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and Lévy Noise

Sheng Wanga, Linshan Wangb, Tengda Weic

aSchool of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo, Henan 454003, PR China
bSchool of Mathematics, Ocean University of China, Qingdao, Shandong 266071, PR China

cCollege of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, Shandong 266071, PR China

Abstract. In this paper, stochastic permanence and extinction of a stochastic logistic model with Markovian
switching and Lévy noise are investigated by combining stochastic analytical techniques with M-matrix
analysis. Sufficient and necessary conditions of stochastic permanence and extinction are obtained. In the
case of stochastic permanence, both the superior limit and the inferior limit of the average in time of the
sample path of the solution are estimated by two constants related to the stationary probability distribution
of the Markov chain and the parameters of the subsystems of the logistic model. Finally, our conclusions
are illustrated through an example.

1. Introduction

In recent years, stochastic population systems driven by white noise have been received great attention
and have been studied extensively (see e.g. [1–7]). Particularly, the stochastic logistic model with white
noise can be expressed as follows:

dx(t) =x(t) [r − ax(t)] dt + σx(t)dB(t), (1)

with initial condition

x(0) = x0 > 0, (2)

where r > 0 is the rate of growth, r/a > 0 is the carrying capacity [8]. B(t) is a standard Wiener process
defined on a complete probability space (Ω,F ,P) with a filtration {Ft}t≥0 satisfying the usual conditions
and σ ≥ 0 is the noise intensity.

However, in the real world population systems often suffer sudden environmental perturbations, such as
earthquakes, hurricanes, planting, harvesting, etc (see e.g. [9–12]). These phenomena cannot be described
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by white noise [13]. Bao et al. (see e.g. [14, 15]) pointed out that introducing Lévy jumps into the underlying
population system may be a reasonable way to describe these phenomena. Hence, incorporating Lévy noise
into system (1), we obtain

dx(t) =x(t−)
{[

r − ax(t−)
]

dt + σdB(t) +

∫
Z

γ(µ)Ñ(dt,dµ)
}
, (3)

where x(t−) is the left limit of x(t). N is a Poisson counting measure with characteristic measure λ on a
measurable subset Z of [0,+∞) with λ(Z) < +∞ and Ñ(dt,dµ) = N(dt,dµ) − λ(dµ)dt. γ(µ) > −1 is a
bounded function defined on Z.

On the other hand, parameters in some population systems may suffer abrupt changes, for instance,
some authors (see e.g. [7, 16]) have claimed that the growth rates of some species in summer will be
much different from those in winter, and one can use a continuous-time Markov chain with a finite state
space to describe these abrupt changes (see e.g. [9, 10, 17]). Especially, Takeuchi et al. [18] investigated a
predator-prey system with regime switching and revealed the significant effect of environmental noise on
the population system: both its subsystems develop periodically but switching between them makes them
become neither permanent nor dissipative (see e.g. [8, 18, 19]).

To the best of our knowledge to date, stochastic permanence and extinction of stochastic logistic model
with Markovian switching and Lévy noise have not been investigated in the existing literature. So, in
this paper we study stochastic permanence and extinction of the following stochastic logistic model with
Markovian switching and Lévy noise:

dx(t) =x
(
t−

) {[
r(ρ(t)) − a(ρ(t))x

(
t−

)]
dt + σ(ρ(t))dB(t) +

∫
Z

γ(µ, ρ(t))Ñ(dt,dµ)
}
, (4)

where ρ(t) is a right-continuous Markov chain on (Ω,F ,P), taking values in S = {1, 2, ...,S}. System (4) is
operated as follows: If ρ(0) = i0, then the system obeys

dx(t) = x
(
t−

) {[
r(i) − a(i)x

(
t−

)]
dt + σ(i)dB(t) +

∫
Z

γ(µ, i)Ñ(dt,dµ)
}
, (5)

with i = i0 until time τ1 when the Markov chain jumps to i1 from i0; the system will then obey system (5)
with i = i1 from τ1 until τ2 when the Markov chain jumps to i2 from i1. System (4) will go on switching as
long as the Markov chain jumps. That is to say, system (4) can be regarded as system (5) switching from one
to another in accordance with the law of the Markov chain. The different systems (5) (1 ≤ i ≤ S) are therefore
referred to as the subsystems of system (4). If the switching between environmental regimes disappears, in
other words, the Markov chain ρ(t) has only one state, then system (4) degenerates into system (5).

