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Abstract. If the potential vector field of an η-Ricci soliton is of gradient type, using Bochner formula, we
derive from the soliton equation a nonlinear second order PDE. In a particular case of irrotational potential
vector field we prove that the soliton is completely determined by f . We give a way to construct a gradient
η-Ricci soliton on a warped product manifold and show that if the base manifold is oriented, compact and of
constant scalar curvature, the soliton on the product manifold gives a lower bound for its scalar curvature.

1. Introduction

Ricci flow, introduced by R. S. Hamilton [15], deforms a Riemannian metric 1 by the evolution equation
∂
∂t1 = −2S, called the ”heat equation” for Riemannian metrics, towards a canonical metric. Modeling the
behavior of the Ricci flow near a singularity, Ricci solitons [14] have been studied in the contexts of complex,
contact and paracontact geometries [2].

The more general notion of η-Ricci soliton was introduced by J. T. Cho and M. Kimura [10] and was
treated by C. Călin and M. Crasmareanu on Hopf hypersurfaces in complex space forms [9]. We also
discussed some aspects of η-Ricci solitons in paracontact [5], [6] and Lorentzian para-Sasakian geometry
[4].

A particular case of soliton arises when the potential vector field is the gradient of a smooth function.
The gradient vector fields play a central rôle in the Morse-Smale theory [21]. G. Y. Perelman showed that
if the manifold is compact, then the Ricci soliton is gradient [17]. In [13], R. S. Hamilton conjectured that a
compact gradient Ricci soliton on a manifold M with positive curvature operator implies that M is Einstein
manifold. In [11], S. Deshmukh proved that a Ricci soliton of positive Ricci curvature and whose potential
vector field is of Jacobi-type, is compact and therefore, a gradient Ricci soliton. Different aspects of gradient
Ricci solitons were studied in various papers. In [1], N. Basu and A. Bhattacharyya treated gradient Ricci
solitons in Kenmotsu manifolds having Killing potential vector field. P. Petersen and W. Wylie discussed
the rigidity of gradient Ricci solitons [19] and gave a classification imposing different curvature conditions
[18].

The aim of our paper is to investigate some properties of gradient η-Ricci solitons. After deducing some
results derived from the Bochner formula, we construct a gradient η-Ricci soliton on a warped product
manifold and for the particular case of product manifolds, we show that if the base is oriented and of
constant scalar curvature, then we obtain a lower bound for the scalar curvature of the product manifold.
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2. Bochner Formula Revisited

Let (M, 1) be an m-dimensional Riemannian manifold and consider ξ a gradient vector field on M. If
ξ := 1rad( f ), for f a smooth function on M, then the 1-dual 1-form η of ξ is closed, as η(X) := 1(X, ξ) = d f (X).
Then 0 = (dη)(X,Y) := X(η(Y)) − Y(η(X)) − η([X,Y]) = 1(∇Xξ,Y) − 1(∇Yξ,X), hence:

1(∇Xξ,Y) = 1(∇Yξ,X), (1)

for any X, Y ∈ χ(M), where ∇ is the Levi-Civita connection of 1.
Also:

div(ξ) = ∆( f ) (2)

and

div(η) := trace(Z 7→ ]((∇η)(Z, ·))) =

m∑
i=1

(∇Eiη)Ei =

m∑
i=1

1(Ei,∇Eiξ) := div(ξ), (3)

for {Ei}1≤i≤m a local orthonormal frame field with ∇Ei E j = 0 in a point. From now on, whenever we make a
local computation, we will consider this frame.

In this case, the Bochner formula becomes:

1
2

∆(|ξ|2) = |∇ξ|2 + S(ξ, ξ) + ξ(div(ξ)), (4)

where S is the Ricci curvature of 1. Indeed:

(div(Lξ1))(X) := trace(Z 7→ ]((∇(Lξ1))(Z, ·,X))) =

m∑
i=1

(∇Ei (Lξ1))(Ei,X) = (5)

