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Abstract. We find an upper bound for the Hausdorff dimension of the nondifferentiability set of a
continuous convex function defined on a Riemannian manifold. As an application, we show that the
boundary of a convex open subset of Rn, n ≥ 2, has Hausdorff dimension at most n − 2.

1. Introduction

There are many examples of nowhere differentiable continuous functions defined on a differentiable
manifold M. In fact, the set of this kind of functions is very big in some points of view. For example, it is
proved in [4] that if M is a compact differentiable manifold, then typical elements of the set of continuous
functions defined on M are nowhere differentiable. If we impose some important conditions such convexity
or Lipschitz condition on a continuous function f , then f is not nowhere differentiable. So, it is natural to
ask: how big can be the set of nondifferentiability points of f . The set of nondifferentiability points of a
directionally differentiable Lipschitz-function f defined on Rn is σ-porous (see [1]). Thus, it can be included
in a countable union of sets Ei with the property that for all x ∈ Ei and all 0 < r < 1, there exists 0 < δi(x) < 1

2
such that a ball B(y, δr) is included in B(x, r)− Ei. This argument also implies the best Hausdorff dimension
estimate, n − 1, for the set of nondifferentiability.

Also, one can find some measure theoric characterizations of the magnitude of the sets of nondifferen-
tiability points of convex functions defined on Rn (see [5]). In the present paper, by a preliminary proof, we
give an upper bound estimate for the Hausdorff dimension of the set of nondifferentiability points of convex
functions defined on Rn, then we generalize it to the convex functions defined on Riemannian manifolds.

2. Results

We will use the following definitions and facts in the proof of our theorems.
(a) A continuous function f : Rn

→ R is called convex if for all x, y ∈ Rn

a f (x) + (1 − a) f (y) ≤ f (ax + (1 − a)y), 0 ≤ a ≤ 1.
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and it is called concave if for all x, y ∈ Rn

a f (x) + (1 − a) f (y) ≥ f (ax + (1 − a)y), 0 ≤ a ≤ 1.

(b) Let X be a metric space. If A ⊂ X and s ∈ [0,∞), we put

Hs
δ(A) = inf

∑
i

rs
i : there is a cover of A by balls of radius 0 < ri ≤ δ

 .
The following limit which exits (see [3]), is called the s-dimensional Hausdorff content of A.

Hs(A) = lim
δ→0

Hs
δ(A).

The Hausdorff dimension of A is defined by

dimH(A) = inf{s : Hs(A) = 0}.

Fact 2.1. Let B be the collection of all line segments in R2 which have rational coordinates at the end points.
If L is a line segment in R2, it is clear that there is a line segment in B which cuts L. So, it is not hard to show
that each line segment in R3 cuts a triangle in R3 with vertices having rational coordinates. In more general
case, by using induction, we can show that each line segment in Rn cuts an (n − 1)-simplex with vertices
having rational coordinates.

Fact 2.2. If f : R → R is a convex or concave continuous function, then the set of points where f is not
differentiable is at most a countable set, so its Hausdorff dimension is zero.

The following theorem is a generalization of this fact.

Theorem 2.3. The Hausdorff dimension of the set of nondifferentiability points of a convex or concave function
f : Rn

→ R is at most n − 1.

Proof. The ideas of the proof comes from the proof of Theorem 12.3 in [3]. We give the proof for convex
functions. The other case is similar. Without lose of generality, we suppose that f is positive function.
Consider the graph of f , G f = {(x, f (x)) : x ∈ Rn

} ⊂ Rn+1. For each x ∈ Rn, let 1(x) be the point in G f which
the distance between (x, 0) ∈ Rn

× R = Rn+1 and 1(x) is least. We get from convexity of f that the map
1 : Rn

→ G f is well defined. Given (y, f (y)) ∈ G f , let Ty be a hyperplane in Rn+1 which is tangent to G f at
(y, f (y)), and let Ly be the line in Rn+1 which is perpendicular to Ty at (y, f (y)). Clearly, if (x, 0) = Ly∩(Rn

×{0}),
then 1(x) = (y, f (y)). If f is not differentiable at y, then there are infinitely many hyperplanes tangent to G f
at (y, f (y)) and infinitely many Ly such that intersection of these lines Ly with Rn

× {0} at least contains a
line segment in Rn

× {0} ' Rn. Put
A = {(y, f (y)) : f is not differentiable at y}

and
B= the union of all (n − 1)-simplexes in Rn with vertices having rational coordinates.