2. Global Positive Solutions

Throughout this paper, the generator Γ = (γi j)S×S of ρ(t) is given by

P
{
ρ(t + ς) = j|ρ(t) = i

}
=

γi jς + o(ς), i , j,
1 + γi jς + o(ς), i = j,

(6)

where ς > 0. Here γi j represents the transition rate from i to j and γi j ≥ 0 if i , j, while

γii = −
∑
j,i

γi j. (7)

We assume that ρ(t), B(t) and N are mutually independent. As a standing hypothesis we also assume that
the Markov chain ρ(t) is irreducible. Under this condition, system (4) can switch from any regime to any other
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regime and the Markov chain ρ(·) has a unique stationary probability distribution π = (π1, π2, ..., πS) ∈ R1×S

which can be determined by solving the following linear equation:

πΓ = 0, (8)

subject to

S∑
i=1

πi = 1 and πi > 0, ∀i ∈ S. (9)

In this paper, we impose the following assumptions:
Assumption 1 : r(i) > 0, a(i) > 0, σ(i) ≥ 0, ∀i ∈ S.
Assumption 2 : There exist γ∗(i) ≥ γ∗(i) > −1 such that γ∗(i) ≤ γ(µ, i) ≤ γ∗(i), ∀i ∈ S, µ ∈ Z.
Assumption 3 : For some j ∈ S, γi j > 0, ∀i , j.
Assumption 4 :

∑S
i=1 πiα(i) > 0, where

α(i) =r(i) −
1
2
σ2(i) −

∫
Z

[
γ(µ, i) − ln

(
1 + γ(µ, i)

)]
λ(dµ). (10)

For convenience, denote σ = max1≤i≤S σ(i) and γ? = max1≤i≤S
{
|γ∗(i)|, |γ∗(i)|

}
.

Theorem 2.1. Under assumptions 1 and 2, for any initial value x0 ∈ R+, system (4) has a unique positive global
solution x(t) on t ≥ 0 a.s.

Proof. Consider the following stochastic differential equation: du(t) =
[
α(ρ(t)) − a(ρ(t))eu(t)

]
dt + σ(ρ(t))dB(t) +

∫
Z

ln
[
1 + γ(µ, ρ(t))

]
Ñ(dt,dµ),

u(0) = ln x0.
(11)

Since the coefficients of system (11) are locally Lipschitz continuous, from [20] and [21] we observe that
system (11) admits a unique local solution u(t) on t ∈ [0, τe) a.s., where τe is the explosion time. By the
generalized Itô’s formula, x(t) = eu(t) is the unique local solution to system (4) with initial value x0 ∈ R+.
The proof of its global solution is almost identical to that for systems with regime switching driven by white
noise (see e.g. [17, 22, 23]), and here is omitted.

3. Extinction

Theorem 3.1. Under assumptions 1 and 2, let x(t) be the solution to system (4) with initial value x0 ∈ R+. Then

S∑
i=1

πiα(i) < 0 a.s. =⇒ lim
t→+∞

x(t) = 0 a.s. (12)

Proof. From system (11) we have

d ln x(t) =
[
α(ρ(t)) − a(ρ(t))x(t)

]
dt + σ(ρ(t))dB(t) +

∫
Z

ln
[
1 + γ(µ, ρ(t))

]
Ñ(dt,dµ). (13)

Integrating both sides of system (13) from 0 to t leads to

ln x(t) − ln x0 =

∫ t

0
α(ρ(s))ds −

∫ t

0
a(ρ(s))x(s)ds +

2∑
j=1

M j(t), (14)
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where

M1(t) =

∫ t

0
σ(ρ(s))dB(s),M2(t) =

∫ t

0

∫
Z

ln
[
1 + γ(µ, ρ(s))

]
Ñ(ds,dµ). (15)

In view of (15), we compute
〈M1(t)〉 =

∫ t

0
σ2(ρ(s))ds ≤ σ2t,

〈M2(t)〉 =

∫ t

0

∫
Z

{
ln

[
1 + γ(µ, ρ(s))

]}2 λ(dµ)ds ≤ max
1≤i≤S

{[
ln(1 + γ∗(i))

]2 ,
[
ln(1 + γ∗(i))

]2
}
λ(Z)t.

(16)

By Lemma 3.1 in [14] and the strong law of large numbers, we have

lim
t→+∞

M j(t)
t

= 0 a.s., 1 ≤ j ≤ 2. (17)

According to system (14), we get

ln x(t)
t
−

ln x0

t
= t−1

∫ t

0
α(ρ(s))ds − t−1

∫ t

0
a(ρ(s))x(s)ds + t−1

2∑
j=1

M j(t). (18)

Based on (17) and (18), we obtain

lim sup
t→+∞

ln x(t)
t
≤ lim sup

t→+∞

t−1
∫ t

0
α(ρ(s))ds =

S∑
i=1

πiα(i). (19)

Hence, the conclusion follows from (19).

Corollary 3.2. Assume that for some i ∈ S, α(i) < 0. Then the solutions of system (5) tend to zero a.s.

Remark 3.3. Corollary 3.2 implies that Theorem 3.1 contains Lemma 1 (ii) in [10] as a special case.

