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The Global Dynamics of Stochastic Holling Type II Predator-Prey
Models with Non Constant Mortality Rate
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Abstract. In this paper we study the global dynamics of stochastic predator-prey models with non constant
mortality rate and Holling type II response. Concretely, we establish sufficient conditions for the extinction
and persistence in the mean of autonomous stochastic model and obtain a critical value between them.
Then by constructing appropriate Lyapunov functions, we prove that there is a nontrivial positive periodic
solution to the non-autonomous stochastic model. Finally, numerical examples are introduced to illustrate
the results developed.

1. Introduction

In the ecological sciences, dynamic of predator-prey system is one of the dominant themes in both
ecology and mathematical ecology due to its universal existence and importance [1]. In [2], Cavani and
Farkas introduced the following predator-prey model Ṅ(t) = εN(t)

(
1 − N(t)

K

)
−

aP(t)N(t)
β+N(t) ,

Ṗ(t) = P(t)
(
−M(P(t)) +

bN(t)
β+N(t)

)
,

(1)

where N(t) and P(t) are the quantities of prey and predator, respectively. From [2] it follows that ε is specific
growth rate of prey in the absence of predation and without environment limitation; K is the carrying
capacity of the prey in the absence of predators; the functional response of the predator is of Holling type II;
a, β and b are satiation coefficients or conversion rates; and function M(P) is the mortality rate of predators
in the absence of prey. If M(P) = n, model (1) is exactly the classic predator-prey model with Holling type-II
response. Here the mortality rate of predators

M(P) =
γ + δP
1 + P

= δ +
γ − δ

1 + P
, 0 < γ < δ

is non constant and depends on the quantity of predator, γ is the mortality at low density, and δ is the
maximal mortality with the natural assumption γ < δ. All the parameters are assumed to be positive. Many
results on this model and its deformations have been reported, see [3–5].
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However, in the real life situations, population systems are always affected by environmental noise, and
stochastic population systems have been studied by many authors [6–14]. Up to now, few papers have
considered Holling type II predator-prey model with non constant mortality rate in random environments,
namely dN(t) =

(
εN(t)

(
1 − N(t)

K

)
−

aP(t)N(t)
β+N(t)

)
dt + σ1N(t)dB1(t),

dP(t) = P(t)
(
−
γ+δP(t)
1+P(t) +

bN(t)
β+N(t)

)
dt + σ2P(t)dB2(t),

(2)

where B1(t), B2(t) are mutually independent Brownian motions defined on a complete probability space
(Ω,F , {Ft}t≥0,P) with a σ−field filtration {Ft}t≥0 satisfying the usual conditions, and positive constants σ2

1,
σ2

2 are their intensities. In this paper, we aim to study persistence and extinction of stochastic model (2),
and analyze the effect of environmental noise on the dynamics of the system (2).

On the other hand, due to the seasonal variation, food supplies and harvesting and so on, ecological
environments change significantly through the year. So it is reasonable and important to consider the
non-autonomous population systems. In particular, many authors addressed the effect of periodic fluctu-
ations because, as mentioned by Vance and Coddington [15], ”periodic time variation holds considerable
promise as a means to explore time-varying ecological processes”[16]. Recently, according to the theory
of Has’minskii [17], progress has been made in stochastic population systems with periodic parameters.
For example, papers [18–20] obtained the existence of periodic solutions to stochastic non-autonomous
population systems. Motivated by above analysis, in this paper, we also consider the following stochastic
periodic system dN(t) =

(
ε(t)N(t)

(
1 − N(t)

K(t)

)
−

a(t)P(t)N(t)
β(t)+N(t)

)
dt + σ1(t)N(t)dB1(t),

dP(t) = P(t)
(
−
γ(t)+δ(t)P(t)

1+P(t) +
b(t)N(t)
β(t)+N(t)

)
dt + σ2(t)P(t)dB2(t),

(3)

where ε(t), K(t), a(t), β(t), γ(t), δ(t), b(t) and σ2
i (t) are all positive continuous θ-periodic functions, i = 1, 2.

We also assume that γ(t) < δ(t) holds for all t > 0. The existence of periodic solution to stochastic model (3)
will be discussed.

The remainder of the paper is organized as follows. In Section 2, we mainly prove the existence and
uniqueness of the global positive solution to model (2). In Section 3, we investigate persistence in the
mean and extinction of model (2) and furthermore, we try to obtain the critical value between them. The
existence of nontrivial positive periodic solution to non-autonomous model (3) is obtained in Section 4 and
the existence of ergodic stationary distribution of autonomous model (2) is also deduced. Finally, numerical
simulations illustrate our theoretical results in Section 5.