=

m∑
i=1

{Ei((Lξ1)(Ei,X)) − (Lξ1)(Ei,∇Ei X)} = 2
m∑

i=1

1(∇Ei∇Xξ − ∇∇Ei Xξ,Ei) :=

:= 2
m∑

i=1

1(∇2
Ei,Xξ,Ei) = 2

m∑
i=1

1(∇2
X,Ei
ξ + R(Ei,X)ξ,Ei) :=

:= 2
m∑

i=1

1(∇2
X,Ei
ξ,Ei) + 2trace(Z 7→ R(Z,X)ξ) := 2

m∑
i=1

1(∇X∇Eiξ − ∇∇XEiξ,Ei) + 2S(X, ξ) =

= 2
m∑

i=1

1(∇X∇Eiξ,Ei) + 2S(X, ξ) = 2
m∑

i=1

X(1(∇Eiξ,Ei)) + 2S(X, ξ) = 2X(div(ξ)) + 2S(X, ξ),

where R is the Riemann curvature and S is the Ricci curvature tensor fields of the metric 1 and the relation
(5), for X := ξ, becomes:

(div(Lξ1))(ξ) = 2ξ(div(ξ)) + 2S(ξ, ξ). (6)

But the Bochner formula states that for any vector field X [19]:

(div(LX1))(X) =
1
2

∆(|X|2) − |∇X|2 + S(X,X) + X(div(X)) (7)

and from (6) and (7) we deduce that:

∆(|ξ|2) − 2|∇ξ|2 = 2S(ξ, ξ) + 2ξ(div(ξ)). (8)

Remark that (5) can be written in terms of (1, 1)-tensor fields:

div(Lξ1) = 2d(div(ξ)) + 2iQξ1, (9)

where Q is the Ricci operator defined by 1(QX,Y) := S(X,Y).
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3. Gradient η-Ricci Solitons

Consider now the equation:

Lξ1 + 2S + 2λ1 + 2µη ⊗ η = 0, (10)

where 1 is a Riemannian metric, S its Ricci curvature, η a 1-form and λ and µ are real constants. The data
(1, ξ, λ, µ) which satisfy the equation (10) is said to be an η-Ricci soliton on M [10]; in particular, if µ = 0,
(1, ξ, λ) is a Ricci soliton [14]. If the potential vector field ξ is of gradient type, ξ = 1rad( f ), for f a smooth
function on M, then (1, ξ, λ, µ) is called gradient η-Ricci soliton.

Proposition 3.1. Let (M, 1) be a Riemannian manifold. If (10) defines a gradient η-Ricci soliton on M with the
potential vector field ξ := 1rad( f ) and η is the 1-dual 1-form of ξ, then:

(∇XQ)Y − (∇YQ)X = −∇2
X,Yξ + ∇2

Y,Xξ + µ(d f ⊗ ∇ξ − ∇ξ ⊗ d f )(X,Y), (11)

for any X, Y ∈ χ(M), where Q stands for the Ricci operator.

Proof. As 1(QX,Y) := S(X,Y), follows:

∇ξ + Q + λIχ(M) + µd f ⊗ ξ = 0. (12)

Then:

(∇XQ)Y = −(∇X∇Yξ − ∇∇XYξ) − µ{1(Y,∇Xξ)ξ + d f (Y)∇Xξ} :=:= −∇2
X,Yξ − µ{1(Y,∇Xξ)ξ + d f (Y)∇Xξ} (13)

and using (1) we get the required relation.

Theorem 3.2. If (10) defines a gradient η-Ricci soliton on the m-dimensional Riemannian manifold (M, 1) and η is
the 1-dual 1-form of the gradient vector field ξ := 1rad( f ), then:

1
2

(∆ − ∇ξ)(|ξ|2) = |Hess( f )|2 + λ|ξ|2 + µ|ξ|2{|ξ|2 − 2∆( f )}. (14)

Proof. First remark that if ξ =
∑m

i=1 ξ
iEi, for {Ei}1≤i≤m a local orthonormal frame field with ∇Ei E j = 0 in a

point, then:

trace(η ⊗ η) =

m∑
i=1

[d f (Ei)]2 =
∑

1≤i, j,k≤m

ξ jξk1(Ei,E j)1(Ei,Ek) =

m∑
i=1

(ξi)2 ==
∑

1≤i, j≤m ξ
iξ j1(Ei,E j) = |ξ|2. (15)

Taking the trace of the equation (10), we obtain:

div(ξ) + scal + mλ + µ|ξ|2 = 0 (16)

and differentiating it:

d(div(ξ)) + d(scal) + µd(|ξ|2) = 0. (17)