If γ(µ, i) = 0 (∀i ∈ S), then system (4) becomes the following stochastic logistic model with Markovian
switching:

dx(t) = x(t)
{[

r(ρ(t)) − a(ρ(t))x(t)
]

dt + σ(ρ(t))dB(t)
}
. (20)

Corollary 3.4. Under assumption 1, let x(t) be the solution to system (20) with initial value x0 ∈ R+. Then

lim sup
t→+∞

ln x(t)
t
≤

S∑
i=1

πi

[
r(i) −

1
2
σ2(i)

]
. (21)

Particularly, if
∑S

i=1 πi

[
r(i) − 1

2σ
2(i)

]
< 0, then

lim
t→+∞

x(t) = 0 a.s. (22)

Remark 3.5. Corollary 3.4 implies that Theorem 3.1 contains Theorem 4.1 in [8] as a special case.
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4. Stochastic Permanence

Definition 4.1. (see e.g. [8, 14]) System (4) is said to be stochastically permanent, if, for any ε ∈ (0, 1), there exist
δ∗ = δ∗(ε) > 0 and δ∗ = δ∗(ε) > 0 such that

lim inf
t→+∞

P {x(t) ≥ δ∗} ≥ 1 − ε, lim inf
t→+∞

P {x(t) ≤ δ∗} ≥ 1 − ε. (23)

Lemma 4.2. Under assumptions 1 and 2, let x(t) be the solution to system (4) with initial value x0 ∈ R+, then for
any constant θ > 0, there exists a constant K(θ) > 0 such that

lim sup
t→+∞

E[xθ(t)] ≤ K(θ). (24)

Proof. For any constant θ > 0, define W(x) = xθ. By the generalized Itô’s formula, we compute

L[W(x)] =θxθ
[
r(ρ(t)) − a(ρ(t))x

]
+

1
2
θ(θ − 1)σ2(ρ(t))xθ + xθ

∫
Z

{[
1 + γ(µ, ρ(t))

]θ
− 1 − θγ(µ, ρ(t))

}
λ(dµ)

≤θxθ
[
max
1≤i≤S

r(i) − min
1≤i≤S

a(i)x
]

+
1
2
θ2σ2xθ + xθ

∫
Z

max
1≤i≤S

{[
1 + γ∗(i)

]θ
− 1 − θγ∗(i)

}
λ(dµ).

(25)

From (25) we deduce that there exists a constant K(θ) > 0 such that

L[W(x)] + W(x) ≤ K(θ). (26)

So in view of the generalized Itô’s formula and (26), we obtain

L[etW(x)] = etW(x) + et
L[W(x)] ≤ etK(θ). (27)

Based on (27), integrating d[etW(x(t))] from 0 to t and then taking the expectations of both sides lead to

etE[xθ(t)] ≤ [x0]θ + K(θ)
(
et
− 1

)
, (28)

which implies the required assertion (24).

Now, by combining stochastic analytical techniques with M-matrix analysis, we are in the position to
prove stochastic permanence of system (4). For convenience, let C be a vector or matrix. Denote by C � 0
all elements of C are positive. Let

YS×S =
{
C = (ci j)S×S : ci j ≤ 0, i , j

}
. (29)

We shall also need two classical results.

Lemma 4.3. (see Lemma 5.3 in [21]) If C = (ci j)S×S ∈ YS×S has all of its row sums positive, that is

S∑
j=1

ci j > 0 f or all 1 ≤ i ≤ S, (30)

then det(C) > 0.

Lemma 4.4. (See Theorem 2.10 in [21]) If C = (ci j)S×S ∈ YS×S, then the following statements are equivalent:
(1) C is a nonsingular M-matrix.
(2) All of the principal minors of C are positive; that is,

det


c11 c12 . . . c1k
c21 c22 . . . c2k
...

...
...

ck1 ck2 . . . ckk

 > 0 f or every k = 1, 2, ...,S. (31)

(3) C is semi-positive; that is, there exists x� 0 in RS such that Cx� 0.
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Lemma 4.5. Assumptions 3 and 4 indicate that there exists a constant θ0 > 0 such that for 0 < θ < θ0, the matrix

G(θ) = dia1 (ν1(θ), ..., νS(θ)) − Γ (32)

is a nonsingular M-matrix, where

νi(θ) = α(i)θ −
1
2
σ2(i)θ2

−

∫
Z

{[
1 + γ(µ, i)

]−θ
− 1 + θ ln

[
1 + γ(µ, i)

]}
λ(dµ). (33)

Proof. It is known that switching the ith row with the jth row and then switching the ith column with the
jth column do not change the value of a determinant. It is also known that for a nonsingular M-matrix, if
we switch the ith row with the jth row and then switch the ith column with the jth column, then the new
matrix is still a nonsingular M-matrix. For assumption 3, without loss of generality, let j = S, that is

γiS > 0, ∀ 1 ≤ i ≤ S − 1. (34)

By Appendix A in [24], under assumption 3, assumption 4 is equivalent to

det


α(1) −γ12 . . . −γ1S
α(2) −γ22 . . . −γ2S
...

...
...

α(S) −γS2 . . . −γSS

 > 0. (35)

From (7) we compute

det G(θ) = det


ν1(θ) −γ12 . . . −γ1S
ν2(θ) ν2(θ) − γ22 . . . −γ2S
...

...
...