2. Existence and Uniqueness of the Global Positive Solution

For simplicity, we introduce the following notations.
R2

+ := {x = (x1, x2) ∈ R2 : xi > 0, i = 1, 2}.
〈 f 〉t = 1

t

∫ t

0 f (s)ds.
If f (t) is a continuous bounded function, define f l = inft∈[0,∞) f (t), f u = supt∈[0,∞) f (t).
The following theorem is fundamental in this paper.

Theorem 2.1. For any initial value (N(0),P(0)) ∈ R2
+, there is a unique positive solution (N(t),P(t)) of system (2)

on t ≥ 0, and the solution will remain in R2
+ with probability 1.

Proof. Obviously, the coefficients of model (2) are locally Lipschitz continuous, so there is a unique local
solution (N(t),P(t)) on t ∈ [0, ρ) for any given initial value (N(0),P(0)) ∈ R2

+, where ρ is the explosion time.
If ρ = ∞ a.s., then this local solution is global. Let k0 be sufficiently large for every component of (N(0),P(0))
lying within the interval [1/k0, k0]. For each integer k ≥ k0, define the stopping time

τk = inf{t ∈ [0, ρ)|N(t) < (1/k, k)or P(t) < (1/k, k)},
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where throughout this paper we set inf ∅ = ∞. Clearly, τk is increasing as k→∞. Set τ∞ = limk→∞ τk, which
implies τ∞ ≤ ρ a.s. If we show that τ∞ = ∞ a.s., then ρ = ∞ a.s. This means that (N(t),P(t)) ∈ R2

+ a.s. for all
t ≥ 0. If τ∞ < ∞ a.s., then there is a pair of constants T ≥ 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T} > ε.

Hence there is an integer k1 ≥ k0 such that

P{τk ≤ T} ≥ ε for all k ≥ k1. (4)

Define a C2-function V : R2
+ → R+ as follows:

V(N,P) =
4b
βδ

(
N −

βδ

4b
−
βδ

4b
log

4bN
βδ

)
+

2a
βδ

(
P −

βδ

2a
−
βδ

2a
log

2aP
βδ

)
.

Applying Itô’s formula we have

dV(N,P) = LV(N,P)dt +
4bσ1

βδ

(
N −

βδ

4b

)
dB1(t) +

2aσ2

βδ

(
P −

βδ

2a

)
dB2(t),

in which

LV(N,P) =
4b
βδ

(
N −

βδ

4b

) (
ε −

ε
K

N −
aP
β + N

)
+
σ2

1

2

+
2a
βδ

(
P −

βδ

2a

) (
−δ −

γ − δ

1 + P
+

bN
β + N

)
+
σ2

2

2

= −
4bε
βδK

N2 +

(
4bε
βδ

+
ε
K

)
N −

4ab
βδ

PN
β + N

+
aP
β + N

− ε +
σ2

1

2

−
2a
β

P +
2a(δ − γ)

βδ
P

1 + P
+

2ab
βδ

PN
β + N

−
δ − γ

1 + P
−

bN
β + N

+ δ +
σ2

2

2

≤ −
4bε
βδK

N2 +

(
4bε
βδ

+
ε
K

)
N −

2ab
βδ

PN
β + N

+
a
β

P −
2a
β

P − ε +
σ2

1

2
+ δ +

σ2
2

2
+

2a
β

≤ −
4bε
βδK

N2 +

(
4bε
βδ

+
ε
K

)
N − ε +

σ2
1

2
+ δ +

σ2
2

2
+

2a
β

≤M,

where M is a positive constant. We therefore obtain

EV(N(τk ∧ T),P(τk ∧ T)) ≤ V(N(0),P(0)) + ME(τk ∧ T) ≤ V(N(0),P(0)) + MT. (5)

Set Ωk = {τk ≤ T} for k ≥ k1 and by (4), P(Ωk) ≥ ε. Note that for every ω ∈ Ωk, there is at least one of
N(τk, ω),P(τk, ω) equals either k or 1/k, therefore

V(N(τk, ω),P(τk, ω)) ≥
4b
βδ

(
k −

βδ

4b
−
βδ

4b
log

4bk
βδ

)
∧

2a
βδ

(
k −

βδ

2a
−
βδ

2a
log

2ak
βδ

)
∧

4b
βδ

(
1
k
−
βδ

4b
−
βδ

4b
log

4b
βδk

)
∧

2a
βδ

(
1
k
−
βδ

2a
−
βδ

2a
log

2a
βδk

)
.
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It then follows from (5) that

V(N(0),P(0)) + MT ≥E
(
IΩk V(N(τk, ω),P(τk, ω))

)
≥ε

{
4b
βδ

(
k −

βδ

4b
−
βδ

4b
log

4bk
βδ

)
∧

2a
βδ

(
k −

βδ

2a
−
βδ

2a
log

2ak
βδ

)
∧

4b
βδ

(
1
k
−
βδ

4b
−
βδ

4b
log

4b
βδk

)
∧

2a
βδ

(
1
k
−
βδ

2a
−
βδ

2a
log

2a
βδk

)}
.