Then taking the divergence of the same equation, we get:

div(Lξ1) + 2div(S) + 2µ · div(d f ⊗ d f ) = 0. (18)

Substracting the relations (18) and (17) computed in ξ, considering (6), (8) and using the fact that the
scalar and the Ricci curvatures satisfy [19]:

d(scal) = 2div(S), (19)
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we obtain:

1
2

∆(|ξ|2) − |∇ξ|2 + S(ξ, ξ) + µ{2(div(d f ⊗ d f ))(ξ) − ξ(|ξ|2)} = 0. (20)

As

(div(d f ⊗d f ))(ξ) :=
m∑

i=1

{Ei(d f (Ei)d f (ξ))−d f (Ei)d f (∇Eiξ)} =
m∑

i=1

{1(Ei, ξ)1(∇Eiξ, ξ)+1(ξ, ξ)1(Ei,∇Eiξ)} = (21)

= 1(∇ξξ, ξ) + |ξ|2
m∑

i=1

1(∇Eiξ,Ei) :=
1
2
ξ(|ξ|2) + |ξ|2div(ξ),

the equation (20) becomes:

1
2

∆(|ξ|2) − |∇ξ|2 + S(ξ, ξ) + 2µ|ξ|2div(ξ) = 0. (22)

From the η-soliton equation (10), we get:

S(ξ, ξ) = −
1
2
ξ(|ξ|2) − λ|ξ|2 − µ|ξ|4, (23)

and the equation (22) becomes:

1
2

∆(|ξ|2) = |∇ξ|2 +
1
2
ξ(|ξ|2) + λ|ξ|2 + µ|ξ|4 − 2µ|ξ|2div(ξ). (24)

As ξ := 1rad( f ) follows Hess( f ) = ∇(d f ) and |∇ξ|2 = |Hess( f )|2.

Remark 3.3. For µ = 0 in Theorem 3.2, we obtain the relation for the particular case of gradient Ricci soliton [19].

Remark 3.4. i) Assume that µ , 0. Denoting by ∆ξ := ∆ − ∇ξ, the equation (14) can be written:

1
2

∆ξ(|ξ|2) = |Hess( f )|2 + |ξ|2{λ + µ[|ξ|2 − 2∆( f )]},

where ξ := 1rad( f ). If λ ≥ µ[2∆( f ) − |ξ|2], then ∆ξ(|ξ|2) ≥ 0 and from the maximum principle follows that |ξ|2 is
constant in a neighborhood of any local maximum. If |ξ| achieve its maximum, then M is quasi-Einstein. Indeed,
since Hess( f ) = 0, from (10) we have S = −λ1 − µd f ⊗ d f . Moreover, in this case, |ξ|2{λ + µ[|ξ|2 − 2∆( f )] = 0,
which implies either ξ = 0, so M is Einstein, or |ξ|2 = 2∆( f ) − λ

µ ≥ 0. Since ∆( f ) = −scal − mλ − µ|ξ|2 we get
µ(2µ+ 1)|ξ|2 = −(2µ · scal + 2mλµ+λ). If µ = − 1

2 , the scalar curvature equals to λ(1−m) and if µ , − 1
2 , it is either

locally upper (or lower) bounded by −λ(1+2mµ)
2µ , for µ < − 1

2 (µ > − 1
2 , respectively). On the other hand, if the potential

vector field is of constant length, then 2µ∆( f ) ≥ λ + µ|ξ|2 equivalent to µ(2µ + 1)|ξ|2 + (2µ · scal + 2mλµ + λ) ≤ 0
with equality for ∆( f ) = λ

2µ + |ξ|2

2 ≥
λ
2µ and Hess( f ) = 0 which yields the quasi-Einstein case.

ii) For µ = 0, we get the Ricci soliton case [19].