νS(θ) −γS2 . . . νS(θ) − γSS

 =

S∑
i=1

νi(θ)Mi(θ), (36)

where Mi(θ) represents the corresponding minor of νi(θ) in the first column. Based on (33) and (10), we
have

νi(0) = 0,
dνi(θ)

dθ
|θ=0 = α(i). (37)

In view of (36) and (37), we obtain

d
dθ

[det G(θ)] |θ=0 =

S∑
i=1

α(i)Mi(0) = det


α(1) −γ12 . . . −γ1S
α(2) −γ22 . . . −γ2S
...

...
...

α(S) −γS2 . . . −γSS

 . (38)

Combining (35) with (38), we get

d
dθ

[det G(θ)] |θ=0 > 0. (39)

By (36) and (37), we observe that det G(0) = 0. So there exists 0 < θ0 � 1 such that for all 0 < θ < θ0,
det G(θ) > 0 and

νi(θ) > −γiS, 1 ≤ i ≤ S − 1. (40)

For each k = 1, 2, ...,S − 1, consider the leading principal sub-matrix

Gk(θ) :=


ν1(θ) − γ11 −γ12 . . . −γ1k
−γ21 ν2(θ) − γ22 . . . −γ2k
...

...
...

−γk1 −γk2 . . . νk(θ) − γkk

 (41)
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of G(θ). According to (29) and the fact that γi j ≥ 0 (i , j), we obtain that Gk(θ) ∈ Yk×k. Moreover, in view of
(7) and (40), we compute

νi(θ) −
k∑

j=1

γi j = νi(θ) +

S∑
j=k+1

γi j ≥ νi(θ) + γiS > 0, i = 1, 2, ..., k. (42)

By Lemma 4.3, we obtain that det Gk(θ) > 0. That is to say, all the leading principal minors of G(θ) are
positive. Hence, the required assertion follows from Lemma 4.4.

Lemma 4.6. If there exists a constant θ > 0 such that G(θ) is a nonsingular M-matrix, then the solution x(t) of
system (4) with initial value x0 ∈ R+ has the property that

lim sup
t→+∞

E

[
1

xθ(t)

]
≤ H(θ), (43)

where H(θ) > 0 is a constant (defined by (55) in the proof).

Proof. Define

U(t) =
1

x(t)
. (44)

By the generalized Itô’s formula, we obtain

d [U(t)] =U(t)
{
−r(ρ(t)) + σ2(ρ(t)) +

∫
Z

γ2(µ,ρ(t))
1+γ(µ,ρ(t))λ(dµ) +

a(ρ(t))
U(t)

}
dt

− σ(ρ(t))U(t)dB(t) −
∫
Z

γ(µ,ρ(t))
1+γ(µ,ρ(t)) U(t)Ñ(dt,dµ).

(45)

Noting that G(θ) is a nonsingular M-matrix, then on the basis of Lemma 4.4, there exists−→p = (p1, p2, ..., pS)T
�

0 such that G(θ)−→p �
−→
0 , namely,

νi(θ)pi −

S∑
j=1

γi jp j > 0, 1 ≤ i ≤ S. (46)

From (46) we derive that there exists a constant κ > 0 such that

νi(θ)pi −

S∑
j=1

γi jp j − κpi > 0, 1 ≤ i ≤ S. (47)

Applying the generalized Itô’s formula again, we compute

L

[
eκtpi (1 + U(t))θ

]
= eκt

{
κpi (1 + U(t))θ +L

[
pi (1 + U(t))θ

]}
, (48)

where

κpi (1 + U(t))θ +L
[
pi (1 + U(t))θ

]
=κpi (1 + U(t))θ + piθ (1 + U(t))θ−1

L [U(t)] +
1
2

piθ(θ − 1)σ2(ρ(t))U2(t) (1 + U(t))θ−2 +

S∑
j=1

γi jp j (1 + U(t))θ

+

∫
Z

[
pi

(
1 +

U(t)
1+γ(µ,ρ(t))

)θ
− pi (1 + U(t))θ + piθU(t) (1 + U(t))θ−1 γ(µ,ρ(t))

1+γ(µ,ρ(t))

]
λ(dµ).
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(49)

Based on (10) and (45), we compute

κpi (1 + U(t))θ +L
[
pi (1 + U(t))θ

]
=κpi (1 + U(t))θ + piθU(t) (1 + U(t))θ−1

[
−α(ρ(t)) +

1
2
σ2(ρ(t)) +

∫
Z

ln
(
1 + γ(µ, ρ(t))

)
λ(dµ) +

a(ρ(t))
U(t)

]
+

1
2

piθ(θ − 1)σ2(ρ(t))U2(t) (1 + U(t))θ−2 +

S∑
j=1

γi jp j (1 + U(t))θ +

∫
Z

[
pi

(
1 +

U(t)
1+γ(µ,ρ(t))

)θ
− pi (1 + U(t))θ

]
λ(dµ)

=O(Uθ(t))Uθ(t) + F(U(t)),
(50)

where limU→+∞
F(U)
Uθ = 0 and

O(Uθ(t)) =κpi + piθ

[
−α(ρ(t)) +

1
2
σ2(ρ(t)) +

∫
Z

ln
(
1 + γ(µ, ρ(t))

)
λ(dµ)

]
+

1
2

piθ(θ − 1)σ2(ρ(t)) +

S∑
j=1

γi jp j +

∫
Z

[
pi

(
1

1+γ(µ,ρ(t))

)θ
− pi

]
λ(dµ)

=κpi +

S∑
j=1

γi jp j − piνi(θ).