Letting k→∞ leads to the contradiction

∞ > V(N(0),P(0)) + MT = ∞,

so we must have τ∞ = ∞ a.s. The proof is complete.

3. Discussion on the Persistence and Extinction

In this section, we investigate the persistence and extinction of autonomous stochastic predator-prey
model (2) under certain conditions. Furthermore, by using the ergodic property of stochastic Logistic
model, we try to give the critical value which determines the extinction and persistence of model (2). To
this end, we quote some concepts and lemmas.

Definition 3.1. [9]

(1) If limt→∞ P(t) = 0 a.s., then model (2) is said to be extinctive almost surely.
(2) If lim inft→∞〈P〉t > 0 a.s.,then model (2) is said to be persistent in the mean.

Lemma 3.2. [9] Suppose that Z(t) ∈ C(Ω × [0,∞),R+).

(I) If there are two positive constants T and δ0 such that

ln Z(t) ≤ δt − δ0

∫ t

0
Z(s)ds +

n∑
i=1

αiB(t) a.s.

for all t > T, where αi, δ are constants, then{
lim supt→∞〈Z〉t ≤

δ
δ0

a.s., if δ ≥ 0;
limt→∞ Z(t) = 0 a.s., if δ < 0.

(II) If there exist three positive constants T, δ, δ0 such that

ln Z(t) ≥ δt − δ0

∫ t

0
Z(s)ds +

n∑
i=1

αiB(t) a.s.

for all t > T, then lim inft→∞〈Z〉t ≥ δ
δ0

a.s..

Lemma 3.3. [10] Consider the following one-dimensional stochastic Logistic model

dX(t) = εX(t)
(
1 −

X(t)
K

)
dt + σ1X(t)dB1(t), (6)

with X(0) = N(0). If ε− σ2
1/2 > 0, model (6) has a unique ergodic stationary distribution ν(·) with stationary

density µ(x) = Cx
2−σ2

1
σ2

1
−1

e
−

2
σ2

1
x
, where C = (2/σ2

1)(2−σ2
1)/σ2

1/Γ((2 − σ2
1)/σ2

1), and

P

{
lim
t→∞

1
t

∫ t

0
f (X(s))ds =

∫
R+

f (x)µ(x)dx
}

= 1,

where f is a function integrable with respect to the measure ν.
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Remark 3.4. From stochastic comparison theory it follows that N(t) ≤ X(t) a.s. and

lim
t→∞

1
t

∫ t

0

bX(s)
β + X(s)

ds =

∫
∞

0

bx
β + x

µ(x)dx, a.s. (7)

Lemma 3.5. Let X(t) be the solution of stochastic Logistic model (6) with initial value X(0) = N(0) and ε−σ2
1/2 > 0.

Denote Y(t) =
X(t)
β+X(t) , then the following properties hold:

lim inf
t→∞

〈Y〉t ≥
ε −

σ2
1

2

ε +
βε
K

, a.s. (8)

and

lim sup
t→∞

〈Y〉t ≤
ε −

σ2
1

2

ε −
σ2

1
2 +

βε
K

, a.s. (9)

Proof. An application of Itô’s formula yields

dY(t) =

(
β

(β + X)2 εX
(
1 −

X
K

)
−

β

(β + X)3 σ
2
1X2

)
dt +

βσ1X
(β + X)2 dB1(t)

=

(
εY(1 − Y) −

βε

K
Y2
− σ2

1Y2(1 − Y)
)

dt + σ1Y(1 − Y)dB1(t),

and

d log Y(t) =

ε(1 − Y) −
βε

K
Y − σ2

1Y(1 − Y) −
σ2

1

2
(1 − Y)2

 dt + σ1(1 − Y)dB1(t)

=

ε − σ2
1

2
−

(
ε +

βε

K

)
Y +

σ2
1

2
Y2

 dt + σ1(1 − Y)dB1(t).