Proposition 3.5. Let (M, 1) be an m-dimensional Riemannian manifold and η be the 1-dual 1-form of the gradient
vector field ξ := 1rad( f ). If ξ satisfies ∇ξ = Iχ(M) − η⊗ ξ, where ∇ is the Levi-Civita connection associated to 1, then:

1. Hess( f ) = 1 − η ⊗ η;
2. R(X,Y)ξ = η(X)Y − η(Y)X, for any X, Y ∈ χ(M);
3. S(ξ, ξ) = (1 −m)|ξ|2.

The condition satisfied by the potential vector field ξ, namely, ∇ξ = Iχ(M) − η ⊗ ξ, naturally arises if
(M, ϕ, ξ, η, 1) is for example, Kenmotsu manifold [16]. In this case, M is a quasi-Einstein manifold.
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Example 3.6. Let M = {(x, y, z) ∈ R3, z > 0}, where (x, y, z) are the standard coordinates in R3. Set

ϕ := −
∂
∂y
⊗ dx +

∂
∂x
⊗ dy, ξ := −z

∂
∂z
, η := −

1
z

dz,

1 :=
1
z2 (dx ⊗ dx + dy ⊗ dy + dz ⊗ dz).

Then (ϕ, ξ, η, 1) is a Kenmotsu structure on M.
Consider the linearly independent system of vector fields:

E1 := z
∂
∂x
, E2 := z

∂
∂y
, E3 := −z

∂
∂z
.

Follows
ϕE1 = −E2, ϕE2 = E1, ϕE3 = 0,

η(E1) = 0, η(E2) = 0, η(E3) = 1,

[E1,E2] = 0, [E2,E3] = E2, [E3,E1] = −E1

and the Levi-Civita connection ∇ is deduced from Koszul’s formula

21(∇XY,Z) = X(1(Y,Z)) + Y(1(Z,X)) − Z(1(X,Y)) − 1(X, [Y,Z]) + 1(Y, [Z,X]) + 1(Z, [X,Y]),

precisely
∇E1 E1 = −E3, ∇E1 E2 = 0, ∇E1 E3 = E1,

∇E2 E1 = 0, ∇E2 E2 = −E3, ∇E2 E3 = E2,

∇E3 E1 = 0, ∇E3 E2 = 0, ∇E3 E3 = 0.

Then the Riemann and the Ricci curvature tensor fields are given by:

R(E1,E2)E2 = −E1, R(E1,E3)E3 = −E1, R(E2,E1)E1 = −E2,

R(E2,E3)E3 = −E2, R(E3,E1)E1 = −E3, R(E3,E2)E2 = −E3,

S(E1,E1) = S(E2,E2) = S(E3,E3) = −2.

From (10) computed in (Ei,Ei):

2[1(Ei,Ei) − η(Ei)η(Ei)] + 2S(Ei,Ei) + 2λ1(Ei,Ei) + 2µη(Ei)η(Ei) = 0,

for all i ∈ {1, 2, 3}, we have:

2(1 − δi3) − 4 + 2λ + 2µδi3 = 0 ⇐⇒ λ − 1 + (µ − 1)δi3 = 0,

for all i ∈ {1, 2, 3}. Therefore, λ = µ = 1 define an η-Ricci soliton on (M, ϕ, ξ, η, 1). Moreover, it is a gradient η-Ricci
soliton, as the potential vector field ξ is of gradient type, ξ = 1rad( f ), where f (x, y, z) := − ln z.

Assume now that (10) defines a gradient η-Ricci soliton on (M, 1) with µ , 0. Under the hypotheses of
the Proposition 3.5, the equation (24) simplifies a lot. Compute:

|∇ξ|2 :=
m∑

i=1

1(∇Eiξ,∇Eiξ) =

m∑
i=1

{1 + (|ξ|2 − 2)[η(Ei)]2
} = m + |ξ|2(|ξ|2 − 2), (25)

for {Ei}1≤i≤m a local orthonormal frame field with ∇Ei E j = 0 in a point,

ξ(|ξ|2) = ξ(1(ξ, ξ)) = 21(∇ξξ, ξ) = 2(|ξ|2 − |ξ|4), (26)
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ξ(|ξ|4) = 2|ξ|2ξ(|ξ|2) = 4(|ξ|4 − |ξ|6). (27)

From the equation (10) we obtain:

S(ξ, ξ) = −(λ + 1)|ξ|2 − (µ − 1)|ξ|4. (28)

Using Proposition 3.5 and the relation (28), we get:

|ξ|2 = (m − 1 − λ)|ξ|2 − (µ − 1)|ξ|4, (29)

so |ξ|2(µ − 1) = m − 2 − λ i.e. ξ is of constant length. Using (26) we get |ξ| = 1. It follows λ + µ = m − 1 and
we deduce:

Theorem 3.7. Under the hypotheses of the Proposition 3.5, if (10) defines a gradient η-Ricci soliton on (M, 1) with
µ , 0, then the Laplacian equation (24) becomes:

∆( f ) =
m − 1
µ

. (30)

Therefore, the existence of a gradient η-Ricci soliton defined by (10) with the potential vector field
ξ := 1rad( f ), yields the Laplacian equation (30), and the soliton is completely determined by f .

