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Abstract. This work deals with the existence of positive periodic solutions for the fourth-order p-Laplacian
neutral functional differential equations with a time-varying delay and a singularity. The results are
established using the continuation theorem of coincidence degree theory and some analysis methods. A
numerical example is presented to illustrate the effectiveness and feasibility of the proposed criterion.

1. Introduction

During the past several years, neutral functional differential equations have received more and more
attention because of its widely applied backgrounds, for example population ecology, heat exchanges,
mechanics and economics, see [6], [9], [10], [27]. In 1995, Zhang [30] studied the following linear and
quasilinear neutral functional differential equations:

(x(t) − bx(t − τ))′ = −ax(t − r + γh(t, x(t + ·))) + e(t),

where a, τ, r are nonzero constants and γ ∈ R is a small parameter, e ∈ C2π, h : R × C2π(real functions)→ R
is continuous such that h(t + 2π,ϕ) ≡ h(t, ϕ) on R × C2π, C2π := {x|x ∈ C(R,R), x(t + 2π) ≡ x(t)}. Using some
a priori estimation and the Leray-Schauder degree theory, the author obtained some existence theorems of
periodic solutions.

On the basis of work of Zhang in [30], Lu in [12] discussed the the following first-order neutral functional
differential equation

d
dt

(u(t) − ku(t − τ)) = 11(u(t)) + 12(u(t − τ1)) + p(t),

where 11, 12 ∈ C(R,R), p(t) ∈ C(R,R) and p(t + T) ≡ P(t), τ, τ1, k are constants such that |k| , 1. By means of
Mawhin’s continuation theorem, existence criteria are established for the periodic solutions. Moreover, Lu
in [13] gave some inequalities for A:

If |c| < 1 then A has continuous inverse on CT and
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(1) ‖ A−1x ‖≤ ‖x‖0
|1−|c|| , ∀x ∈ CT;

(2)
∫ T

0 |(A
−1 f )(t)|dt ≤ 1

|1−|c||

∫ T

0 | f (t)|dt, ∀ f ∈ CT;

(3)
∫ T

0 |A
−1 f |2(t)dt ≤ 1

(1−|c|)2

∫ T

0 f 2(t)dt, ∀ f ∈ CT.
After that, based on the work of Zhang and Lu, many authors further established the existence results of

periodic solutions to different kinds of neutral functional differential equations, see [2], [8], [13], [14], [15],
[16], [17], [21], [23], [24], [28] and the references therein. For example, in [24], Wang and Zhu studied a kind
of fourth-order p-Laplacian neutral functional differential equation with a deviating argument in the form:

(ϕp(x(t) − cx(t − δ))′′)′′ = f (x(t))x′(t) + 1(t, x(t − τ(t, |x|∞))) + e(t).

By means of Mawhin’s continuation theorem, the existence results of periodic solutions are obtained.
In recent years, singular equations appear in a lot of physical models, see [18], [19], [20], [29] and the

references therein. Different kinds of singular equations have been proposed by many authors, see for
example [3], [4], [7], [22], [25], [26], [32] and the references therein.

However, to the best of our knowledge, there are few papers about the positive periodic solutions for
the neutral functional differential equations with a singularity.

Recently, Kong and Lu in [11] study the existence of positive periodic for the following neutral Liénard
differential equation with a singularity and a deviating argument(

(x(t) − cx(t − σ))
)′′

+ f (x(t))x′(t) + 1(t, x(t − δ)) = e(t),

where c is a constant with |c| < 1, 0 ≤ σ, δ < T, f : R → R is continuous, 1 : [0,T] × (0,+∞) → R is a
continuous function and can be singular at u = 0. e(t) is T-periodic with

∫ T

0 e(t)dt = 0.
Inspired by the works mentioned above, in this paper, we consider the following fourth-order p-

Laplacian neutral functional differential equation with a time-varying delay and a singularity(
ϕp

(
x(t) − cx(t − δ)

)′′)′′
+ f (x(t))x′(t) + 1(t, x(t − δ(t))) = e(t), (1.1)

where ϕp : R → R, ϕp(u) = |u|p−2u, p > 1; c is a constant with |c| < 1, δ is a continuous function;
f : (0,+∞)→ R is continuous; 1 : [0,T]× (0,+∞)→ R is a continuous function and can be singular at u = 0;
e(t) is T-periodic with

∫ T

0 e(t)dt = 0. By applying the continuation theorem of coincidence degree theory, we
prove that Eq.(1.1) has at least one positive T-periodic solution.