(10)

Since Y(t) = X(t)/(β + X(t)), so 0 < Y(t) < 1. On the one hand, from (10) it follows that

log Y(t) − log Y(0)
t

≥ ε −
σ2

1

2
−

(
ε +

βε

K

)
〈Y〉t +

M(t)
t
,

where M(t) =
∫ t

0 σ1(1 − Y(s))dB1(s) is a real-valued continuous local martingale and 〈M,M〉t =
∫ t

0 σ
2
1(1 −

Y(s))2ds ≤ σ2
1t. By strong law of large numbers [21], we have limt→∞

M(t)
t = 0 a.s.. Applying (II) in Lemma

3.2, one can derive that the assertion (8) holds.
On the other hand, from Y2

≤ Y and (10) it follows that

d log Y(t) ≤

ε − σ2
1

2
−

ε − σ2
1

2
+
βε

K

 Y

 dt + σ1(1 − Y)dB1(t),

which implies that

log Y(t) − log Y(0)
t

≤ ε −
σ2

1

2
−

ε − σ2
1

2
+
βε

K

 〈Y〉t +
M(t)

t
.

Applying (I) in Lemma 3.2 we obtain

lim sup
t→∞

〈Y〉t ≤
ε −

σ2
1

2

ε −
σ2

1
2 +

βε
K

, a.s.

This completes the proof.
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Theorem 3.6. Assume that ε − σ2
1/2 > 0. Let (N(t),P(t)) be a positive solution of model (2) with initial value

(N(0),P(0)) ∈ R2
+.

(i) If λ1 := −γ −
σ2

2
2 +

b
(
ε−

σ2
1
2

)
ε−

σ2
1
2 +

βε
K

< 0, then the predator populations go to extinction a.s..

(ii) If λ2 := −γ −
σ2

2
2 +

b
(
ε−

σ2
1
2

)
ε+

βε
K

> 0, then system (2) will be persistent in the mean.

Proof. (i). An application of Itô’s formula to the second equation of (2) shows that

d log P(t) =

(
−
γ + δP(t)
1 + P(t)

+
bN(t)
β + N(t)

−
σ2

2

2

)
dt + σ2dB2(t)

=

(
−γ −

σ2
2

2
−

(δ − γ)P(t)
1 + P(t)

+
bN(t)
β + N(t)

)
dt + σ2dB2(t).

(11)

Integrating above inequality from 0 to t and dividing t on both sides, we get

log P(t) − log P(0)
t

≤ − γ −
σ2

2

2
+

1
t

∫ t

0

bN(s)
β + N(s)

ds +
M2(t)

t

≤ − γ −
σ2

2

2
+

1
t

∫ t

0

bX(s)
β + X(s)

ds +
M2(t)

t
,

where Mi(t) =
∫ t

0 σidBi(t) ,i = 1, 2 are real-valued continuous local martingales. By strong law of large

numbers [21], we have limt→∞
Mi(t)

t = 0 a.s., i = 1, 2. From (9) it follows that

lim sup
t→∞

log P(t)
t

≤ −γ −
σ2

2

2
+

ε −
σ2

1
2

ε −
σ2

1
2 +

βε
K

.

Obviously, the predator populations P(t) tends to zero a.s. when λ1 < 0.
(ii). Applying Itô’s formula to the first equation of (2) and (6) respectively, we have

log N(t) − log N(0)
t

= ε −
σ2

1

2
−

1
t

∫ t

0

ε
K

N(s)ds −
1
t

∫ t

0

aP(s)
β + N(s)

ds +
M1(t)

t
,

and

log X(t) − log X(0)
t

= ε −
σ2

1

2
−

1
t

∫ t

0

ε
K

X(s)ds +
M1(t)

t
.

These imply that

0 ≥
log N(t) − log X(t)

t
= −

1
t

∫ t

0

ε
K

(N(s) − X(s)ds −
1
t

∫ t

0

aP(s)
β + N(s)

ds

≥ −
ε
K
〈N − X〉t −

a
β
〈P〉t,

that is to say,

ε
K
〈X −N〉t ≤

a
β
〈P〉t. (12)
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From (11) we obtain

d log P(t) =

(
−γ −

σ2
2

2
+

bN(t)
β + N(t)

−
(δ − γ)P(t)

1 + P(t)

)
dt + σ2dB2(t)

=

(
−γ −

σ2
2

2
+

bX(t)
β + X(t)

−

(
bX(t)
β + X(t)

−
bN(t)
β + N(t)

)
−

(δ − γ)P(t)
1 + P(t)

)
dt + σ2dB2(t)

≥

(
−γ −

σ2
2

2
+

bX(t)
β + X(t)

−
bβ(X(t) −N(t))

(β + X(t))(β + N(t))
− (δ − γ)P(t)

)
dt + σ2dB2(t)

≥

(
−γ −

σ2
2

2
+

bX(t)
β + X(t)

−
b
β

(X(t) −N(t)) − (δ − γ)P(t)
)

dt + σ2dB2(t).