(51)

In view of (47), (48), (49), (50) and (51), we deduce that there exists a constantH(θ) > 0 such that

L

[
eκtpi (1 + U(t))θ

]
≤ H(θ)eκt. (52)

On the basis of (52), integrating d
[
eκtpi (1 + U(t))θ

]
from 0 to t and then taking the expectations of both sides

yield

E
[
pieκt [1 + U(t)]θ

]
− pi [1 + U(0)]θ ≤ H(θ)

κ

(
eκt
− 1

)
. (53)

Based on (53), we deduce

E [1 + U(t)]θ ≤ H(θ)
κmin1≤i≤S pi

+
(
1 + 1

x0

)θ
e−κt. (54)

Define

H(θ) =
H(θ)

κmin1≤i≤S pi
. (55)

From (44), (54) and (55) we have

lim sup
t→+∞

E
[

1
xθ(t)

]
≤ H(θ). (56)

The proof is therefore complete.

Theorem 4.7. Under assumptions 1, 2, 3 and 4, system (4) is stochastically permanent.
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Proof. By Chebyshev’s inequality, for any ε > 0, there exists δ∗ =
(

ε
H(θ)

) 1
θ > 0 such that

lim sup
t→+∞

P {x(t) < δ∗} = lim sup
t→+∞

P
{

1
x(t) >

1
δ∗

}
≤ (δ∗)

θ lim sup
t→+∞

E
[

1
xθ(t)

]
≤ ε. (57)

Therefore,

lim inf
t→+∞

P {x(t) ≥ δ∗} ≥ 1 − ε. (58)

The second part of (23) follows from combining Lemma 4.2 with Chebyshev’s inequality. Hence, system
(4) is stochastically permanent.

Corollary 4.8. Under assumptions 1 and 3. If
∑S

i=1 πi

[
r(i) − 1

2σ
2(i)

]
> 0, then system (20) is stochastically perma-

nent.

Remark 4.9. Corollary 4.8 implies that Theorem 4.7 contains Theorem 3.2 in [8] as a special case.

Corollary 4.10. Assume that for some i ∈ S, α(i) > 0. Then system (5) is stochastically permanent.

Remark 4.11. Corollary 4.10 implies that Theorem 4.7 contains Theorem 1 in [10] as a special case.

5. Asymptotic Properties

Lemma 5.1. Under assumptions 1 and 2, the solution x(t) of system (4) with initial value x0 ∈ R+ has the property
that

lim sup
t→+∞

ln x(t)
ln t

≤ 1 a.s. (59)

Proof. It is easy to see that

dx(t) ≤r(ρ(t))x(t)dt + σ(ρ(t))x(t)dB(t) +

∫
Z

γ(µ, ρ(t))x(t)Ñ(dt,dµ). (60)

Integrating both sides of (60) from t to u (u > t) yields

x(u) − x(t) ≤
∫ u

t
r(ρ(s))x(s)ds +

∫ u

t
σ(ρ(s))x(s)dB(s) +

∫ u

t

∫
Z

γ(µ, ρ(s))x(s)Ñ(ds,dµ). (61)

Denote H0 = max1≤i≤S r(i). According to (61), we compute

E

[
sup

t≤u≤t+1
x(u)

]
≤E [x(t)] + H0

∫ t+1

t
E [x(s)] ds + E

[
sup

t≤u≤t+1

∫ u

t
σ(ρ(s))x(s)dB(s)

]
+ E

[
sup

t≤u≤t+1

∫ u

t

∫
Z

γ(µ, ρ(s))x(s)Ñ(ds,dµ)
]
.

(62)

Using the Burkholder-Davis-Gundy inequality (see e.g. pp.264-265 in [20]) and Young inequality, we
deduce

E

[
sup

t≤u≤t+1

∫ u

t
σ(ρ(s))x(s)dB(s)

]
≤ JE

(∫ t+1

t

[
σ(ρ(s))x(s)

]2 ds
)0.5

≤ JE
(∫ t+1

t
σ2x2(s)ds

)0.5

≤JE
(
σ2 sup

t≤u≤t+1
x(u)

∫ t+1

t
x(s)ds

)0.5

≤ JE
(

1
2J

sup
t≤u≤t+1

x(u) +
σ2 J
2

∫ t+1

t
x(s)ds

)
=

1
2
E

(
sup

t≤u≤t+1
x(u)

)
+
σ2 J2

2

∫ t+1

t
E [x(s)] ds.