Remark 1.1. The theorem and methods used to obtain the periodic solutions in [24] can be applied to the Eq.(1.1) if
there is no singularity in Eq.(1.1). So, we extend the neutral functional differential equation to the singular case.

The rest of the paper is organized as follows. In Section 2, we state some necessary definitions and
lemmas. In Section 3, we prove the main result. Finally, an example is given to support the effectiveness of
our result in Section 4.

2. Preliminaries

Thought the paper, let
CT =

{
φ ∈ C(R,R), φ(t + T) ≡ φ(t)

}
with the norm | φ |0= max

t∈[0,T]
|φ(t)|,

C1
T =

{
φ ∈ C1(R,R), φ(t + T) ≡ φ(t)

}
with the norm ‖ φ ‖= max{| φ |0, | φ′ |0}.
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Denote the operator A by

A : CT → CT, (A x)(t) = x(t) − cx(t − σ), ∀t ∈ R.

In order to use coincidence degree theory to study the existence of positive T-periodic solutions for (1.1),
we rewrite (1.1) in the following form:(Au)′′(t) = ϕq(v(t))

v′′(t) = − f (u(t))u′(t) − 1(t,u(t − δ(t))) + e(t).
(2.1)

where q > 1 is a constant with 1
p + 1

q = 1. Clearly, if x(t) = (u(t), v(t))> is a T-periodic solution to system (2.1),
then u(t) must be a T-periodic solution of equation (1.1). Thus, the problem of finding a positive T-periodic
solution for (1.1) reduces to finding one for (2.1).

Let

X =
{
x(t) = (u(t), v(t))> ∈ C2(R,R2), x(t) ≡ x(t + T)

}
,

Y =
{
x(t) = (u(t), v(t))> ∈ C2(R,R2), x(t) ≡ x(t + T)

}
,

The normal ‖x‖ = max{| u |0, | v |0}, and | u |0= max
t∈[0,T]

|u|, | v |0= max
t∈[0,T]

|v|. It is obviously that X and Y are

Banach spaces.
Define the operator

L : D(L) ⊂ X→ Y, Lx = x′′ =
(
(A u)′′, v′′

)>
, (2.2)

where D(L) =
{
x(t) = (u(t), v(t))> ∈ C2(R,R2), x(t) ≡ x(t + T)

}
.

Define a nonlinear operator N : D(N) ⊂ X→ Y as follows:

(Nx)(t) =

(
ϕq(v(t))

− f (u(t))u′(t) − 1(t,u(t − δ(t))) + e(t)

)
, ∀t ∈ R. (2.3)

where D(N) =
{
x = (u, v)> ∈ X : u(t) > 0, t ∈ [0,T]

}
. Then (2.1) can be converted to the abstract equation

Lx = Nx.
From the definition of L, we can easily see that

ker L � R2, ImL =

{
y ∈ Y,

∫ T

0
y(s)ds = 0

}
.

Thus L is a Fredholm operator with index zero. Let the projections P and Q be

P : X→ ker L, Px =
1
T

∫ T

0
x(s)ds,

Q : Y→ ImQ, Qy =
1
T

∫ T

0
y(s)ds.

Then we can see that ImP = ker L and ker Q = ImL. Let Lp = L|D(L)∩ker P. We can easily prove that Lp is
invertible, L−1

p : ImL→ D(L) ∩ ker P, and

(L−1
p y)(t) =

∫ T

0
G(t, s)y(s)ds,

where G(t, s) =

{
−s(T−t)

T , 0 ≤ s ≤ t ≤ T;
−t(T−s)

T , s ≤ t ≤ s ≤ T.
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Lemma 2.1. [14] If |c| , 1, then operator A has a unique continuous bounded inverse and satisfies the following
conditions:

(1)
∫ T

0 |[A
−1 f ](t)|dt ≤

∫ T
0 | f (t)|dt
|1−|c|| ,∀ f ∈ CT;

(2) (Ax)′′ = A′′x, ∀x ∈ C2
T := {x ∈ C2(R,R), x(t + T) ≡ x(t)}.

Lemma 2.2. [5] Let X and Y be two real Banach spaces, L : D(L) ⊂ X→ Y be a Fredholm operator with index zero,
Ω ⊂ X be an open bounded set, and N : Ω̄ ⊂ X→ Y be L-compact on Ω̄. Suppose that all of the following conditions
hold:
(1) Lx , λNx,∀x ∈ ∂Ω ∩D(L), ∀λ ∈ (0, 1);
(2) QNx , 0,∀x ∈ ∂Ω ∩ ker L;
(3) deg{JQN,Ω∩ ker L, 0} , 0, where J : ImQ→ ker L is an homeomorphism map. Then the equation Lx = Nx has
at least one solution on D(L) ∩ Ω̄.