(13)

Integrating (13) from 0 to t, combining (12) and (8), one can derive that

log P(t) − log P(0)
t

≥ − γ −
σ2

2

2
+ b〈Y〉t −

(
abK
εβ2 + δ − γ

)
〈P〉t +

M2(t)
t

≥ − γ −
σ2

2

2
− ε +

b
(
ε −

σ2
1

2

)
ε +

βε
K

−

(
abK
εβ2 + δ − γ

)
〈P〉t +

M2(t)
t

=λ2 − ε −

(
abK
εβ2 + δ − γ

)
〈P〉t +

M2(t)
t

for sufficiently large t. By virtue of the arbitrariness of ε and (II) in Lemma 3.2, we derive that

lim inf
t→∞

〈P〉t ≥
λ2

abK
εβ2 + δ − γ

> 0, a.s.

That is to say model (2) will be persistent in the mean when λ2 > 0. The proof is complete.

Remark 3.7. From [4] it follows that if b − γ < 0 or βγ
b−γ > K, point (K, 0) of deterministic system (1) is global

asymptotically stable; while system (1) is uniformly persistent if and only if b − γ > 0 and βγ
b−γ < K. Theorem 3.6

shows that if λ1 = −γ −
σ2

2
2 +

b
(
ε−

σ2
1
2

)
ε−

σ2
1
2 +

βε
K

< 0, the predator populations of stochastic system (2) will be extinctive and

the prey population satisfies limt→∞〈N〉t =
K(ε−σ2

1/2)
ε a.s.. If λ2 := −γ −

σ2
2

2 +
b
(
ε−

σ2
1
2

)
ε+

βε
K

> 0, then system (2) will be

persistent in the mean. Obviously, the conditions which guarantee the persistence and extinction of deterministic
system (1) coincide with those in stochastic system (2) if there is no white noise.

Remark 3.8. Expressions of λ1 and λ2 show that λ2 < λ1. Note that there is a gap between λ1 and λ2, hence Theorem
3.6 only gives the sufficient conditions for the persistence and extinction of model (2).

From the proof of Theorem 3.6, we observe that λ1 = λ2 = λ := −γ −
σ2

2
2 +

∫
∞

0
bx
β+xµ(x)dx if we use (7) to

estimate limt→∞
∫ t

0
bX(s)
β+X(s) ds. In other words, the following theorem gives the threshold between persistence

in the mean and extinction of model (2).

Theorem 3.9. Assume that ε − σ2
1/2 > 0. Then, for any initial value (N(0),P(0)) ∈ R2

+, we have

(i) if λ < 0, then the predator populations go to extinction a.s.;
(ii) if λ > 0, then system (2) will be persistent in the mean.
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4. Existence of Periodic Solution of Non-Autonomous Model

In this section, we mainly give sufficient conditions for the existence of periodic solution to non-
autonomous stochastic model (3) according to the theory of Has’minskii. For the sake of convenience, we
introduce some results concerning the periodic Markov processes in Appendix.

Theorem 4.1. If ρ := bl

εu
(
1+

βu

Kl

) 〈ε − σ2
1

2 〉θ − 〈γ +
σ2

2
2 〉θ > 0 (i = 1, 2), then model (3) admits a nontrivial positive

θ-periodic solution.

Proof. By similar proof of Theorem 2.1 we obtain that non-autonomous stochastic model (3) has a unique
global positive solution (N(t),P(t)) for any initial value (N(0),P(0)) ∈ R2

+. In order to prove Theorem 4.1, it
suffices to find a C2-function V(t,N,P) which is θ-periodic in t and a close set U ⊂ R2

+ such that (27) and
(28) hold.

Define a C2-function

V(t,N,P) =M

− log P −
bl

εu
(
1 +

βu

Kl

) (
log N − log(βu + N)

)
+ w(t) + HP

 +
(N + al

bu P)ϑ+1

ϑ + 1

=M(V1(N,P) + w(t) + HP) + V2(N,P),

here ϑ ∈ (0, 1), H and M are positive constants satisfying the following conditions respectively

ϑ
2
σ2u

2 < (δ − γ)l, (14)

H(δ − γ)l
−

aubl

εuβl
(
1 +

βu

Kl

) > 0,

 aubl

εuβl
(
1 +

βu

Kl

) + (δ − γ)u
− ρ


2

< 4ρ

H(δ − γ)l
−

aubl

εuβl
(
1 +

βu

Kl

)  , (15)

−AM + f u + 1u
≤ −2, (16)

and positive constant A, functions f (x), 1(x) and θ-periodic function w(t) ∈ C1(R+;R) will be determined
later. It is obvious that condition (27) is satisfied. Hence we only confirm condition (28) in Lemma 5.4.
Applying Itô’ formula, we obtain

