Hausdorff Dimension of the Nondifferentiability Set of a Convex Function

Reza Mirzaie ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Faculty of Science, Imam Khomeini International University (IKIU), Qazvin, Iran

Abstract

We find an upper bound for the Hausdorff dimension of the nondifferentiability set of a continuous convex function defined on a Riemannian manifold. As an application, we show that the boundary of a convex open subset of $R^{n}, n \geq 2$, has Hausdorff dimension at most $n-2$.

1. Introduction

There are many examples of nowhere differentiable continuous functions defined on a differentiable manifold M. In fact, the set of this kind of functions is very big in some points of view. For example, it is proved in [4] that if M is a compact differentiable manifold, then typical elements of the set of continuous functions defined on M are nowhere differentiable. If we impose some important conditions such convexity or Lipschitz condition on a continuous function f, then f is not nowhere differentiable. So, it is natural to ask: how big can be the set of nondifferentiability points of f. The set of nondifferentiability points of a directionally differentiable Lipschitz-function f defined on R^{n} is σ-porous (see [1]). Thus, it can be included in a countable union of sets E_{i} with the property that for all $x \in E_{i}$ and all $0<r<1$, there exists $0<\delta_{i}(x)<\frac{1}{2}$ such that a ball $B(y, \delta r)$ is included in $B(x, r)-E_{i}$. This argument also implies the best Hausdorff dimension estimate, $n-1$, for the set of nondifferentiability.

Also, one can find some measure theoric characterizations of the magnitude of the sets of nondifferentiability points of convex functions defined on R^{n} (see [5]). In the present paper, by a preliminary proof, we give an upper bound estimate for the Hausdorff dimension of the set of nondifferentiability points of convex functions defined on R^{n}, then we generalize it to the convex functions defined on Riemannian manifolds.

2. Results

We will use the following definitions and facts in the proof of our theorems.
(a) A continuous function $f: R^{n} \rightarrow R$ is called convex if for all $x, y \in R^{n}$

$$
a f(x)+(1-a) f(y) \leq f(a x+(1-a) y), \quad 0 \leq a \leq 1 .
$$

[^0]and it is called concave if for all $x, y \in R^{n}$
$$
a f(x)+(1-a) f(y) \geq f(a x+(1-a) y), \quad 0 \leq a \leq 1
$$
(b) Let X be a metric space. If $A \subset X$ and $s \in[0, \infty)$, we put
$$
H_{\delta}^{s}(A)=\inf \left\{\sum_{i} r_{i}^{s}: \text { there is a cover of } \mathrm{A} \text { by balls of radius } 0<r_{i} \leq \delta\right\}
$$

The following limit which exits (see [3]), is called the s-dimensional Hausdorff content of A.

$$
H^{s}(A)=\lim _{\delta \rightarrow 0} H_{\delta}^{s}(A)
$$

The Hausdorff dimension of A is defined by

$$
\operatorname{dim}_{H}(A)=\inf \left\{s: H^{s}(A)=0\right\}
$$

Fact 2.1. Let B be the collection of all line segments in R^{2} which have rational coordinates at the end points. If L is a line segment in R^{2}, it is clear that there is a line segment in B which cuts L. So, it is not hard to show that each line segment in R^{3} cuts a triangle in R^{3} with vertices having rational coordinates. In more general case, by using induction, we can show that each line segment in R^{n} cuts an ($n-1$)-simplex with vertices having rational coordinates.

Fact 2.2. If $f: R \rightarrow R$ is a convex or concave continuous function, then the set of points where f is not differentiable is at most a countable set, so its Hausdorff dimension is zero.

The following theorem is a generalization of this fact.
Theorem 2.3. The Hausdorff dimension of the set of nondifferentiability points of a convex or concave function $f: R^{n} \rightarrow R$ is at most $n-1$.