Lemma 2.3. [31] If x ∈ C1(R,R) and x(0) = x(T) = 0, then∫ T

0
|x′(t)|pdt ≤

(
T
πp

)p ∫ T

0
|x′′(t)|pdt,

where πp = 2
∫ (p−1)/p

0
ds

[1−sp/(p−1)]1/p =
2π(p−1)1/p

p sin(π/p) .

For the sake of convenience, we list the following assumptions:

[H1] There exist positive constants D1 and D2 with D1 < D2 such that

(1) for each positive continuous T-periodic function x(t) satisfying∫ T

0 1(t, x(t))dt = 0, then there exists a positive point t0 ∈ [0,T]

such that

D1 ≤ x(t0) ≤ D2;

(2) 1(x) < 0 for all x ∈ (0,D1) and 1(x) > 0 for all x > D2, where

1(x) = 1
T

∫ T

0 1(t, x)dt, x > 0.

[H2] 1(t, x(t − δ(t))) = 11(t, x(t − δ(t)) + 10(x(t)), where 10 : (0,+∞)→ R is a continuous function,

11 : [0,T] × (0,+∞)→ R is a continuous function and

(1) there exist positive constants m0 and m1 such that

1(t, x) ≤ m0xp−1 + m1, for all (t, x) ∈ [0,T] × (0,+∞);

(2)
∫ 1

0 10(x)dx = −∞.

[H3] There exist positive constants α and β such that

F(x) ≤ αxp−1 + β, for all x ∈ (0,+∞),

where F(x) =
∫ x

0 f (s)ds.
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3. Main Results

Theorem 3.1. Suppose that conditions [H1]-[H3] hold and

[2(1 + |c|)m0 + α|c|]T2p−1

πp
p|1 − |c||p

< 1,

then there exist positive constants A1, A2, A3 and ρ, which are independent of λ such that

A1 ≤ u(t) ≤ A2, | u′ |0≤ A3, | v |0≤ ρ,

where u(t) is any solution to the equation Lx = λNx, λ ∈ (0, 1].

Proof Consider the following operator equation

Lx = λNx, λ ∈ (0, 1),

where L and N are defined by (2.2) and (2.3), respectively. Let

Ω1 =

{
(u, v)> ∈ X : min

t∈[0,T]
u(t) > 0,Lx = λNx, λ ∈ (0, 1)

}
.

If x = (u, v)> ∈ Ω1, then (u, v) satisfies(A u)′′(t) = λϕq(v(t))
v′′(t) = −λ f (u(t))u′(t) − λ1(t,u(t − δ(t))) + λe(t).

(3.1)

From the first equation of (3.1), we can get v(t) = λ−1(A u)′′(t), which combining with the second equation
of (3.1) yields(

ϕp((Au)′′(t))
)′′

+ λp f (u(t))u′(t) + λp1(t,u(t − δ(t))) = λpe(t). (3.2)

Integrating the equation (3.2) on the interval [0,T], we have∫ T

0

(
ϕp((Au)′′(t))

)′′
dt + λp

∫ T

0
f (u(t))u′(t)dt + λp

∫ T

0
1(t,u(t − δ(t)))dt = λp

∫ T

0
e(t)dt,

then we can have∫ T

0
1(t,u(t − δ(t)))dt = 0. (3.3)

It follows from [H1](1) that there exist positive constants D1, D2 and t0 ∈ [0,T] such that

D1 ≤ u(t0) ≤ D2. (3.4)

From this, we obtain

| u |0 = max
t∈[0,T]

|u(t)| ≤ max
t∈[0,T]

∣∣∣∣∣∣u(t0) +

∫ t

t0

u′(s)ds

∣∣∣∣∣∣ ≤ D2 +

∫ T

0
|u′(s)|ds, (3.5)
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Multiplying the both sides of (3.2) by (Au)(t) and integrating on the interval [0,T], we get∫ T

0
|(A u)′′(t)|pdt = λp

∫ T

0
f (u(t))u′(t)(A u)(t)dt + λp

∫ T

0
1(t,u(t − δ(t)))(A u)(t)dt

− λp
∫ T

0
e(t)(A u)(t)dt

≤

∣∣∣∣∣∣
∫ T

0
f (u(t))u′(t)[u(t) − cu(t − σ)]dt

∣∣∣∣∣∣
+ (1 + |c|) | u |0

∫ T

0
|1(t,u(t − δ(t)))|dt + (1 + |c|) | u |0

∫ T

0
|e(t)|dt

=

∣∣∣∣∣∣
∫ T

0

[
f (u(t))u′(t)u(t) − c f (u(t))u′(t)u(t − σ)