L(− log P) =
γ(t) + δ(t)P

1 + P
−

b(t)N
β(t) + N

+
σ2

2(t)
2

≤γ(t) +
σ2

2(t)
2

+
(δ − γ)uP

1 + P
−

blN
βu + N

,

L(− log N) = − ε(t) +
σ2

1(t)
2

+
ε(t)
K(t)

N +
a(t)P
β(t) + N

≤ −

ε(t) −
σ2

1(t)
2

 +
ε(t)
K(t)

N +
au

βl
P,

and

L(log(βu + N)) =
N

βu + N

(
ε(t) −

ε(t)
K(t)

N
)
−

a(t)PN
(βu + N)(β(t) + N)

−
σ2

1(t)
2

N2

(βu + N)2

≤
ε(t)N
βu + N

−
ε(t)
K(t)

N2

βu + N
=

(
ε(t)

(
1 +

βu

K(t)

))
N

βu + N
−
ε(t)
K(t)

N

≤εu
(
1 +

βu

Kl

)
N

βu + N
−
ε(t)
K(t)

N.
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Therefore we have

L(V1(N,P)) ≤ γ(t) +
σ2

2(t)
2
−

bl

εu
(
1 +

βu

Kl

) ε(t) −
σ2

1(t)
2

 +
(δ − γ)uP

1 + P
+

aubl

εuβl
(
1 +

βu

Kl

)P. (17)

Let

w′(t) = − 〈γ +
σ2

2

2
〉θ +

bl

εu
(
1 +

βu

Kl

) 〈ε − σ2
1

2
〉θ +

 bl

εu
(
1 +

βu

Kl

) ε(t) −
σ2

1(t)
2

 − (
γ(t) +

σ2
2(t)
2

)
= − ρ +

 bl

εu
(
1 +

βu

Kl

) ε(t) −
σ2

1(t)
2

 − (
γ(t) +

σ2
2(t)
2

) .
Then w(t) is a θ-periodic function. This, together with (17), implies that

L(V1(N,P) + w(t)) ≤ −ρ +
(δ − γ)uP

1 + P
+

aubl

εuβl
(
1 +

βu

Kl

)P. (18)

Furthermore

L(V1(N,P) + w(t) + HP) ≤ − ρ +
(δ − γ)uP

1 + P
+

aubl

εuβl
(
1 +

βu

Kl

)P + HP
(
−γ(t) −

(δ(t) − γ(t))P
1 + P

+
b(t)N
β(t) + N

)

≤ − ρ +
(δ − γ)uP

1 + P
+

aubl

εuβl
(
1 +

βu

Kl

)P −
H(δ − γ)lP2

1 + P
+

HbuPN
βl + N

= −
F(P)
1 + P

+
HbuPN
βl + N

,

where

F(P) =

H(δ − γ)l
−

aubl

εuβl
(
1 +

βu

Kl

)  P2
−

 aubl

εuβl
(
1 +

βu

Kl

) + (δ − γ)u
− ρ

 P + ρ.

Note that
(

aubl

εuβl
(
1+

βu

Kl

) + (δ − γ)u
− ρ

)2

− 4ρ
(
H(δ − γ)l

−
aubl

εuβl
(
1+

βu

Kl

)
)
< 0 when condition (15) holds. This implies

that F(P) > 0 for all P ∈ (0,∞). Therefore, define a positive constant A = infP∈(0,∞)
F(P)
1+P , then one derives

L(V1(N,P) + w(t) + HP) ≤ −A +
HbuPN
βl + N

. (19)

Also

LV2(N,P)

=

(
N +

al

bu P
)ϑ (

ε(t)N −
ε(t)
K(t)

N2
−

a(t)PN
β(t) + N

−
al

bu P
γ(t) + δ(t)P

1 + P
+

alb(t)PN
bu(β(t) + N)

)
+
ϑ
2

(
N +

al

bu P
)ϑ−1 σ2

1(t)N2 +

(
al

bu

)2

σ2
2(t)P2


(20)
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≤

(
N +

al

bu P
)ϑ (

εuN −
εl

Ku N2
−

al

bu

(δ − γ)lP2

1 + P
−

alPN
β(t) + N

+
albuPN

bu(β(t) + N)