(63)
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Combining the Burkholder-Davis-Gundy inequality with Hölder’s inequality, we obtain

E

[
sup

t≤u≤t+1

∫ u

t

∫
Z

γ(µ, ρ(s))x(s)Ñ(ds,dµ)
]
≤ JE

(∫ t+1

t

∫
Z

[
γ(µ, ρ(s))x(s)

]2 N(ds,dµ)
)0.5

≤JE
(∫ t+1

t

∫
Z

[
γ?

]2 x2(s)N(ds,dµ)
)0.5

≤ J
(
E

∫ t+1

t

∫
Z

[
γ?

]2 x2(s)N(ds,dµ)
)0.5

=J
(∫
Z

[
γ?

]2
λ(dµ)

)0.5 (
E

∫ t+1

t
x2(s)ds

)0.5

.

(64)

Substituting (63) and (64) into (62), we deduce

E

(
sup

t≤u≤t+1
x(u)

)
≤2E [x(t)] + 2H0

∫ t+1

t
E [x(s)] ds + σ2 J2

∫ t+1

t
E [x(s)] ds

+ 2J
(∫
Z

[
γ?

]2
λ(dµ)

)0.5 (∫ t+1

t
E

[
x2(s)

]
ds

)0.5

.

(65)

In the light of Lemma 4.2, we derive that there exists a constant K∗(θ) > 0 such that supt≥0E
[
xθ(t)

]
≤ K∗(θ).

Hence,

E

(
sup

t≤u≤t+1
x(u)

)
≤2K∗(1) + 2H0K∗(1) + σ2 J2K∗(1) + 2J

(
K∗(2)

∫
Z

[
γ?

]2
λ(dµ)

)0.5

=: K̃. (66)

Therefore, from (66) we get

E

(
sup

k≤u≤k+1
x(u)

)
≤ K̃, k = 1, 2, ... (67)

Then by Chebyshev’s inequality, we observe that for arbitrary ε > 0,

P
(
ω : sup

k≤t≤k+1
x(t) > k1+ε

)
≤

K̃
k1+ε

, k = 1, 2, ... (68)

Using Borel-Cantelli’s lemma, we obtain that there exists a set Ωo ∈ F with P(Ωo) = 1 and an integer-valued
random variable ko such that for every ω ∈ Ωo,

sup
k≤t≤k+1

x(t) ≤ k1+ε
(69)

holds whenever k ≥ ko(ω). Thus, for almost all ω ∈ Ω, if k ≥ ko and k ≤ t ≤ k + 1,

ln x(t)
ln t

≤

ln
(
supk≤t≤k+1 x(t)

)
ln t

≤
ln k1+ε

ln t
≤ 1 + ε. (70)

Therefore, we have

lim sup
t→+∞

ln x(t)
ln t

≤ 1 + ε a.s. (71)

So the desired assertion (59) follows from letting ε→ 0+.

Lemma 5.2. If there exists a constant θ > 0 such that G(θ) is a nonsingular M-matrix, then the solution x(t) of
system (4) with initial value x0 ∈ R+ has the property that

lim inf
t→+∞

ln x(t)
ln t

≥ −
1
θ

a.s. (72)
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Proof. For convenience, denote

Φ (U(t)) = − θ (1 + U(t))θ−1 σ(ρ(t))U(t), Ψ (U(t)) =
(
1 +

U(t)
1+γ(µ,ρ(t))

)θ
− (1 + U(t))θ . (73)

By the generalized Itô’s formula, we compute

d
[
(1 + U(t))θ

]
=L

[
(1 + U(t))θ

]
dt + Φ (U(t)) dB(t) +

∫
Z

Ψ (U(t)) Ñ(dt,dµ), (74)

where

L

[
(1 + U(t))θ

]
=θ (1 + U(t))θ−1

L[U(t)] +
1
2
θ(θ − 1) (1 + U(t))θ−2 [

σ(ρ(t))U(t)
]2

+

∫
Z

[
Ψ (U(t)) + θ (1 + U(t))θ−1 γ(µ,ρ(t))

1+γ(µ,ρ(t)) U(t)
]
λ(dµ).

(75)

Clearly, one can see that there exists a constant β∗ > 0 such that

L

[
(1 + U(t))θ

]
≤ β∗ (1 + U(t))θ . (76)

Substituting (76) into (74) yields

d
[
(1 + U(t))θ

]
≤ β∗ (1 + U(t))θ dt + Φ (U(t)) dB(t) +

∫
Z

Ψ (U(t)) Ñ(dt,dµ). (77)

For sufficiently small constant δ > 0, integrating both sides of (77) from (k−1)δ to t, then taking supremums
of both sides on [(k − 1)δ, kδ], and then taking the expectations of both sides yield

E

 sup
(k−1)δ≤t≤kδ

(1 + U(t))θ
 ≤E (

[1 + U((k − 1)δ)]θ
)

+ β∗
∫ kδ

(k−1)δ
E

(
(1 + U(s))θ

)
ds

+ E

 sup
(k−1)δ≤t≤kδ

∫ t

(k−1)δ
Φ (U(s)) dB(s)