]
dt

∣∣∣∣∣∣
+ (1 + |c|) | u |0

∫ T

0
|1(t,u(t − δ(t)))|dt + (1 + |c|) | u |0

∫ T

0
|e(t)|dt

= |c|

∣∣∣∣∣∣
∫ T

0
F(u(t))u′(t − σ)dt

∣∣∣∣∣∣ + (1 + |c|) | u |0

∫ T

0
|1(t,u(t − δ(t)))|dt

+ (1 + |c|) | u |0

∫ T

0
|e(t)|dt

≤ |c|
∫ T

0
|F(u(t))||u′(t − σ)|dt + (1 + |c|) | u |0

∫ T

0
|1(t,u(t − δ(t)))|dt

+ (1 + |c|) | u |0

∫ T

0
|e(t)|dt,

which combining with [H3] yields∫ T

0
|(A u)′′(t)|pdt ≤ α|c| | u |p−1

0

∫ T

0
|u′(t − σ)|dt + β|c|

∫ T

0
|u′(t − σ)|dt

+ (1 + |c|) | u |0

∫ T

0
|1(t,u(t − δ(t)))|dt

+ (1 + |c|) | u |0 |e|0T.

(3.6)

Write
E+ = {t ∈ [0,T] : 1(t,u(t − δ(t))) ≥ 0};

E− = {t ∈ [0,T] : 1(t,u(t − δ(t))) ≤ 0}.

Then it follows from (3.3) and [H2](1) that∫ T

0
|1(t,u(t − δ(t)))|dt =

∫
E+

1(t,u(t − δ(t)))dt −
∫

E−
1(t,u(t − δ(t)))dt

= 2
∫

E+

1(t,u(t − δ(t)))dt

≤ 2m0

∫ T

0
up−1(t − δ(t))dt + 2

∫ T

0
m1dt

≤ 2m0T | u |p−1
0 +2Tm1.

(3.7)
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Substituting (3.7) into (3.6), combining with (3.5), we can have

∫ T

0
|(A u)′′(t)|pdt ≤ 2(1 + |c|)m0T | u |p0 +α|c| | u |p−1

0

∫ T

0
|u′(t − σ)|dt

+ β|c|
∫ T

0
|u′(t − σ)|dt + 2(1 + |c|)m1T | u |0 +(1 + |c|)|e|0T | u |0

≤ 2(1 + |c|)m0T
(
D2 +

∫ T

0
|u′(s)|ds

)p

+ α|c|
(
D2 +

∫ T

0
|u′(s)|ds

)p−1 ∫ T

0
|u′(t)|dt

+ β|c|
∫ T

0
|u′(t)|dt + 2(1 + |c|)m1T

(
D2 +

∫ T

0
|u′(s)|ds

)
+ (1 + |c|)|e|0T

(
D2 +

∫ T

0
|u′(s)|ds

)
.

(3.8)

Moreover,

(
D2 +

∫ T

0
|u′(s)|ds

)p

=

(∫ T

0
|u′(t)|dt

)p
1 +

D2∫ T

0 |u
′(t)|dt


p

. (3.9)

By classical elementary inequalities, we see that there exists a l(p) > 0 which is dependent on p only, such
that

(1 + x)p < 1 + (1 + p)x, x ∈ (0, l(p)]. (3.10)

Then, from (3.9) we should consider the following two cases:

Case 1. D2∫ T
0 |u

′(t)|dt
> l(p), then

∫ T

0 |u
′(t)|dt < D2

l(p) and from (3.5), we have

| u |0< D2 +
D2

l(p)
:= M0. (3.11)

Case 2. D2∫ T
0 |u

′(t)|dt
≤ l(p), then it follows from (3.9) and (3.10) that

(
D2 +

∫ T

0
|u′(s)|ds

)p

=

(∫ T

0
|u′(t)|dt

)p
1 +

D2∫ T

0 |u
′(t)|dt


p

≤

(∫ T

0
|u′(t)|dt

)p
1 +

D2(p + 1)∫ T

0 |u
′(t)|dt


=

(∫ T

0
|u′(t)|dt

)p

+ D2(p + 1)
(∫ T

0
|u′(t)|dt

)p−1

.

