Filomat 31:18 (2017), 5827–5831 https://doi.org/10.2298/FIL1718827M

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Hausdorff Dimension of the Nondifferentiability Set of a Convex Function

Reza Mirzaie^a

^aDepartment of Mathematics, Faculty of Science, Imam Khomeini International University (IKIU), Qazvin, Iran

Abstract. We find an upper bound for the Hausdorff dimension of the nondifferentiability set of a continuous convex function defined on a Riemannian manifold. As an application, we show that the boundary of a convex open subset of \mathbb{R}^n , $n \ge 2$, has Hausdorff dimension at most n - 2.

1. Introduction

There are many examples of nowhere differentiable continuous functions defined on a differentiable manifold *M*. In fact, the set of this kind of functions is very big in some points of view. For example, it is proved in [4] that if *M* is a compact differentiable manifold, then typical elements of the set of continuous functions defined on *M* are nowhere differentiable. If we impose some important conditions such convexity or Lipschitz condition on a continuous function *f*, then *f* is not nowhere differentiable. So, it is natural to ask: how big can be the set of nondifferentiability points of *f*. The set of nondifferentiabile Lipschitz-function *f* defined on R^n is σ -porous (see [1]). Thus, it can be included in a countable union of sets E_i with the property that for all $x \in E_i$ and all 0 < r < 1, there exists $0 < \delta_i(x) < \frac{1}{2}$ such that a ball $B(y, \delta r)$ is included in $B(x, r) - E_i$. This argument also implies the best Hausdorff dimension estimate, n - 1, for the set of nondifferentiability.

Also, one can find some measure theoric characterizations of the magnitude of the sets of nondifferentiability points of convex functions defined on R^n (see [5]). In the present paper, by a preliminary proof, we give an upper bound estimate for the Hausdorff dimension of the set of nondifferentiability points of convex functions defined on R^n , then we generalize it to the convex functions defined on Riemannian manifolds.

2. Results

We will use the following definitions and facts in the proof of our theorems. (a) A continuous function $f : \mathbb{R}^n \to \mathbb{R}$ is called convex if for all $x, y \in \mathbb{R}^n$

 $af(x) + (1-a)f(y) \le f(ax + (1-a)y), \ 0 \le a \le 1.$

Communicated by Ljubiša D. R. Kočinac

²⁰¹⁰ Mathematics Subject Classification. Primary 53C30; Secondary 57S25, 26B25

Keywords. Hausdorff dimension, convex function, Riemannian manifold

Received: 22 August 2016; Revised: 08 April 2017; Accepted: 12 April 2017

Email address: r.mirzaei@sci.ikiu.ac.ir (Reza Mirzaie)

and it is called concave if for all $x, y \in \mathbb{R}^n$

$$af(x) + (1-a)f(y) \ge f(ax + (1-a)y), \ 0 \le a \le 1.$$

(b) Let *X* be a metric space. If $A \subset X$ and $s \in [0, \infty)$, we put

$$H^{s}_{\delta}(A) = \inf \left\{ \sum_{i} r^{s}_{i} : \text{ there is a cover of A by balls of radius } 0 < r_{i} \le \delta \right\}.$$

The following limit which exits (see [3]), is called the *s*-dimensional Hausdorff content of *A*.

$$H^{s}(A) = \lim_{\delta \to 0} H^{s}_{\delta}(A).$$

The Hausdorff dimension of *A* is defined by

 $\dim_H(A) = \inf\{s : H^s(A) = 0\}.$

Fact 2.1. Let *B* be the collection of all line segments in R^2 which have rational coordinates at the end points. If *L* is a line segment in R^2 , it is clear that there is a line segment in *B* which cuts *L*. So, it is not hard to show that each line segment in R^3 cuts a triangle in R^3 with vertices having rational coordinates. In more general case, by using induction, we can show that each line segment in R^n cuts an (n - 1)-simplex with vertices having rational coordinates.

Fact 2.2. If $f : R \to R$ is a convex or concave continuous function, then the set of points where *f* is not differentiable is at most a countable set, so its Hausdorff dimension is zero.

The following theorem is a generalization of this fact.

Theorem 2.3. The Hausdorff dimension of the set of nondifferentiability points of a convex or concave function $f : \mathbb{R}^n \to \mathbb{R}$ is at most n - 1.