4. Warped Product η-Ricci Solitons

Consider (B, 1B) and (F, 1F) two Riemannian manifolds of dimensions n and m, respectively. Denote by
π and σ the projection maps from the product manifold B× F to B and F and by ϕ̃ := ϕ ◦π the lift to B× F of
a smooth function ϕ on B. In this context, we shall call B the base and F the fiber of B× F, the unique element
X̃ of χ(B × F) that is π-related to X ∈ χ(B) and to the zero vector field on F, the horizontal lift of X and the
unique element Ṽ of χ(B × F) that is σ-related to V ∈ χ(F) and to the zero vector field on B, the vertical lift
of V. For simplicity, we shall simply denote by X the horizontal lift of X ∈ χ(B) and by V the vertical lift
of V ∈ χ(F). Also, denote by L(B) the set of all horizontal lifts of vector fields on B, by L(F) the set of all
vertical lifts of vector fields on F, byH the orthogonal projection of T(p,q)(B×F) onto its horizontal subspace
T(p,q)(B × {q}) and byV the orthogonal projection of T(p,q)(B × F) onto its vertical subspace T(p,q)({p} × F).

Let ϕ > 0 be a smooth function on B and

1 := π∗1B + (ϕ ◦ π)2σ∗1F (31)

be a Riemannian metric on B × F.

Definition 4.1. [3] The product manifold of B and F together with the Riemannian metric 1 defined by (31) is called
the warped product of B and F by the warping function ϕ (and is denoted by (M := B ×ϕ F, 1)).

If ϕ is constant equal to 1, the warped product becomes the usual product of the Riemannian manifolds.
Due to a result of J. Case, Y.-J. Shu and G. Wei [7], we know that for a gradient η-Ricci soliton (1, ξ :=

1rad( f ), λ, µ) with µ ∈ (−∞, 0) and η = d f the 1-dual of ξ, on a connected n-dimensional Riemannian
manifold (M, 1), e2µ f [∆( f )− |ξ|2− λ

µ ] is constant. Choosing properly an Einstein manifold, a smooth function
and considering the warped product manifold, we can characterize the gradient η-Ricci soliton on the
base manifold as follows [7]. Let (B, 1B) be an n-dimensional connected Riemannian manifold, λ and µ
real constants such that − 1

µ is a natural number, f a smooth function on B, k := µe2µ f [∆( f ) − |ξ|2 − λ
µ ] and

(F, 1F) an m-dimensional Riemannian manifold with m = − 1
µ and SF = k1F. Then (1, ξ := 1rad( f ), λ, µ) is a

gradient η-Ricci soliton on (B, 1B) with η = d f the 1-dual of ξ, if and only if the warped product manifold
(M := B ×ϕ F, 1) with the warping function ϕ = e−

f
m is Einstein manifold with S = λ1.

Let S, SB, SF the Ricci tensors on M, B and F and S̃B, S̃F the lift on M of SB and SF, which satisfy:
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Lemma 4.2. [3] If (M := B ×ϕ F, 1) is the warped product of B and F by the warping function ϕ and m > 1, then for
any X, Y ∈ L(B) and any V, W ∈ L(F), we have:

1. S(X,Y) = S̃B(X,Y) − m
ϕ̃Hϕ(X,Y), where Hϕ is the lift on M of Hess(ϕ);

2. S(X,V) = 0;
3. S(V,W) = S̃F(V,W) − π∗[ ∆(ϕ)

ϕ + (m − 1) |1rad(ϕ)|2

ϕ2 ]|F1(V,W).