(3.12)
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Substituting (3.12) into (3.8), we see that

∫ T

0
|(A u)′′(t)|pdt ≤ 2(1 + |c|)m0T

[( ∫ T

0
|u′(t)|dt

)p
+ D2(p + 1)

( ∫ T

0
|u′(t)|dt

)p−1
]

+ α|c|
[( ∫ T

0
|u′(t)|dt

)p−1
+ D2(p + 1)

( ∫ T

0
|u′(t)|dt

)p−2
]
·

∫ T

0
|u′(t)|dt

+ β|c|
∫ T

0
|u′(t)|dt + 2(1 + |c|)m1T

(
D2 +

∫ T

0
|u′(s)|ds

)
+ (1 + |c|)|e|0T

(
D2 +

∫ T

0
|u′(s)|ds

)
,

(3.13)

which together with the Hölder inequality and Lemma 2.3 yields

∫ T

0
|(A u)′′(t)|pdt ≤

[2(1 + |c|)m0 + α|c|]T2p−1

πp
p

∫ T

0
|x′′(t)|pdt

+ [2(1 + |c|)m0T + α|c|]D2(p + 1)T
(p−1)2

p

[( T
πp

)p
∫ T

0
|x′′(t)|pdt

] p−1
p

+ [β|c| + 2(1 + |c|)m1T + (1 + |c|)|e|0T]T
p−1

p

[( T
πp

)p
∫ T

0
|x′′(t)|pdt

] 1
p

+ [2m1 + |e|0](1 + |c|)TD2.

Furthermore, by applying Lemma 2.1, we can obtain

∫ T

0
|(A u)′′(t)|pdt ≤

[2(1 + |c|)m0 + α|c|]T2p−1

πp
p|1 − |c||p

∫ T

0
|(A u)′′(t)|pdt

+ [2(1 + |c|)m0T + α|c|]D2(p + 1)T
(p−1)2

p
[( T
πp

)p
∫ T

0
|x′′(t)|pdt

] p−1
p

+ [β|c| + 2(1 + |c|)m1T + (1 + |c|)|e|0T]T
p−1

p
[( T
πp

)p
∫ T

0
|x′′(t)|pdt

] 1
p

+ [2m1 + |e|0](1 + |c|)TD2.

It follows from [2(1+|c|)m0+α|c|]T2p−1

π
p
p |1−|c||p

< 1 that there exists a positive constant M1 > 0 such that

∫ T

0
|(A u)′′(t)|pdt ≤M1.

Then by Lemma 2.1, we can see that

∫ T

0
|u′′(t)|pdt ≤

M1

|1 − |c||p
:= M2, (3.14)



F. Kong, S. Lu / Filomat 31:18 (2017), 5855–5868 5863

which together with (3.5) and Lemma 2.3 yields

| u |0≤D2 + T
p−1

p

(∫ T

0
|u′(t)|pdt

) 1
p

≤D2 + T
p−1

p

[( T
πp

)p
∫ T

0
|u′′(t)|pdt

] 1
p

≤D2 +
T2p−1M

1
p

2

πp
:= M3.

Therefore, in both Case 1 and Case 2, we can conclude that

| u |0≤M3. (3.15)

Moreover, since u(t) is T-periodic, there exists a point t0 ∈ [0,T] such that u′(t0) = 0. Then by applying
Hölder’s inequality and in view of (3.14), we have

| u′ |0≤
∫ T

0
|u′′(t)|dt

≤T
1
p

(∫ T

0
|u′′(t)|pdt

)1/p

≤T
1
p M

1
p

2 := A3.

(3.16)

From the second equation of (3.1), we can get∫ T

0
|v′′(t)|dt ≤

∫ T

0
| f (u(t))||u′(t)|dt + λ

∫ T

0
|1(t,u(t − δ(t)))|dt + λ

∫ T

0
|e(t)|dt.

Set fM3 = max
|u|<M3

| f (u(t))|, then by (3.7) we have∫ T

0
|v′′(t)|dt ≤λ

[
fM3 T | u′ |0 +2m0T | u |p−1

0 +2Tm1 + |e|0T
]
,

in view of (3.15) and (3.16), we get∫ T

0
|v′′(t)|dt ≤λ

[
fM3 TA3 + 2m0TMp−1

3 + 2Tm1 + |e|0T
]
. (3.17)

Moreover, integrating the first equation of (3.1) on the interval [0,T], we have∫ T

0
u′′(t)dt =

∫ T

0
(A−1v)(t)dt = 0,

which implies that there exists η ∈ [0,T] such that v(η) = 0. Thus,

|v(t)| =

∣∣∣∣∣∣
∫ t

η
v′(s)ds + v(η)

∣∣∣∣∣∣ ≤
∫ T

0
|v′(s)|ds ≤

√

T
(∫ T

0
|v′(s)|2ds

)1/2

,

which together with Lemma 2.3 and (3.14) gives

| v |0≤
√

T
(∫ T

0
|v′(s)|2ds

)1/2

·
T
√

T
π
·

(∫ T

0
|v′′(s)|2ds

)1/2

≤
T2

π

(
fM3 TA3 + 2m0TMp−1

3 + 2Tm1 + |e|0T
)1/2

:=ρ.