Proof. The ideas of the proof comes from the proof of Theorem 12.3 in [3]. We give the proof for convex functions. The other case is similar. Without lose of generality, we suppose that f is positive function. Consider the graph of $f, \mathcal{G}_{f}=\left\{(x, f(x)): x \in R^{n}\right\} \subset R^{n+1}$. For each $x \in R^{n}$, let $g(x)$ be the point in \mathcal{G}_{f} which the distance between $(x, 0) \in R^{n} \times R=R^{n+1}$ and $g(x)$ is least. We get from convexity of f that the map $g: R^{n} \rightarrow \mathcal{G}_{f}$ is well defined. Given $(y, f(y)) \in \mathcal{G}_{f}$, let T_{y} be a hyperplane in R^{n+1} which is tangent to \mathcal{G}_{f} at $(y, f(y))$, and let L_{y} be the line in R^{n+1} which is perpendicular to T_{y} at $(y, f(y))$. Clearly, if $(x, 0)=L_{y} \cap\left(R^{n} \times\{0\}\right)$, then $g(x)=(y, f(y))$. If f is not differentiable at y, then there are infinitely many hyperplanes tangent to \mathcal{G}_{f} at ($y, f(y)$) and infinitely many $L y$ such that intersection of these lines L_{y} with $R^{n} \times\{0\}$ at least contains a line segment in $R^{n} \times\{0\} \simeq R^{n}$. Put
$A=\{(y, f(y)): f$ is not differentiable at $y\}$ and
$B=$ the union of all $(n-1)$-simplexes in R^{n} with vertices having rational coordinates.
Since for each point $(y, f(y)) \in(A)$, the set $g^{-1}((y, f(y)))$ contains a line segment, then it intersects at least one ($n-1$)-simplex in R^{n} with vertices having rational coordinates. So, $A \subset g(B)$. We can show that $d(g(x), g(y)) \leq d(x, y), x, y \in R^{n}$. Thus, $\operatorname{dim}_{H}(A) \leq \operatorname{dim}_{H} g(B) \leq \operatorname{dim}_{H}(B)$. Since $\operatorname{dim}_{H}(B)=n-1$, then $\operatorname{dim}_{H}(A) \leq n-1$. Now, consider the function $F: R^{n} \rightarrow R^{n+1}$, defined by $F(x)=(x, f(x))$. The points of R^{n} where F is not differentiable is equal to the set of points where f is not differentiable, and this set is mapped by F to A. Since $d(F(x), F(y)) \geq d(x, y)$, then the theorem is proved.

Example 2.4. An easy example of a convex function with infinite set of nondifferentiability points is the function $h:[0,1] \rightarrow R$ defined by $h(x)=\sum_{n=1}^{\infty} 2^{-n}\left|x-\frac{1}{n}\right|$. h can be extended to a convex function $g: R \rightarrow R$ in such a way that g be differentiable on $R-[0,1]$. The set of nondifferentiability points of g, which we denote it by \mathcal{A}_{g}, is countable and $\operatorname{dim}_{H}\left(\mathcal{A}_{g}\right)=0$. Put $f: R^{n} \rightarrow R, f\left(x_{1}, \ldots, x_{n}\right)=g\left(x_{1}\right)$. Clearly, f is convex and \mathcal{A}_{f}, the set of nondifferentiability points of f, is equal to $\mathcal{A}_{g} \times R^{n-1}$. Thus, $\operatorname{dim}_{H} \mathcal{A}_{f}=n-1$.

Theorem 2.5. If M is a submanifold of R^{n+1} contained in the boundary of a convex open subset of R^{n+1}, then the Hausdorff dimension of nondifferentiable points of M is at most $n-1$.

Proof. We show that M is locally isometric to the graph of a convex function. Then, by Theorem 2.3, we get the result. Let D be an open convex subset of R^{n+1} such that $M=\partial D$ and let $a \in M$. Consider an open subset W of a hyperplane in R^{n+1} with the following properties:
(1) $W \subset D$;
(2) There is a unit vector V perpendicular to W at a point y_{0}, such that the half line $y_{0}+t V, t \geq 0$, contains a, and for all $y \in W$, the half line $y+t V, t \geq 0$, intersects M.
Let M_{1} be the set of points of M belonging to the mentioned half lines. Clearly M_{1} is open set in M containing a.

Given $x \in W$, let $\tau(x)$ be the intersection point of the half line $x+t V, t \geq 0$, and M_{1}. Consider the function $f: W \rightarrow R, f(x)=|\tau(x)-x|$. It is sufficient to prove the following assertions:
(1) f is well defined;
(2) f is convex;
(3) $\operatorname{graph}(f) \subset W \times R$ is isometric to $M_{1} \subset R^{n+1}$.
(1): Consider a point $x \in W$. We show that the intersection point of the half line $L=\{x+t V, t \geq 0\}$ and M_{1} is unique. Then, f will be well defined. Let y_{1} and y_{2} be two different points belonging to $L \cap M_{1}$. Let one of the points y_{1}, y_{2}, say y_{1}, is contained between the points x and y_{2} on the half line L. Since y_{2} belongs to the boundary of D and D is open, by an small rotation of the line segment $x y_{2}$ around the point y_{1}, we get a line segment $x^{\prime} y_{2}^{\prime}$ with $x^{\prime}, y_{2}^{\prime} \in D$. D is convex, so $y_{1} \in D$ and we have a contradiction.
(2): Let $0 \leq \lambda \leq 1$ and $x, y \in D$. Note that if $x+s V=\tau(x)$ then the half open line segment $\{x+t V: 0 \leq t<s\}$ is included in D.