 + E

 sup
(k−1)δ≤t≤kδ

∫ t

(k−1)δ

∫
Z

Ψ (U(s)) Ñ(ds,dµ)

 .
(78)

By the Burkholder-Davis-Gundy inequality and Young inequality, we derive

E

 sup
(k−1)δ≤t≤kδ

∫ t

(k−1)δ
Φ (U(s)) dB(s)

 ≤ JE
(∫ kδ

(k−1)δ
Φ2 (U(s)) ds

)0.5

≤JE
(∫ kδ

(k−1)δ
σ2θ2 (1 + U(s))2θ ds

)0.5

≤ JE

σ2θ2 sup
(k−1)δ≤t≤kδ

(1 + U(t))θ
∫ kδ

(k−1)δ
(1 + U(s))θ ds

0.5

≤
1
4
E

 sup
(k−1)δ≤t≤kδ

(1 + U(t))θ
 + σ2θ2 J2

∫ kδ

(k−1)δ
E

[
(1 + U(t))θ

]
dt.

(79)

Noting that there exists a constant Λ > 0 such that Ψ2(U) ≤ (1 + Λ)2 (1 + U)2θ, in view of the Burkholder-
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Davis-Gundy inequality and Young inequality again, we obtain

E

 sup
(k−1)δ≤t≤kδ

∫ t

(k−1)δ

∫
Z

Ψ (U(s)) Ñ(ds,dµ)

 ≤ JE
(∫ kδ

(k−1)δ

∫
Z

Ψ2 (U(s)) N(ds,dµ)
)0.5

≤JE
(∫ kδ

(k−1)δ

∫
Z

(1 + Λ)2 (1 + U(s))2θ N(ds,dµ)
)0.5

≤JE

 sup
(k−1)δ≤t≤kδ

(1 + U(t))θ
∫ kδ

(k−1)δ

∫
Z

(1 + Λ)2 (1 + U(s))θ N(ds,dµ)

0.5

≤
1
4
E

 sup
(k−1)δ≤t≤kδ

(1 + U(t))θ
 + J2E

(∫ kδ

(k−1)δ

∫
Z

(1 + Λ)2 (1 + U(s))θ N(ds,dµ)
)

=
1
4
E

 sup
(k−1)δ≤t≤kδ

(1 + U(t))θ
 + J2

∫
Z

(1 + Λ)2 λ(dµ)
∫ kδ

(k−1)δ
E (1 + U(s))θ ds.

(80)

Substituting (79) and (80) into (78) leads to

E

 sup
(k−1)δ≤t≤kδ

(1 + U(t))θ
 ≤2E

(
[1 + U((k − 1)δ)]θ

)
+ 2β∗

∫ kδ

(k−1)δ
E

(
(1 + U(s))θ

)
ds

+ 2σ2θ2 J2
∫ kδ

(k−1)δ
E

[
(1 + U(t))θ

]
dt + 2J2

∫
Z

(1 + Λ)2 λ(dµ)
∫ kδ

(k−1)δ
E (1 + U(s))θ ds.

(81)

According to Lemma 4.6, we obtain that there exists a constant H∗(θ) > 0 such that supt≥0E
[
(1 + U(t))θ

]
≤

H∗(θ). Hence, we compute

E

 sup
(k−1)δ≤t≤kδ

(1 + U(t))θ
 ≤2H∗(θ) + 2β∗δH∗(θ) + 2σ2θ2 J2δH∗(θ) + 2J2

∫
Z

(1 + Λ)2 λ(dµ)δH∗(θ) =: H̃. (82)

Then by Chebyshev’s inequality, we observe that for arbitrary ε > 0,

P

ω : sup
(k−1)δ≤t≤kδ

[1 + U(t)]θ > (kδ)1+ε

 ≤ H̃
(kδ)1+ε

, k = 1, 2, ... (83)

Using Borel-Cantelli’s lemma, we obtain that there exists a set Ω∗ ∈ F with P(Ω∗) = 1 and an integer-valued
random variable k∗ such that for every ω ∈ Ω∗,

sup
(k−1)δ≤t≤kδ

[1 + U(t)]θ ≤ (kδ)1+ε
(84)

holds whenever k ≥ k∗(ω). Hence, for almost all ω ∈ Ω, if k ≥ k∗ and (k − 1)δ ≤ t ≤ kδ,

ln [1 + U(t)]θ

ln t
≤

ln(kδ)1+ε

ln t
≤ 1 + ε. (85)

Based on (85) and the arbitrariness of ε, we deduce

lim sup
t→+∞

ln
[

1
x(t)

]
ln t

≤
1
θ

a.s. (86)
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In other words, we have

lim inf
t→+∞

ln x(t)
ln t

≥ −
1
θ

a.s. (87)

Hence, the proof is complete.