(3.18)



F. Kong, S. Lu / Filomat 31:18 (2017), 5855–5868 5864

On the other hand, it follows from the second equation of (3.1) and [H2] that

v′′(t) = − λ f (u(t))u′(t) − λ[11(t,u(t − δ(t))) + 10(u(t))] + λe(t). (3.19)

Multiplying both sides of Eq.(3.19) by u′(t), we have

v′′(t)u′(t) = − λ f (u(t))u′(t)u′(t) − λ[11(t,u(t − δ(t))) + 10(u(t))]u′(t) + λe(t)u′(t). (3.20)

Let t0 ∈ [0,T] be as in (3.4). For any t ∈ [t0,T], integrating Eq.(3.20) on the interval [t0,T], we can get

λ

∫ u(t)

u(t0)
10(u)du = λ

∫ t

t0

10(u(t))u′(t)dt

= −

∫ t

t0

v′′(t)u′(t)dt − λ
∫ t

t0

f (u(t))u′(t)u′(t)dt

− λ

∫ t

t0

11(t,u(t − δ(t)))u′(t)dt + λ

∫ t

t0

e(t)u′(t)dt,

which together with (3.17) yields

λ

∣∣∣∣∣∣
∫ u(t)

u(t0)
10(u)du

∣∣∣∣∣∣ = λ

∣∣∣∣∣∣
∫ t

t0

10(u(t))u′(t)dt

∣∣∣∣∣∣
≤

∫ T

0
|v′′(t)||u′(t)|dt + λ

∫ T

0
| f (u(t))||u′(t)||u′(t)|dt

+ λ

∫ T

0
|11(t,u(t − δ(t)))||u′(t)|dt + λ

∫ T

0
|e(t)||u′(t)|dt

≤ λ | u′ |0
[

fM3 TA3 + 2m0TMp−1
3 + 2Tm1 + |e|0T

]
+ λ | u′ |20 fM3 T + λ | u′ |0

∫ T

0
|11(t + δ(t),u(t))|dt

+ λ | u′ |0

∫ T

0
|e(t + δ(t))|dt.

Set 1M3 = max
t∈[0,T],|u|≤M3

|11(t,u)|, then we have

∣∣∣∣∣∣
∫ u(t)

u(t0)
10(u)du

∣∣∣∣∣∣ ≤ | u′ |0 [
fM3 TA3 + 2m0TMp−1

3 + 2Tm1 + |e|0T
]

+ | u′ |20 T fM3+ | u
′
|0 T1M3+ | u

′
|0 T|e|0,

which combining with (3.16) gives∣∣∣∣∣∣
∫ u(t)

u(t0)
10(u)du

∣∣∣∣∣∣ ≤A3

[
fM3 TA3 + 2m0TMp−1

3 + 2Tm1 + |e|0T
]

+ A2
3T fM3 + TA31M3 + TA3|e|0

< +∞.

According to condition (2) in [H2], we can see that there exists a constant M4 > 0 such that, for t ∈ [t0,T],

u(t) ≥M4. (3.21)
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For the case t ∈ [0, t0], we can handle similarly.
Let us define

0 < A1 = min{D1,M3},

and
A2 = max{D2,M4}.

Then by (3.4), (3.15) and (3.21), we can obtain

A1 ≤ u(t) ≤ A2. (3.22)

Clearly, A1 and A2 are independent of λ. Therefore, from (3.16), (3.18) and (3.22), we can see that the proof
of Theorem 3.1 is now complete.

Theorem 3.2. Suppose that all the conditions in Theorem 3.1 hold, then system (2.1) has at least one positive
T-periodic solution (u, v)> ⊂ Ω1 such that

A1 ≤ u(t) ≤ A2, | u′ |0≤ A3, | v |0≤ ρ.