Notice that the lift on M of the gradient and the Hessian of any smooth function f on B satisfy:

1rad( f̃ ) = ˜1rad( f ), (32)

(Hess( f̃ ))(X,Y) = ˜(Hess( f ))(X,Y), for any X,Y ∈ L(B). (33)

We shall construct a gradient η-Ricci soliton on a warped product manifold following [12].
Let (B, 1B) be a Riemannian manifold, ϕ > 0 and f two smooth functions on B such that:

SB + Hess( f ) −
m
ϕ

Hess(ϕ) + λ1B + µd f ⊗ d f = 0, (34)

where λ, µ and m > 1 are real constants.
Take (F, 1F) an m-dimensional manifold with SF = k1F, for k := π∗[−λϕ2 + ϕ∆(ϕ) + (m − 1)|1rad(ϕ)|2 −

ϕ(1rad( f ))(ϕ)]|F, where π and σ be the projection maps from the product manifold B × F to B and F,
respectively, and 1 := π∗1B + (ϕ◦π)2σ∗1F a Riemannian metric on B×F. Then, for ξ := 1rad( f ◦π), if consider
µ = 0 in (34), (1, ξ, λ) is a gradient Ricci soliton on B ×ϕ F called the warped product Ricci soliton [12].

With the above notations, we prove that:

Theorem 4.3. Let (B, 1B) be a Riemannian manifold, ϕ > 0, f two smooth functions on B, let m > 1, λ, µ be real
constants satisfying (34) and (F, 1F) an m-dimensional Riemannian manifold. Then (1, ξ, λ, µ) is a gradient η-Ricci
soliton on the warped product manifold (B×ϕ F, 1), where ξ = 1rad( f̃ ) and the 1-form η is the 1-dual of ξ, if and only
if:

SB = −Hess( f ) +
m
ϕ

Hess(ϕ) − λ1B − µd f ⊗ d f (35)

and

SF = k1F, (36)

where k := π∗[−λϕ2 + ϕ∆(ϕ) + (m − 1)|1rad(ϕ)|2 − ϕ(1rad( f ))(ϕ)]|F.

Proof. The gradient η-Ricci soliton (1, ξ, λ, µ) on (B ×ϕ F, 1) is given by:

Hess( f̃ ) + S + λ1 + µη ⊗ η = 0. (37)

Then for any X, Y ∈ L(B) and for any V, W ∈ L(F), from Lemma 4.2 we get:

H f (X,Y) + S̃B(X,Y) −
m
ϕ̃

Hϕ(X,Y) + λ1B(X,Y) + µd f (X)d f (Y) = 0

H f (V,W) + S̃F(V,W) − π∗[ϕ∆(ϕ) + (m − 1)|1rad(ϕ)|2 − λϕ2]|F1(V,W) = 0

and using the fact that

H f (V,W) = (Hess( f̃ ))(V,W) = 1(∇V(1rad( f̃ )),W) = π∗[
(1rad( f ))(ϕ)

ϕ
]|Fϕ̃21F(V,W),

we obtain:
S̃F(V,W) = π∗[ϕ∆(ϕ) + (m − 1)|1rad(ϕ)|2 − ϕ(1rad( f ))(ϕ) − λϕ2]|F1F(V,W).

Conversely, notice that the left-hand side term in (37) computed in (X,V), for X ∈ L(B) and V ∈ L(F)
vanishes identically and using again Lemma 4.2, for each situation (X,Y) and (V,W), we can recover the
equation (37) from (35) and (36).
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Remark 4.4. In the case of product manifold (for ϕ = 1), notice that the equation (34) defines a gradient η-Ricci
soliton on B and the chosen manifold (F, 1F) is Einstein (SF = −λ1F), so a gradient η-Ricci soliton on the product
manifold B × F can be naturally obtained by ”lifting” a gradient η-Ricci soliton on B.

Remark 4.5. If for the function ϕ and f on B there exists two constants a and b such that ∇(1rad(ϕ)) = ϕ[aIχ(B) +
bd f ⊗ 1rad( f )], then Hess(ϕ) = ϕ(a1B + bd f ⊗ d f ) and (1B, 1rad( f ), λ−ma, µ−mb) is a gradient η-Ricci soliton on
B.

Let us make some remark on the class of manifolds that satisfy the condition (34):

SB + Hess( f ) −
m
ϕ

Hess(ϕ) + λ1B + µd f ⊗ d f = 0, (38)

for ϕ > 0, f smooth functions on the oriented and compact Riemannian manifold (B, 1B), λ, µ and m > 1
real constants. Denote by ξ := 1rad( f ).