Since for each point (y, f (y)) ∈ (A), the set 1−1((y, f (y))) contains a line segment, then it intersects at least
one (n − 1)-simplex in Rn with vertices having rational coordinates. So, A ⊂ 1(B). We can show that
d(1(x), 1(y)) ≤ d(x, y), x, y ∈ Rn. Thus, dimH (A) ≤ dimH 1(B) ≤ dimH (B). Since dimH (B) = n − 1, then
dimH (A) ≤ n − 1. Now, consider the function F : Rn

→ Rn+1, defined by F(x) = (x, f (x)). The points of Rn

where F is not differentiable is equal to the set of points where f is not differentiable, and this set is mapped
by F to A. Since d(F(x),F(y)) ≥ d(x, y), then the theorem is proved.

Example 2.4. An easy example of a convex function with infinite set of nondifferentiability points is the
function h : [0, 1]→ R defined by h(x) =

∑
∞

n=1 2−n
|x− 1

n |. h can be extended to a convex function 1 : R→ R in
such a way that 1 be differentiable on R− [0, 1]. The set of nondifferentiability points of 1, which we denote
it byA1, is countable and dimH(A1) = 0. Put f : Rn

→ R, f (x1, ..., xn) = 1(x1). Clearly, f is convex andA f ,
the set of nondifferentiability points of f , is equal toA1 × Rn−1. Thus, dimHA f = n − 1.
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Theorem 2.5. If M is a submanifold of Rn+1 contained in the boundary of a convex open subset of Rn+1, then the
Hausdorff dimension of nondifferentiable points of M is at most n − 1.

Proof. We show that M is locally isometric to the graph of a convex function. Then, by Theorem 2.3, we
get the result. Let D be an open convex subset of Rn+1 such that M = ∂D and let a ∈ M. Consider an open
subset W of a hyperplane in Rn+1 with the following properties:

(1) W ⊂ D;
(2) There is a unit vector V perpendicular to W at a point y0, such that the half line y0 + tV, t ≥ 0, contains

a, and for all y ∈W, the half line y + tV, t ≥ 0, intersects M.
Let M1 be the set of points of M belonging to the mentioned half lines. Clearly M1 is open set in M containing
a.

Given x ∈W, let τ(x) be the intersection point of the half line x+ tV, t ≥ 0, and M1. Consider the function
f : W → R, f (x) = |τ(x) − x|. It is sufficient to prove the following assertions:

(1) f is well defined;
(2) f is convex;
(3) graph( f ) ⊂W × R is isometric to M1 ⊂ Rn+1.
(1): Consider a point x ∈ W. We show that the intersection point of the half line L = {x + tV, t ≥ 0} and

M1 is unique. Then, f will be well defined. Let y1 and y2 be two different points belonging to L ∩M1. Let
one of the points y1, y2, say y1, is contained between the points x and y2 on the half line L. Since y2 belongs
to the boundary of D and D is open, by an small rotation of the line segment xy2 around the point y1, we
get a line segment x′y′2 with x′, y′2 ∈ D. D is convex, so y1 ∈ D and we have a contradiction.

(2): Let 0 ≤ λ ≤ 1 and x, y ∈ D. Note that if x+sV = τ(x) then the half open line segment {x+tV : 0 ≤ t < s}
is included in D.

We show that

f (λx + (1 − λ)y) ≥ λ f (x) + (1 − λ) f (y) (1)

Let τ(x) = x+ s1V, τ(y) = y+ s2V. Then, for any positive number ε < min{s1, s2}, x+ (s1−ε)V, y+ (s2−ε)V ∈ D.
Thus, by convexity of D,

Aε = λ(x + (s1 − ε)V) + (1 − λ)(y + (s2 − ε)V) ∈ D (2)

Put B = λτ(x) + (1 − λ)τ(y), C1 = λx + (1 − λ)y and C = τ(C1) = C1 + s3V. It is an easy computation to show
that B (as like as C) belongs to the half line {C1 + tV : t ≥ 0}. Let B = C1 + s4V. Since limε→0 Aε = B, then
B ∈ D, so s4 ≤ s3.

