μ be real constants satisfying (38). If one of the following two conditions hold:

- 1. $\varphi = 1$ and $\lambda = -\frac{scal_B}{n}$; 2. there exists a positive function h on B such that $Hess(f) = -h \cdot Hess(\varphi)$ and $\mu \ge 0$,

then B is conformal to a sphere in the (n + 1)-dimensional Euclidean space.

Proof. 1. From (48) we obtain:

$$\int_{B} |Hess(f) - \frac{\Delta(f)}{n} g_{B}|^{2} = \frac{n+2}{2} (\frac{scal_{B}}{n} + \lambda) \mu \cdot vol(B),$$

so $Hess(f) = \frac{\Delta(f)}{n}g_B$ which implies by [22] that *B* is conformal to a sphere in the (n + 1)-dimensional Euclidean space.

2. From the condition $Hess(f) = -h \cdot Hess(\varphi)$ we obtain $\Delta(f) = -h\Delta(\varphi)$ and replacing them in (44), we get:

$$\int_{B} |Hess(f) - \frac{\Delta(f)}{n} g_{B}|^{2} + \frac{n+2}{2n} \mu \int_{B} |\xi|^{2} = 0.$$

From $\mu \ge 0$ we deduce that $Hess(f) = \frac{\Delta(f)}{n}g_B$ and according to [22], we get the conclusion.

Finally, we state a result on the scalar curvature of a product manifold admitting an η -Ricci soliton:

Proposition 4.8. Let (B, g_B) be an oriented and compact Riemannian manifold of constant scalar curvature, f a smooth function on B, let m > 1, λ , μ be real constants satisfying (34) (for $\varphi = 1$) and (F, g_F) be an m-dimensional Einstein manifold with $S_F = -\lambda g_F$. If (g, ξ, λ, μ) is a gradient η -Ricci soliton on the product manifold $(B \times F, g)$, where $\xi = \operatorname{grad}(\widetilde{f})$ and the 1-form η is the g-dual of ξ , then the scalar curvature of $B \times F$ is $\geq -(n + m)\lambda$.

Proof. From (48) we deduce that $\frac{n+2}{2}(\frac{scal_B}{n} + \lambda) \cdot vol(B) = \int_B |Hess(f) - \frac{\Delta(f)}{n}g_B|^2 \ge 0$ and since $scal_F = -m\lambda$, we get the conclusion. \Box

We end these considerations by giving an example of gradient η -Ricci soliton on a product manifold.

Example 4.9. Let $(g_M, \xi_M, 1, 1)$ be the gradient η -Ricci soliton on the Riemannian manifold $M = \{(x, y, z) \in \mathbb{R}^3, z > 0\}$, where (x, y, z) are the standard coordinates in \mathbb{R}^3 , with the metric $g_M := \frac{1}{z^2}(dx \otimes dx + dy \otimes dy + dz \otimes dz)$ (given by Example 3.6) and let S^3 be the 3-sphere with the round metric g_S (which is Einstein with the Ricci tensor equals to $2g_S$). By Remark 4.4 we obtain the gradient η -Ricci soliton $(g, \xi, 1, 1)$ on the "generalized cylinder" $M \times S^3$, where $g = g_M + g_S$ and ξ is the lift on $M \times S^3$ of the gradient vector field $\xi_M = \operatorname{grad}(f)$, where $f(x, y, z) := -\ln z$.

References

- [1] N. Basu, A. Bhattacharyya, Gradient Ricci solitons in Kenmotsu manifold, IORS-JM 10, no. 5 (2014), 32-36.
- [2] C. L. Bejan, M. Crasmareanu, Second order parallel tensors and Ricci solitons in 3-dimensional normal paracontact geometry, Ann. Global Anal. Geom. 46 (2014), 117–127.
- [3] R. L. Bishop, B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1–49.
- [4] A. M. Blaga, η-Ricci solitons on Lorentzian para-Sasakian manifolds, Filomat 30, no. 2 (2016), 489–496.
- [5] A. M. Blaga, η -Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl. 20, no. 1 (2015), 1–13.
- [6] A. M. Blaga, M. C. Crasmareanu, Torse-forming η-Ricci solitons in almost paracontact η-Einstein geometry, Filomat 31, no. 2 (2017), 499–504.
- [7] J. Case, Y.-J. Shu, G. Wei, Rigidity of quasi-Einstein metrics, Differential Geom. Appl. 29 (2011), 93–100.
- [8] G. Catino, L. Mazzieri, Gradient Einstein solitons, Nonlinear Anal. 132 (2016), 66–94.
- [9] C. Călin, M. Crasmareanu, Eta-Ricci solitons on Hopf hypersurfaces in complex space forms, Rev. Roumaine Math. Pures Appl. 57, no. 1 (2012), 55–63.
- [10] J. T. Cho, M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J. 61, no. 2 (2009), 205–212.
- [11] S. Deshmukh, Jacobi-type vector fields on Ricci solitons, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 55 (103), no. 1 (2012), 41–50.
 [12] F. E. S. Feitosa, A. A. Freitas, J. N. V. Gomes, On the construction of gradient Ricci soliton warped product, arxiv:math.DG/1506.00342v3.2015.
- [13] R. S. Hamilton, The formation of singularities in the Ricci flow, In Surveys in Differential Geometry, vol. II (Cambridge, MA, 1993), Int. Press, Cambridge, MA (1995), 7–136.
- [14] R. S. Hamilton, The Ricci flow on surfaces, Math. and general relativity (Santa Cruz, CA, 1986), 237–262, Contemp. Math. 71 (1988), AMS.
- [15] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17, no. 2 (1982), 255–306.
- [16] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. 24 (1972), 93–103.

- [17] G. Y. Perelman, The entropy formula for the Ricci flow and its geometric applications, arxiv:math.DG/0211159.
 [18] P. Petersen, W. Wylie, On the classification of gradient Ricci solitons, Geom. Topol. 14 (2010), 2277–2300.
 [19] P. Petersen, W. Wylie, Rigidity of gradient Ricci solitons, Pacific J. Math. 241, no. 2 (2009), 329–345.

- [17] F. Fetersell, W. Wylic, Rightly of gradient Ricer solutions, Fachie J. Math. 241, 16, 2 (2007), 52–543.
 [20] R. Ponge, H. Reckziegel, Twisted products in pseudo-Riemannian geometry, Geom. Dedicata 48 (1993), 15–25.
 [21] S. Smale, On gradient dynamical systems, Ann. of Math. 2, 74 (1961), 199–206.
 [22] K. Yano, M. Obata, Conformal changes of Riemannian metrics, J. Differential Geom. 4 (1970), 53–72.