We show that

$$
\begin{equation*}
f(\lambda x+(1-\lambda) y) \geq \lambda f(x)+(1-\lambda) f(y) \tag{1}
\end{equation*}
$$

Let $\tau(x)=x+s_{1} V, \tau(y)=y+s_{2} V$. Then, for any positive number $\epsilon<\min \left\{s_{1}, s_{2}\right\}, x+\left(s_{1}-\epsilon\right) V, y+\left(s_{2}-\epsilon\right) V \in D$. Thus, by convexity of D,

$$
\begin{equation*}
A_{\epsilon}=\lambda\left(x+\left(s_{1}-\epsilon\right) V\right)+(1-\lambda)\left(y+\left(s_{2}-\epsilon\right) V\right) \in D \tag{2}
\end{equation*}
$$

Put $B=\lambda \tau(x)+(1-\lambda) \tau(y), C_{1}=\lambda x+(1-\lambda) y$ and $C=\tau\left(C_{1}\right)=C_{1}+s_{3} V$. It is an easy computation to show that B (as like as C) belongs to the half line $\left\{C_{1}+t V: t \geq 0\right\}$. Let $B=C_{1}+s_{4} V$. Since $\lim _{\epsilon \rightarrow 0} A_{\epsilon}=B$, then $B \in \bar{D}$, so $s_{4} \leq s_{3}$.

Now, we have

$$
\begin{aligned}
& f(\lambda x+(1-\lambda) y)=f\left(C_{1}\right)=\left|\tau\left(C_{1}\right)-C_{1}\right|=s_{3}|V| \geq s_{4}|V| \\
& =\left|B-C_{1}\right|=|\lambda \tau(x)+(1-\lambda) \tau(y)-(\lambda x+(1-\lambda) y)| \\
& =|\lambda(\tau(x)-x)+(1-\lambda)(\tau(y)-y)| .
\end{aligned}
$$

Since the vectors $\tau(x)-x$ and $\tau(y)-y$ in R^{n+1} are both perpendicular to the hyperplane W, then

$$
\begin{aligned}
& |\lambda(\tau(x)-x)+(1-\lambda)(\tau(y)-y)|=|\lambda(\tau(x)-x)|+|(1-\lambda)(\tau(y)-y)| \\
& =\lambda f(x)+(1-\lambda) f(y)
\end{aligned}
$$

Thus,

$$
f(\lambda x+(1-\lambda) y) \geq \lambda f(x)+(1-\lambda) f(y)
$$

(3) Define the map $\psi: \operatorname{graph}(f) \subset W \times R \rightarrow M_{1} \subset R^{n+1}$ by

$$
\psi(x, f(x))=x+|\tau(x)-x| V .
$$

Clearly, ψ is one to one and onto, and we have:

$$
\begin{aligned}
& d^{2}(\psi(x, f(x)), \psi(y, f(y)))=|\psi(x, f(x))-\psi(y, f(y))|^{2} \\
& =|(x+|\tau(x)-x| V)-(y+|\tau(y)-y| V)|^{2}
\end{aligned}
$$

Since x, y belong to the hyperplane W, and V is perpendicular to W, then (\star) will be equal to

$$
\begin{aligned}
& |(x-y)|^{2}+|(x-\tau(x))-(y-\tau(y))|^{2}=|x-y|^{2}+|f(x)-f(y)|^{2} \\
& =d^{2}((x, f(x)),(y, f(y))) .
\end{aligned}
$$

Thus, ψ is an isometry.
Example 2.6. Let Δ be a triangle in R^{2} with vertices A, B, C, and Δ^{o} be its interior. Put $M=\Delta \times R^{n-1}$. M is boundary of the convex set $\Delta^{0} \times R^{n-1} \subset R^{n+1}$. The set of nondifferentiability points of M is equal to $\{A, B, C\} \times R^{n-1}$, which is of Hausdorff dimension $n-1$.

Remark 2.7. If M is a Riemannian manifold, a function $f: M \rightarrow R$ is called convex if for each geodesic $\gamma: I \rightarrow M$, the function $f \circ \gamma: I \rightarrow R$ is convex.
Theorem 2.8. If M is a complete Riemannian manifold and $f: M \rightarrow R$ is a convex function, then the Hausdorff dimension of nondifferentiability set of f is at most $\operatorname{dim} M-1$.