)
+
ϑ
2

(
N +

al

bu P
)ϑ−1 σ2u

1 N2 +

(
al

bu

)2

σ2u
2 P2


≤

(
N +

al

bu P
)ϑ (

εuN −
εl

Ku N2
−

al

bu

(δ − γ)lP2

1 + P

)
+
ϑ
2

(
N +

al

bu P
)ϑ−1 σ2u

1 N2 +

(
al

bu

)2

σ2u
2 P2


≤

(
N +

al

bu P
)ϑ
εuN −

(
N +

al

bu P
)ϑ
εl

Ku N2
−

(
N +

al

bu P
)ϑ al

bu

(δ − γ)lP2

1 + P

+
ϑ
2

(
N +

al

bu P
)ϑ−1 σ2u

1 N2 +

(
al

bu

)2

σ2u
2 P2


≤2ϑεuN

Nϑ +

(
al

bu P
)ϑ − εl

Ku N2+ϑ
−

(
al

bu

)ϑ+1

(δ − γ)l P2+ϑ

1 + P
+
ϑ
2
σ2u

1 N1+ϑ +
ϑ
2

(
al

bu

)ϑ+1

σ2u
2 Pϑ+1

≤2ϑεuN1+ϑ + 2ϑ−1εu
(

al

bu

)ϑ
N2
−
εl

Ku N2+ϑ +
ϑ
2
σ2u

1 N1+ϑ

+ 2ϑ−1εu
(

al

bu

)ϑ
P2ϑ +

ϑ
2

(
al

bu

)ϑ+1

σ2u
2 P1+ϑ

−

(
al

bu

)ϑ+1

(δ − γ)l P2+ϑ

1 + P
=: f (N) + 1(P).

(21)

Clearly

f (N)→ −∞, as N→ +∞.

Applying inequalities 0 < ϑ < 1 and (14) yields

1(P)→ −∞, as P→ +∞.

From (19) and (20), we obtain

LV(N,P) ≤M
(
−A +

HbuPN
βl + N

)
+ f (N) + 1(P),

where M satisfy

−AM + f u + 1u
≤ −2.

To confirm condition (28) in Lemma 5.4, we consider the following bounded subset

U =
{
ε1 ≤ N ≤

1
ε1
, ε2 ≤ P ≤

1
ε2

}
,

where ε1, ε2 ∈ (0, 1) are sufficiently small positive constants satisfying the following inequalities

−MA + MHbuε2 + f u + 1u
≤ −1, (22)

−MA +
MHbu

βl

ε1

ε2
+ f u + 1u

≤ −1, (23)

−MA + f u + B −
(

al

bu

)ϑ+1 η

2
1
εϑ+1

2

≤ −1, (24)
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−MA + (MHbuP + 1(P))u + C −
εl

2Ku
1
ε2+ϑ

1

≤ −1, (25)

ε1 = ε2
2,

where inequality (22) can be derived from (16), the constants η, B and C will be determined later. Then

R2
+ \U = Uc

1 ∪Uc
2 ∪Uc

3 ∪Uc
4,

with

Uc
1 =

{
(N,P) ∈ R2

+| 0 < P < ε2

}
, Uc

2 =
{
(N,P) ∈ R2

+| 0 < N < ε1, ε2 < P <
1
ε2

}
,

Uc
3 =

{
((N,P)) ∈ R2

+| P >
1
ε2

}
, Uc

4 =
{
(N,P) ∈ R2

+| N >
1
ε1

}
.

Case 1. If (N,P) ∈ Uc
1, (22) implies that

LV ≤ −MA + MHbuP + f (N) + 1(P) ≤ −MA + MHbuε2 + f u + 1u
≤ −1.

Case 2. If (N,P) ∈ Uc
2, we obtain that

LV ≤ −MA +
MHbu

βl

ε1

ε2
+ f u + 1u,

Choosing ε1 = ε2
2, combining (23), we have

LV ≤ −MA +
MHbu

βl
ε2 + f u + 1u

≤ −1.

Case 3. If (N,P) ∈ Uc
3, we have

LV ≤ −MA + f u + B − η
(

al

bu

)ϑ+1 P2+ϑ

1 + P
≤ −MA + f u + B −

(
al

bu

)ϑ+1 η

2
1
ε1+ϑ

2

≤ −1,

which follows from (24), where η and B satisfy ϑ
2σ

2u
2 < (δ − γ)l

− η and

B = sup
P∈(0,∞)

MHbuP + 2ϑ−1εu
(

al

bu

)ϑ
P2ϑ +

ϑ
2

(
al

bu

)ϑ+1

σ2u
2 P1+ϑ

−

(
al

bu

)ϑ+1 (
(δ − γ)l

− η
) P2+ϑ

1 + P

 < ∞.
Case 4. If (N,P) ∈ Uc

4, we have by (25)

LV ≤ −MA + MHbuP + 1(P) + C −
εl

2Ku N2+ϑ
≤ −MA + (MHbuP + 1(P))u + C −

εl

2Ku
1
ε2+ϑ

1

≤ −1,

where

C = sup
N∈(0,∞)

2ϑεuN1+ϑ + 2ϑ−1εu
(

al

bu

)ϑ
N2
−
εl

Ku
N2+ϑ

2
+
θ
2
σ2u

1 N1+ϑ

 < ∞,
From the above discussion it follows that

LV ≤ −1, (N,P) ∈ R2
+ \U.