Taking the trace of (38), we obtain:

scalB + ∆( f ) −m
∆(ϕ)
ϕ

+ nλ + µ|ξ|2 = 0. (39)

Remark that:

|Hess( f ) −
∆( f )

n
1B|

2 :=
∑

1≤i, j≤n

[Hess( f )(Ei,E j) −
∆( f )

n
1B(Ei,E j)]2 = (40)

= |Hess( f )|2 − 2
∆( f )

n

n∑
i=1

1B(∇Eiξ,Ei) +
(∆( f ))2

n
= |Hess( f )|2 −

(∆( f ))2

n
.

Also:

(div(Hess( f )))(ξ) :=
n∑

i=1

(∇Ei (Hess( f )))(Ei, ξ) =

n∑
i=1

[Ei(Hess( f )(Ei, ξ)) −Hess( f )(Ei,∇Eiξ)] =

=

n∑
i=1

Ei(1B(∇Eiξ, ξ)) −
n∑

i=1

1B(∇Eiξ,∇Eiξ) =

n∑
i=1

1B(∇Ei∇ξξ,Ei) − |∇ξ|2 := div(∇ξξ) − |Hess( f )|2

and

div(∇ξξ) :=
n∑

i=1

1B(∇Ei∇ξξ,Ei) =

n∑
i=1

Ei(1B(∇ξξ,Ei)) =

n∑
i=1

Ei(Hess( f )(ξ,Ei)) =

=

n∑
i=1

(∇Ei (Hess( f )(ξ)))Ei := div(Hess( f )(ξ)),

therefore:

(div(Hess( f )))(ξ) = div(Hess( f )(ξ)) − |Hess( f )|2. (41)

Applying the divergence to (38), computing it in ξ and considering (21), we get:

(div(Hess( f )))(ξ) = −(div(SB))(ξ) + m(div(
Hess(ϕ)
ϕ

))(ξ) − µ(
1
2

d(|ξ|2) + ∆( f )d f )(ξ) = (42)

= −
d(scalB)(ξ)

2
+

m
ϕ

(div(Hess(ϕ)))(ξ) −
m
ϕ2 Hess(ϕ)(1rad(ϕ), ξ) − µ[

1
2

d(|ξ|2)(ξ) + ∆( f )|ξ|2] =

= −
d(scalB)(ξ)

2
+ m · div(Hess(ϕ)(

ξ
ϕ

)) −
m
ϕ
〈Hess( f ),Hess(ϕ)〉 − µ[

1
2

d(|ξ|2)(ξ) + ∆( f )|ξ|2].
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From (39), (40), (41) and (42), we obtain:

div(Hess( f )(ξ)) = |Hess( f ) −
∆( f )

n
1B|

2
−

scalB
n

∆( f ) +
m
n

∆(ϕ)
ϕ ∆( f ) − div(λξ) − (43)

−
d(scalB)(ξ)

2
+ m · div(Hess(ϕ)(

ξ
ϕ

)) −
m
ϕ
〈Hess( f ),Hess(ϕ)〉 −

µ

2
d(|ξ|2)(ξ) −

n + 1
n

µ|ξ|2∆( f ).

Integrating with respect to the canonical measure on B, we have:∫
B

d(scalB)(ξ) =

∫
B
〈1rad(scalB), ξ〉 = −

∫
B
〈scalB, div(ξ)〉 = −

∫
B

scalB · ∆( f )

and similarly: ∫
B

d(|ξ|2)(ξ) =

∫
B
〈1rad(|ξ|2), ξ〉 = −

∫
B
〈|ξ|2, div(ξ)〉 = −

∫
B
|ξ|2 · ∆( f ).

Using:
|ξ|2 · div(ξ) = div(|ξ|2ξ) − |ξ|2

and integrating (43) on B, from the above relations and the divergence theorem, we obtain:

n − 2
2n

∫
B
〈1rad(scalB), ξ〉 =

∫
B
|Hess( f ) −

∆( f )
n
1B|

2
−m
∫

B

1
ϕ
〈Hess( f ),Hess(ϕ)〉+ (44)

+
m
n

∫
B

∆(ϕ)
ϕ

∆( f ) +
n + 2

2n
µ

∫
B
|ξ|2.