Proof. The ideas of the proof comes from the proof of Theorem 12.3 in [3]. We give the proof for convex functions. The other case is similar. Without lose of generality, we suppose that f is positive function. Consider the graph of f, $\mathcal{G}_f = \{(x, f(x)) : x \in \mathbb{R}^n\} \subset \mathbb{R}^{n+1}$. For each $x \in \mathbb{R}^n$, let g(x) be the point in \mathcal{G}_f which the distance between $(x, 0) \in \mathbb{R}^n \times \mathbb{R} = \mathbb{R}^{n+1}$ and g(x) is least. We get from convexity of f that the map $g : \mathbb{R}^n \to \mathcal{G}_f$ is well defined. Given $(y, f(y)) \in \mathcal{G}_f$, let T_y be a hyperplane in \mathbb{R}^{n+1} which is tangent to \mathcal{G}_f at (y, f(y)), and let L_y be the line in \mathbb{R}^{n+1} which is perpendicular to T_y at (y, f(y)). Clearly, if $(x, 0) = L_y \cap (\mathbb{R}^n \times \{0\})$, then g(x) = (y, f(y)). If f is not differentiable at y, then there are infinitely many hyperplanes tangent to \mathcal{G}_f at (y, f(y)) and infinitely many Ly such that intersection of these lines L_y with $\mathbb{R}^n \times \{0\}$ at least contains a line segment in $\mathbb{R}^n \times \{0\} \cong \mathbb{R}^n$. Put

 $A = \{(y, f(y)) : f \text{ is not differentiable at } y\}$ and

B = the union of all (n - 1)-simplexes in R^n with vertices having rational coordinates.

Since for each point $(y, f(y)) \in (A)$, the set $g^{-1}((y, f(y)))$ contains a line segment, then it intersects at least one (n - 1)-simplex in \mathbb{R}^n with vertices having rational coordinates. So, $A \subset g(B)$. We can show that $d(g(x), g(y)) \leq d(x, y), x, y \in \mathbb{R}^n$. Thus, $\dim_H(A) \leq \dim_H g(B) \leq \dim_H(B)$. Since $\dim_H(B) = n - 1$, then $\dim_H(A) \leq n - 1$. Now, consider the function $F : \mathbb{R}^n \to \mathbb{R}^{n+1}$, defined by F(x) = (x, f(x)). The points of \mathbb{R}^n where F is not differentiable is equal to the set of points where f is not differentiable, and this set is mapped by F to A. Since $d(F(x), F(y)) \geq d(x, y)$, then the theorem is proved. \Box

Example 2.4. An easy example of a convex function with infinite set of nondifferentiability points is the function $h : [0, 1] \to R$ defined by $h(x) = \sum_{n=1}^{\infty} 2^{-n} |x - \frac{1}{n}|$. h can be extended to a convex function $g : R \to R$ in such a way that g be differentiable on R - [0, 1]. The set of nondifferentiability points of g, which we denote it by \mathcal{A}_g , is countable and dim_H(\mathcal{A}_g) = 0. Put $f : R^n \to R$, $f(x_1, ..., x_n) = g(x_1)$. Clearly, f is convex and \mathcal{A}_f , the set of nondifferentiability points of f, is equal to $\mathcal{A}_g \times R^{n-1}$. Thus, dim_H $\mathcal{A}_f = n - 1$.

5828

Theorem 2.5. If *M* is a submanifold of \mathbb{R}^{n+1} contained in the boundary of a convex open subset of \mathbb{R}^{n+1} , then the Hausdorff dimension of nondifferentiable points of *M* is at most n - 1.

Proof. We show that *M* is locally isometric to the graph of a convex function. Then, by Theorem 2.3, we get the result. Let *D* be an open convex subset of R^{n+1} such that $M = \partial D$ and let $a \in M$. Consider an open subset *W* of a hyperplane in R^{n+1} with the following properties:

(1) $W \subset D$;

(2) There is a unit vector *V* perpendicular to *W* at a point y_0 , such that the half line $y_0 + tV$, $t \ge 0$, contains *a*, and for all $y \in W$, the half line y + tV, $t \ge 0$, intersects *M*.

Let M_1 be the set of points of M belonging to the mentioned half lines. Clearly M_1 is open set in M containing a.