Now, we have

f (λx + (1 − λ)y) = f (C1) = |τ(C1) − C1| = s3|V| ≥ s4|V|

= |B − C1| = |λτ(x) + (1 − λ)τ(y) − (λx + (1 − λ)y)|

= |λ(τ(x) − x) + (1 − λ)(τ(y) − y)|.

Since the vectors τ(x) − x and τ(y) − y in Rn+1 are both perpendicular to the hyperplane W, then

|λ(τ(x) − x) + (1 − λ)(τ(y) − y)| = |λ(τ(x) − x)| + |(1 − λ)(τ(y) − y)|

= λ f (x) + (1 − λ) f (y).

Thus,

f (λx + (1 − λ)y) ≥ λ f (x) + (1 − λ) f (y).

(3) Define the map ψ : graph( f ) ⊂W × R→M1 ⊂ Rn+1 by

ψ(x, f (x)) = x + |τ(x) − x|V.
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Clearly, ψ is one to one and onto, and we have:

d2(ψ(x, f (x)), ψ(y, f (y))) = |ψ(x, f (x)) − ψ(y, f (y))|2

= |(x + |τ(x) − x|V) − (y + |τ(y) − y|V)|2 (?)

Since x, y belong to the hyperplane W, and V is perpendicular to W, then (?) will be equal to

|(x − y)|2 + |(x − τ(x)) − (y − τ(y))|2 = |x − y|2 + | f (x) − f (y)|2

= d2((x, f (x)), (y, f (y))).

Thus, ψ is an isometry.

Example 2.6. Let ∆ be a triangle in R2 with vertices A,B,C, and ∆o be its interior. Put M = ∆ × Rn−1. M
is boundary of the convex set ∆o

× Rn−1
⊂ Rn+1. The set of nondifferentiability points of M is equal to

{A,B,C} × Rn−1, which is of Hausdorff dimension n − 1.

Remark 2.7. If M is a Riemannian manifold, a function f : M → R is called convex if for each geodesic
γ : I→M, the function f ◦ γ : I→ R is convex.

Theorem 2.8. If M is a complete Riemannian manifold and f : M → R is a convex function, then the Hausdorff
dimension of nondifferentiability set of f is at most dim M − 1.

Proof. It is sufficient to show that each point a ∈ M has an open neighborhood W such that the theorem is
true for the function f : W → R. By Nash’s embedding theorem, M can be considered as a Riemannian
submanifold of Rn for some n > dim M. Given a ∈M, consider an open set W in M around a with compact
closure W. There exists a tube U = U(W, r) = {x ∈ Rn : d(x,W) < r} of radius r around W in Rn, with the
property that for each x ∈ U, there exists only one point xW ∈W such that

d(x,W) = d(x, xW ) (?)

Now, consider the following function which is an extension of f to U

F : U ⊂ Rn
→ R, F(x) = f (xW ).

We show that F is a convex function.
Let x, y ∈ U and 0 ≤ λ ≤ 1. Put z = λx + (1 − λ)y. Consider the points xM , yM , zW in W with the property

(?). Let α, β be geodesics in W such that α(0) = xW , α(1) = zW = β(1) and β(0) = yW .
Consider the points xs = α(s) and ys = β(s), 0 < s < 1, on α and β, close to zW such that there is a

minimizing geodesic γs : [0, 1]→W joining xs to ys. Since f is convex on W, then

f (γs(λ)) ≤ λ f (α(s)) + (1 − λ) f (β(s)) (1)

f (α(s)) ≤ s f (xW) + (1 − s) f (zW) (2)

f (β(s)) ≤ (1 − s) f (zM) + s f (yW) (3)

If s→ 1 then γs(λ)→ zW , so if we let s→ 1 in (1), (2) and (3), then we get

f (zW ) ≤ λ f (xW ) + (1 − λ) f (yW ).

Therefore,

F(z) ≤ λF(x) + (1 − λ)F(y).

This means that F is convex. Since U is open in Rn, we get from Theorem 2.3, that the dimension of the set of
nondifferentiability points of F is at most n−1. Consider a point x ∈ U. If f is not differentiable at xW then F is
nondifferentiable along the line segment xxW . So, the Hausdorff dimension of the set of nondifferentiability
points of f is less than or equal to dim M − 1( because, if the dimension of nondifferntiability set of f is
bigger than dimM − 1, then the Hausdorff dimension of the set of nondifferentiability points of F must be
bigger than dim M − 1 + (n − dim M) = n − 1, which is contradiction).
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