Proof Set

Ω =
{
x = (u, v)> ∈ X :

A1

2
< u(t) < A2 + 1, | u′ |0< A3 + 1, | v |0< ρ + 1

}
,

then condition (1) of Lemma 2.2 is satisfied.
Suppose that there exists x = (u, v)> ∈ ∂Ω ∩ ker L such that

QNx =
1
T

∫ T

0
Nx(s)ds = (0, 0)>,

then u ∈ R and v ∈ R are constant valued functions and satisfy
1
T

∫ T

0
[A−1(v)]dt = 0,

1
T

∫ T

0
[− f (u)u′ − 1(t,u) + e(t)]dt = 0.

(3.23)

It follows from condition (1) in [H1] and the second part of Lemma 2.2 that

A1

2
< D1 ≤ u ≤ D2 < A2 + 1, v = 0,

which contradicts the assumption x ∈ ∂Ω. This contradiction implies that condition (2) of Lemma 2.2 is
satisfied.

Finally, we will show that condition (3) of Lemma 2.2 is also satisfied.
Let

z = Kx = K
(
u
v

)
=

(
u − A1+A2

2
v

)
,

then, we have

x = z +

(
A1+A2

2
0

)
.

Define J : ImQ→ ker L is a linear isomorphism of the form

J(u, v) =

(
−v
u

)
.
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Moreover, define
H(µ, x) = µKx + (1 − µ)JQNx, ∀(x, µ) ∈ (Ω ∩ ker L) × [0, 1].

Then,

H(µ, x) =

(
µu − µ(A1+A2)

2
µv

)
+

1 − µ
T


∫ T

0
[ f (u)u′ + 1(t,u)]dt∫ T

0 ϕq(v)dt

 . (3.24)

Now we claim that H(µ, x) is a homotopic mapping. Assume, by way of contradiction, i.e., there exists

µ0 ∈ [0, 1] and x0 =

(
u0
v0

)
∈ ∂(Ω ∩ ker L) such that H(µ0, x0) = 0.

Substituting µ0 and x0 into (3.21), we have

H(µ0, x0) =

(
µ0u0 −

µ0(A1+A2)
2 + (1 − µ0) f (u0)u′0 + (1 − µ0)1(u0)
µ0v0 + (1 − µ0)ϕq(v0)

)
. (3.25)

It follows H(µ0, x0) = 0 that
µ0v0 + (1 − µ0)ϕq(v0) = 0,

which together with µ0 ∈ [0, 1] yields v0 = 0. Thus, u0 = A1
2 or u0 = A2 + 1.

Furthermore,
If u0 = A1

2 , it follows from [H1](2) that 1(u0) < 0, then substituting u0 = A1
2 and v0 = 0 into (3.25), we have

µ0A1

2
−
µ0(A1 + A2)

2
+ (1 − µ0)1

(A1

2

)
= −

µ0A2

2
+ (1 − µ0)1

(A1

2

)
< 0.

(3.26)

If u0 = A2 + 1, it follows from [H1](2) that 1(u0) > 0, then substituting u0 = A2 + 1 and v0 = 0 into (3.22), we
have

µ0(A2 + 1) −
µ0(A1 + A2)

2
+ (1 − µ0)1(A2 + 1)

=
µ0(A2 − A1 + 2)

2
+ (1 − µ0)1(A2 + 1)

> 0.

(3.27)

From (3.26) and (3.27), we can see that H(µ0, x0) , 0, which contradicts the assumption. Therefore H(µ, x)
is a homotopic mapping and x>H(µ, x) , 0. Moreover, for all (x, µ) ∈ (∂Ω ∩ ker L) × [0, 1], we have

deg(JQN,Ω ∩ ker L, 0) = deg(H(0, x),Ω ∩ ker L, 0)
= deg(H(1, x),Ω ∩ ker L, 0)
= deg(Kx,Ω ∩ ker L, 0)

=
∑

x∈K−1(0)

sgn(det K′(x))

= 1 , 0.

Thus, the condition (3) of Lemma 2.2 is also satisfied. Therefore, by applying Lemma 2.2, we can see that
(2.1) has a positive T-periodic solution (u, v)> ⊂ Ω. Clearly, u is a positive T-periodic solution to (1.1), and
(u, v)> must be in Ω1 for the case of λ = 1. Thus, by using Theorem 3.1, we have

A1 ≤ u(t) ≤ A2, | u′ |0≤ A3, | v |0≤ ρ.

Hence, we can conclude that Eq.(1.1) has at least one positive T-periodic solution.
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4. Example

In this section, we provide an example to illustrate our main result.