Given $x \in W$, let $\tau(x)$ be the intersection point of the half line x + tV, $t \ge 0$, and M_1 . Consider the function $f : W \to R$, $f(x) = |\tau(x) - x|$. It is sufficient to prove the following assertions:

(1) *f* is well defined;

(2) f is convex;

(3) graph(f) \subset $W \times R$ is isometric to $M_1 \subset R^{n+1}$.

(1): Consider a point $x \in W$. We show that the intersection point of the half line $L = \{x + tV, t \ge 0\}$ and M_1 is unique. Then, f will be well defined. Let y_1 and y_2 be two different points belonging to $L \cap M_1$. Let one of the points y_1, y_2 , say y_1 , is contained between the points x and y_2 on the half line L. Since y_2 belongs to the boundary of D and D is open, by an small rotation of the line segment xy_2 around the point y_1 , we get a line segment $x'y'_2$ with $x', y'_2 \in D$. D is convex, so $y_1 \in D$ and we have a contradiction.

(2): Let $0 \le \lambda \le 1$ and $x, y \in D$. Note that if $x+sV = \tau(x)$ then the half open line segment $\{x+tV : 0 \le t < s\}$ is included in *D*.

We show that

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)$$
(1)

Let $\tau(x) = x + s_1 V$, $\tau(y) = y + s_2 V$. Then, for any positive number $\epsilon < min\{s_1, s_2\}$, $x + (s_1 - \epsilon)V$, $y + (s_2 - \epsilon)V \in D$. Thus, by convexity of D,

$$A_{\epsilon} = \lambda (x + (s_1 - \epsilon)V) + (1 - \lambda)(y + (s_2 - \epsilon)V) \in D$$
(2)

Put $B = \lambda \tau(x) + (1 - \lambda)\tau(y)$, $C_1 = \lambda x + (1 - \lambda)y$ and $C = \tau(C_1) = C_1 + s_3 V$. It is an easy computation to show that *B* (as like as *C*) belongs to the half line $\{C_1 + tV : t \ge 0\}$. Let $B = C_1 + s_4 V$. Since $\lim_{\epsilon \to 0} A_{\epsilon} = B$, then $B \in \overline{D}$, so $s_4 \le s_3$.

Now, we have

$$\begin{aligned} f(\lambda x + (1 - \lambda)y) &= f(C_1) = |\tau(C_1) - C_1| = s_3 |V| \ge s_4 |V| \\ &= |B - C_1| = |\lambda \tau(x) + (1 - \lambda)\tau(y) - (\lambda x + (1 - \lambda)y)| \\ &= |\lambda(\tau(x) - x) + (1 - \lambda)(\tau(y) - y)|. \end{aligned}$$

Since the vectors $\tau(x) - x$ and $\tau(y) - y$ in \mathbb{R}^{n+1} are both perpendicular to the hyperplane W, then

$$|\lambda(\tau(x)-x)+(1-\lambda)(\tau(y)-y)|=|\lambda(\tau(x)-x)|+|(1-\lambda)(\tau(y)-y)|$$

$$= \lambda f(x) + (1 - \lambda)f(y)$$

Thus,

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y).$$

(3) Define the map ψ : graph(f) \subset $W \times R \rightarrow M_1 \subset R^{n+1}$ by

$$\psi(x, f(x)) = x + |\tau(x) - x|V.$$

Clearly, ψ is one to one and onto, and we have:

$$d^{2}(\psi(x, f(x)), \psi(y, f(y))) = |\psi(x, f(x)) - \psi(y, f(y))|^{2}$$

 $= |(x + |\tau(x) - x|V) - (y + |\tau(y) - y|V)|^2 \quad (\star)$

Since *x*, *y* belong to the hyperplane *W*, and *V* is perpendicular to *W*, then (\star) will be equal to

$$|(x - y)|^{2} + |(x - \tau(x)) - (y - \tau(y))|^{2} = |x - y|^{2} + |f(x) - f(y)|^{2}$$

Thus, ψ is an isometry. \Box

 $= d^{2}((x, f(x)), (y, f(y))).$

Example 2.6. Let Δ be a triangle in \mathbb{R}^2 with vertices A, B, C, and Δ^o be its interior. Put $M = \Delta \times \mathbb{R}^{n-1}$. *M* is boundary of the convex set $\Delta^o \times \mathbb{R}^{n-1} \subset \mathbb{R}^{n+1}$. The set of nondifferentiability points of *M* is equal to $\{A, B, C\} \times \mathbb{R}^{n-1}$, which is of Hausdorff dimension n - 1.