Proposition 4.6. Let (B, 1B) be an oriented and compact Riemannian manifold, f a smooth function on B, let m > 1,
λ, µ be real constants satisfying (34) (for ϕ = 1) and (F, 1F) be an m-dimensional Einstein manifold with SF = −λ1F.
If (1, ξ, λ, µ) is a gradient η-Ricci soliton on the product manifold (B × F, 1), where ξ = 1rad( f̃ ) and the 1-form η is
the 1-dual of ξ, then:

n − 2
2n

∫
B
〈1rad(scalB), ξ〉 =

∫
B
|Hess( f ) −

∆( f )
n
1B|

2 +
n + 2

2n
µ

∫
B
|ξ|2. (45)

Let now consider the product manifold B × F, in which case (39) (for ϕ = 1) becomes:

scalB + ∆( f ) + nλ + µ|ξ|2 = 0 (46)

and integrating it on B, we get:

µ

∫
B
|ξ|2 = −

∫
B

scalB − nλ · vol(B). (47)

Replacing it in (45), we obtain:

n − 2
2n

∫
B
〈1rad(scalB), ξ〉 +

n + 2
2n

∫
B

scalB =

∫
B
|Hess( f ) −

∆( f )
n
1B|

2
−

n + 2
2

λ · vol(B). (48)

Proposition 4.7. Let (B, 1B) be an oriented, compact and complete n-dimensional (n > 1) Riemannian manifold of
constant scalar curvature, ϕ > 0, f two smooth functions on B, let m > 1, λ, µ be real constants satisfying (38). If
one of the following two conditions hold:

1. ϕ = 1 and λ = − scalB
n ;

2. there exists a positive function h on B such that Hess( f ) = −h ·Hess(ϕ) and µ ≥ 0,

then B is conformal to a sphere in the (n + 1)-dimensional Euclidean space.
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Proof. 1. From (48) we obtain:∫
B
|Hess( f ) −

∆( f )
n
1B|

2 =
n + 2

2
(
scalB

n
+ λ)µ · vol(B),

so Hess( f ) =
∆( f )

n 1B which implies by [22] that B is conformal to a sphere in the (n + 1)-dimensional
Euclidean space.

2. From the condition Hess( f ) = −h · Hess(ϕ) we obtain ∆( f ) = −h∆(ϕ) and replacing them in (44), we
get: ∫

B
|Hess( f ) −

∆( f )
n
1B|

2 +
n + 2

2n
µ

∫
B
|ξ|2 = 0.

From µ ≥ 0 we deduce that Hess( f ) =
∆( f )

n 1B and according to [22], we get the conclusion.

Finally, we state a result on the scalar curvature of a product manifold admitting an η-Ricci soliton:

Proposition 4.8. Let (B, 1B) be an oriented and compact Riemannian manifold of constant scalar curvature, f a
smooth function on B, let m > 1, λ, µ be real constants satisfying (34) (for ϕ = 1) and (F, 1F) be an m-dimensional
Einstein manifold with SF = −λ1F. If (1, ξ, λ, µ) is a gradient η-Ricci soliton on the product manifold (B × F, 1),
where ξ = 1rad( f̃ ) and the 1-form η is the 1-dual of ξ, then the scalar curvature of B × F is ≥ −(n + m)λ.

Proof. From (48) we deduce that n+2
2 ( scalB

n + λ) · vol(B) =
∫

B |Hess( f ) − ∆( f )
n 1B|

2
≥ 0 and since scalF = −mλ, we

get the conclusion.

We end these considerations by giving an example of gradient η-Ricci soliton on a product manifold.

Example 4.9. Let (1M, ξM, 1, 1) be the gradient η-Ricci soliton on the Riemannian manifold M = {(x, y, z) ∈ R3, z >
0}, where (x, y, z) are the standard coordinates in R3, with the metric 1M := 1

z2 (dx ⊗ dx + dy ⊗ dy + dz ⊗ dz) (given
by Example 3.6) and let S3 be the 3-sphere with the round metric 1S (which is Einstein with the Ricci tensor equals to
21S). By Remark 4.4 we obtain the gradient η-Ricci soliton (1, ξ, 1, 1) on the ”generalized cylinder” M × S3, where
1 = 1M + 1S and ξ is the lift on M × S3 of the gradient vector field ξM = 1rad( f ), where f (x, y, z) := − ln z.
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