Example 4.1. Consider the following fourth-order p-Laplacian neutral functional differential equation with a time-
varying delay and a singularity:(
ϕ4

(
x(t) −

1
2

x
(
t −

π
8

))′′)′′
+

(
2 sin u(t) +

1
4

)
u′(t) +

1
64

(1 + sin 6t)u(t − cos 6t) −
1

u(t − cos 6t)
= sin 6t. (4.1)

Conclusion: The Problem (4.1) has at least one positive π/3-periodic solution.

Proof. Corresponding to (1.1), we have

f (u(t)) = 2 sin u(t) +
1
4
, e(t) = sin 6t, δ(t) = cos 6t,

1(t,u(t − δ(t))) =
1

64
(1 + sin 6t)u(t − cos 6t) −

1
u(t − cos 6t)

.

Then, we can have and choose

p = 4, T =
π
3
, c =

1
2
, m0 =

1
32
, α =

1
4
, D1 = 1, D2 = 9.

It is easy to see that [H1]-[H3] hold. Moreover, we also have π4 = 2π31/4

4 sin(π/4) = 31/4π
√

2
,

[2(1 + |c|)m0 + α|c|]T2p−1

πp
p|1 − |c||p

≈ 0.0662 < 1,

which implies that Theorem 3.1 is satisfied. Therefore, by Theorem 3.2 we can see that Eq.(4.1) has at least
one positive π/3-periodic solution.
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[1] M. Abbas, D. Ilić, Common fixed points of generalized almost nonexpansive mappings, Filomat 24 (2010) 11–18.
[2] A. Ardjouni, A. Rezaiguia, A. Djoudi, Existence of positive periodic solutions for fourth-order nonlinear neutral differential

equations with variable delay, Advance in nonlinear analysis 3 (2014) 157–163.
[3] A. Fonda, R. Toader, Periodic orbits of radially symmetric Keplerianlike systems: A topological degree approach, Journal of

Differential Equations 244 (2008) 3235–3264.
[4] D. Franco, P. J. Torres, Periodic solutions of singular systems without the strong force condition, Proceedings of the american

mathematical society 136 (2008) 1229–1236.
[5] R. E. Gaines, J. L. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Lecture Notes in Mathematics, Springer,

Berlin, 1977.
[6] J. Hale, Theory of Functional Differential Equations, Springer, New York, 1977.
[7] R. Hakl, P. J. Torres, On periodic solutions of second-order differential equations with attractive-repulsive singularities, Journal

of Differential Equations 248 (2010) 111–126.
[8] Z. M. He, B. Du, Periodic solutions for a kind of neutral functional differential systems, Boundary Value Problems 2014 (2014)

151.
[9] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, New York, 1993.

[10] V. Kolmannovskii, A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer
Academic, London, 1999.

[11] F. C. Kong, S. P. Lu, Z. T. Liang, Existence of positive periodic solutions for a kind of neutral liénard differential equation with a
singularity, Electronic Journal of Differential Equations 242 (2015) 1–12.

[12] S. P. Lu, W. G. Ge, On the existence of periodic solutions for neutral functional diffierential equation, Nonlinear Analysis 54
(2003) 1285–1306.

[13] S. P. Lu, W. G. Ge, Existence of periodic solutions for a kind of second-order neutral functional differential equation, Applied
Mathematics and Computation 157 (2004) 433–448.



F. Kong, S. Lu / Filomat 31:18 (2017), 5855–5868 5868

[14] S. P. Lu, W. G. Ge, Z. X. Zheng, Periodic solutions to neutral differential equation with deviating arguments, Applied Mathematics
and Computation 152 (2004) 17–27.

[15] Z. X. Li, X. Wang, Existence of positive periodic solutions for neutral functional differential equations, Electronic Journal of
Differential Equations 34 (2006) 1–8.

[16] Y. Luo, W. B. Wang, J. H. Shen, Existence of positive periodic solutions for two kinds of neutral functional differential equations,
Applied Mathematics Letters 21 (2008) 581–587.

[17] Z. G. Luo, L. P. Luo, Y. H. Zeng, Positive Periodic Solution for the Generalized Neutral Differential Equation with Multiple Delays
and Impulse, Journal of Applied Mathematics 2014 (2014), Art. 592513, 12pp.

[18] J. J. Mawhin, Topological degree and boundary value problems for nonlinear differential equations, In: Furi, M., Zecca, P. (eds.)
Topologic Methods for Ordinary Differential Equations. Lecture Notes in Mathematics, vol. 1537. Springer, New York, 1993.

[19] H. H. Pishkenari, M. Behzad, A. Meghdari, Nonlinear dynamic analysis of atomic force microscopy under deterministic and
random excitation, Chaos, Solitons and Fractals 37 (2008) 748–762.
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