Thus, condition (28) is verified. From Lemma 5.4 it follows that stochastic model (3) has a nontrivial positive
periodic solution. The proof is complete.

Remark 4.2. Theorem 4.1 shows that stochastic periodic model (3) admits a nontrivial positive periodic solution

under condition bl

εu
(
1+

βu

Kl

) 〈ε− σ2
1

2 〉θ − 〈γ+
σ2

2
2 〉θ > 0 by using theory of Has’minskii. According to the proof of Theorem

4.1, we can similarly derive that the autonomous stochastic model (2) has an ergodic stationary distribution when
b

ε
(
1+

β
K

) (ε − σ2
1

2

)
−

(
γ +

σ2
2

2

)
> 0, that is, λ2 > 0.
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5. Numerical Examples

In this section, we will introduce some numerical simulations to illustrate our main results by using the
method developed in [22].

Example 5.1. In autonomous stochastic model (2), let ε = 0.08, K = 100, a = 1, β = 2, γ = 0.1, δ = 0.3, b = 0.9
and the initial value (N(0),P(0)) = (0.9, 0.7).

Case 1. Let the environmental noise intensities be σ1 = σ2 = 0.1. Then ε > σ2
1/2 and

λ2 = −γ −
σ2

2

2
+

b
(
ε −

σ2
1

2

)
ε +

βε
K

= 0.7222 > 0.

From Theorem 3.6 it follows that stochastic model (2) is persistent in the mean. See Fig.1.
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Figure 1: The left figure is the solution (N(t),P(t)) of deterministic model (1). The right figure is the solution of autonomous stochastic
model (2) with σ1 = σ2 = 0.1.
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Case 2. We choose environment noiseσ1 = 0.1, σ2 = 1.3. Then ε > σ2
1/2 andλ1 = −γ−

σ2
2

2 +
b
(
ε−

σ2
1
2

)
ε−

σ2
1
2 +

βε
K

= −0.034 < 0.

Theorem 3.6 implies that the predator populations go to extinction and the prey is persistent in the mean. Fig. 2
confirms this. This also shows that large environmental noise can make population species extinct.
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Figure 2: The left figure is the solution (N(t),P(t)) of deterministic model (1). The right figure is the solution of autonomous stochastic
model (2) with σ1 = 0.1 and σ2 = 1.3. Hence large environmental noise can make population species extinct.

Example 5.2. In non-autonomous stochastic model (3), let the parameters be ε(t) = 0.08 + 0.06 sin t, K(t) = 100 +
90 sin t, a(t) = 1 + 0.5 sin t, β(t) = 2 + 0.8 sin t, γ(t) = 0.1 + 0.05 sin t, δ(t) = 0.3 + 0.1 sin t and b(t) = 0.9 + 0.6 sin t.
We choose σ1(t) = σ2(t) = 0.03 + 0.01 sin t, and then

bl

εu
(
1 +

βu

Kl

) 〈ε − σ2
1

2
〉θ − 〈γ +

σ2
2

2
〉θ > 0.

From Theorem 4.1 it follows that model (3) has a positive nontrivial periodic solution. Fig.3 confirms this.
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Figure 3: The right figure is the solution of stochastic model (3) and the left figure is corresponding solution of deterministic system.

Appendix

In this section, we will summarize some facts contained in [17].

Definition 5.3. A stochastic process x(t, ω) is said to be periodic with period θ if its finite dimensional distributions
are periodic with period θ, i.e., for any positive integer m and any moments of time t1, . . . , tm, the joint distributions
of the random variables x(t1+kθ, ω), . . . , x(tm+kθ, ω) are independent of k, (k = ±1,±2, . . .).

The transition function of a Markov process, p (v, x(v), t,A) = P (x(t) ∈ A |x(v) ) , a.s., is called periodic if
p (v, x(v), t + v,A) is periodic in v.

Consider the following periodic stochastic equation

dx(t) = f (t, x(t))dt + 1(t, x(t))dB(t), x ∈ Rn, (26)

where functions f and 1 are θ-periodic in t.

Lemma 5.4. Assume that system (26) admits a unique global solution. Suppose further that there exists a function
V(t, x) ∈ C2 in Rn which is θ-periodic in t, and satisfies the following conditions

inf
|x|>R

V(t, x)→∞ as R→∞, (27)

and

LV(t, x) ≤ −1 outside some compact set, (28)

where the operator L is defined by

LV(t, x) = Vt(t, x) + Vx(t, x) f (t, x) +
1
2

trace(gT(t, x)Vxx(t, x)g(t, x)).
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Then system (26) has a θ-periodic solution.
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