Remark 2.7. If *M* is a Riemannian manifold, a function $f : M \to R$ is called convex if for each geodesic $\gamma : I \to M$, the function $f \circ \gamma : I \to R$ is convex.

Theorem 2.8. *If* M *is a complete Riemannian manifold and* $f : M \to R$ *is a convex function, then the Hausdorff dimension of nondifferentiability set of* f *is at most* dim M - 1.

Proof. It is sufficient to show that each point $a \in M$ has an open neighborhood W such that the theorem is true for the function $f : W \to R$. By Nash's embedding theorem, M can be considered as a Riemannian submanifold of \mathbb{R}^n for some $n > \dim M$. Given $a \in M$, consider an open set W in M around a with compact closure \overline{W} . There exists a tube $U = U(W, r) = \{x \in \mathbb{R}^n : d(x, W) < r\}$ of radius r around W in \mathbb{R}^n , with the property that for each $x \in U$, there exists only one point $x_w \in W$ such that

$$d(x,W) = d(x,x_w) \quad (\bigstar$$

Now, consider the following function which is an extension of f to U

 $F: U \subset \mathbb{R}^n \to \mathbb{R}, \ F(x) = f(x_w).$

We show that *F* is a convex function.

Let $x, y \in U$ and $0 \le \lambda \le 1$. Put $z = \lambda x + (1 - \lambda)y$. Consider the points x_M, y_M, z_W in *W* with the property (\star). Let α, β be geodesics in *W* such that $\alpha(0) = x_W, \alpha(1) = z_W = \beta(1)$ and $\beta(0) = y_W$.

Consider the points $x_s = \alpha(s)$ and $y_s = \beta(s)$, 0 < s < 1, on α and β , close to z_w such that there is a minimizing geodesic $\gamma_s : [0, 1] \rightarrow W$ joining x_s to y_s . Since f is convex on W, then

$$f(\gamma_s(\lambda)) \le \lambda f(\alpha(s)) + (1 - \lambda)f(\beta(s)) \quad (1)$$

$$f(\alpha(s)) \le sf(x_W) + (1-s)f(z_W) \quad (2)$$

$$f(\beta(s)) \le (1-s)f(z_M) + sf(y_W)$$
 (3)

If $s \to 1$ then $\gamma_s(\lambda) \to z_w$, so if we let $s \to 1$ in (1), (2) and (3), then we get

$$f(z_w) \leq \lambda f(x_w) + (1 - \lambda) f(y_w).$$

Therefore,

$$F(z) \le \lambda F(x) + (1 - \lambda)F(y).$$

This means that *F* is convex. Since *U* is open in \mathbb{R}^n , we get from Theorem 2.3, that the dimension of the set of nondifferentiability points of *F* is at most n-1. Consider a point $x \in U$. If *f* is not differentiable at x_w then *F* is nondifferentiable along the line segment xx_w . So, the Hausdorff dimension of the set of nondifferentiability points of *f* is less than or equal to dim M - 1 (because, if the dimension of nondifferentiability set of *f* is bigger than dimM - 1, then the Hausdorff dimension of the set of nondifferentiability points of *F* must be bigger than dim $M - 1 + (n - \dim M) = n - 1$, which is contradiction).

5830

References

- [1] G. Alberti, M. Csornyei, D. Preiss, Differentiability of Lipschitz functions, Structure of null sets, and other problems, Proc. Internat. Congress Math. Vol. III, 1379–1394 (Hindustan Book Agency, New Delhi, 2010).
- [2] R. Darst, The Hausdorff dimension of the nondifferentiability set of the Cantor function is $\frac{\ln(2)}{\ln(3)^2}$, Proc. Amer. Math. Soc. 119 (1993) 105–108.
- [3] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, (3rd Edition), New York: Jon Wiley and Sons, 2014.
 [4] R. Mirzaie, On typical compact submanifolds of Euclidean space, Ukrainian Math. J. 65 (2013) 1009–1014.
 [5] D. Pavalica, On the points of non-differentiability of convex functions, Comment. Math. Univ. Carolinae 45 (2004) 727–734.