Proof. It is sufficient to show that each point $a \in M$ has an open neighborhood W such that the theorem is true for the function $f: W \rightarrow R$. By Nash's embedding theorem, M can be considered as a Riemannian submanifold of R^{n} for some $n>\operatorname{dim} M$. Given $a \in M$, consider an open set W in M around a with compact closure \bar{W}. There exists a tube $U=U(W, r)=\left\{x \in R^{n}: d(x, W)<r\right\}$ of radius r around W in R^{n}, with the property that for each $x \in U$, there exists only one point $x_{w} \in W$ such that

$$
d(x, W)=d\left(x, x_{w}\right)
$$

Now, consider the following function which is an extension of f to U

$$
F: U \subset R^{n} \rightarrow R, F(x)=f\left(x_{\mathrm{w}}\right)
$$

We show that F is a convex function.
Let $x, y \in U$ and $0 \leq \lambda \leq 1$. Put $z=\lambda x+(1-\lambda) y$. Consider the points x_{M}, y_{M}, z_{w} in W with the property (\star). Let α, β be geodesics in W such that $\alpha(0)=x_{w}, \alpha(1)=z_{w}=\beta(1)$ and $\beta(0)=y_{w}$.

Consider the points $x_{s}=\alpha(s)$ and $y_{s}=\beta(s), 0<s<1$, on α and β, close to z_{w} such that there is a minimizing geodesic $\gamma_{s}:[0,1] \rightarrow W$ joining x_{s} to y_{s}. Since f is convex on W, then

$$
\begin{align*}
& f\left(\gamma_{s}(\lambda)\right) \leq \lambda f(\alpha(s))+(1-\lambda) f(\beta(s)) \tag{1}\\
& f(\alpha(s)) \leq s f\left(x_{W}\right)+(1-s) f\left(z_{W}\right) \tag{2}\\
& f(\beta(s)) \leq(1-s) f\left(z_{M}\right)+s f\left(y_{W}\right) \tag{3}
\end{align*}
$$

If $s \rightarrow 1$ then $\gamma_{s}(\lambda) \rightarrow z_{w}$, so if we let $s \rightarrow 1$ in (1), (2) and (3), then we get

$$
f\left(z_{w}\right) \leq \lambda f\left(x_{w}\right)+(1-\lambda) f\left(y_{w}\right) .
$$

Therefore,

$$
F(z) \leq \lambda F(x)+(1-\lambda) F(y)
$$

This means that F is convex. Since U is open in R^{n}, we get from Theorem 2.3, that the dimension of the set of nondifferentiability points of F is at most $n-1$. Consider a point $x \in U$. If f is not differentiable at x_{w} then F is nondifferentiable along the line segment $x x_{\mathrm{w}}$. So, the Hausdorff dimension of the set of nondifferentiability points of f is less than or equal to $\operatorname{dim} M-1$ (because, if the dimension of nondifferntiability set of f is bigger than $\operatorname{dim} M-1$, then the Hausdorff dimension of the set of nondifferentiability points of F must be bigger than $\operatorname{dim} M-1+(n-\operatorname{dim} M)=n-1$, which is contradiction $)$.

References

[1] G. Alberti, M. Csornyei, D. Preiss, Differentiability of Lipschitz functions, Structure of null sets, and other problems, Proc. Internat. Congress Math. Vol. III, 1379-1394 (Hindustan Book Agency, New Delhi, 2010).
[2] R. Darst, The Hausdorff dimension of the nondifferentiability set of the Cantor function is $\frac{\ln (2)}{\ln (3)^{2}}$, Proc. Amer. Math. Soc. 119 (1993) 105-108.
[3] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, (3rd Edition), New York: Jon Wiley and Sons, 2014.
[4] R. Mirzaie, On typical compact submanifolds of Euclidean space, Ukrainian Math. J. 65 (2013) 1009-1014.
[5] D. Pavalica, On the points of non-differentiability of convex functions, Comment. Math. Univ. Carolinae 45 (2004) 727-734.

[^0]: 2010 Mathematics Subject Classification. Primary 53C30; Secondary 57S25, 26B25
 Keywords. Hausdorff dimension, convex function, Riemannian manifold
 Received: 22 August 2016; Revised: 08 April 2017; Accepted: 12 April 2017
 Communicated by Ljubiša D. R. Kočinac
 Email address: r.mirzaei@sci.ikiu.ac.ir (Reza Mirzaie)