Theorem 5.3. Under assumptions 1, 2, 3 and 4, the solution x(t) of system (4) with initial value x0 ∈ R+ has the
property that

lim sup
t→+∞

1
t

∫ t

0
x(s)ds ≤

1
min1≤i≤S a(i)

S∑
i=1

πiα(i),

lim inf
t→+∞

1
t

∫ t

0
x(s)ds ≥

1
max1≤i≤S a(i)

S∑
i=1

πiα(i).

(88)

Proof. An application of Lemma 5.1 and Lemma 5.2 implies that

lim
t→+∞

ln x(t)
t

= 0 a.s. (89)

In view of (17), (18) and (89), letting t→ +∞, we have
lim sup

t→+∞

1
t

∫ t

0
x(s)ds ≤

1
min1≤i≤S a(i)

lim sup
t→+∞

t−1
∫ t

0
α(ρ(s))ds =

1
min1≤i≤S a(i)

S∑
i=1

πiα(i),

lim inf
t→+∞

1
t

∫ t

0
x(s)ds ≥

1
max1≤i≤S a(i)

lim inf
t→+∞

t−1
∫ t

0
α(ρ(s))ds =

1
max1≤i≤S a(i)

S∑
i=1

πiα(i).

(90)

The proof is complete.

Corollary 5.4. Under assumptions 1, 3 and 4, the solution x(t) of system (20) with initial value x0 ∈ R+ has the
property that

lim sup
t→+∞

1
t

∫ t

0
x(s)ds ≤

1
min1≤i≤S a(i)

S∑
i=1

πi

[
r(i) −

1
2
σ2(i)

]
,

lim inf
t→+∞

1
t

∫ t

0
x(s)ds ≥

1
max1≤i≤S a(i)

S∑
i=1

πi

[
r(i) −

1
2
σ2(i)

]
.

(91)

Remark 5.5. Corollary 5.4 implies that Theorem 5.3 contains Theorem 5.1 in [8] as a special case.

6. Conclusions and an Example

This paper is concerned with stochastic permanence and extinction of a stochastic logistic model with
Markovian switching and Lévy noise. Corollary 4.10 tells us that if α(i) > 0 for some i ∈ S, then system
(5) is stochastically permanent. Theorem 4.7 tells us that if for every i ∈ S, system (5) is stochastically
permanent, then as the result of Markovian switching, system (4) remains stochastically permanent. On
the other hand, Corollary 3.2 tells us that if α(i) < 0 for some i ∈ S, then system (5) is extinctive. Theorem
3.1 tells us that if for every i ∈ S, system (5) is extinctive, then as the result of Markovian switching, system
(4) remains extinctive. However, Theorem 3.1 and Theorem 4.7 provide a more interesting result that if
some subsystems are stochastically permanent while some are extinctive, again as the result of Markovian
switching, system (4) may be stochastically permanent or extinctive, depending on the sign of

∑S
i=1 πiα(i).

In order to see this point clearly, we state the following sufficient and necessary conditions for stochastic
permanence or extinction of system (4) which follow from Theorem 3.1 and Theorem 4.7.
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Theorem 6.1. Let assumptions 1, 2 and 3 hold and assume that
∑S

i=1 πiα(i) , 0. Then system (4) is either
stochastically permanent or extinctive. That is, it is stochastically permanent if and only if

∑S
i=1 πiα(i) > 0, while it

is extinctive if and only if
∑S

i=1 πiα(i) < 0.

Corollary 6.2. Let assumptions 1 and 3 hold and assume that
∑S

i=1 πi

[
r(i) − 1

2σ
2(i)

]
, 0. Then system (20) is either

stochastically permanent or extinctive. That is, it is stochastically permanent if and only if
∑S

i=1 πi

[
r(i) − 1

2σ
2(i)

]
> 0,

while it is extinctive if and only if
∑S

i=1 πi

[
r(i) − 1

2σ
2(i)

]
< 0.

Remark 6.3. Corollary 6.2 implies that Theorem 6.1 contains Theorem 6.1 in [8] as a special case.

Remark 6.4. Corollary 3.2 and Corollary 4.10 establish sufficient and necessary conditions of stochastic permanence
and extinction for system (5), which correspond to Remark 1 in [10].

Moreover, in the case of stochastic permanence, according to Theorem 5.3, both the superior limit and
the inferior limit of the average in time of the sample path of the solution are estimated by two constants
related to the stationary probability distribution (π1, π2, ..., πS) of the Markov chain and the parameters
r(i), a(i), σ(i), γ(µ, i) of the subsystems, i ∈ S. Our conclusions are illustrated by considering the following
stochastic logistic model with Markovian switching and Lévy noise:

dx(t) =x
(
t−

) {[
r(ρ(t)) − a(ρ(t))x

(
t−

)]
dt + σ(ρ(t))dB(t) +

∫
Z

γ(µ, ρ(t))Ñ(dt,dµ)
}
, (92)

where ρ(t) is a right-continuous Markov chain taking values in S = {1, 2}. System (92) may be regarded as
the result of regime switching, which switches between the following two subsystems:

dx(t) =x
(
t−

) {[
2 − x

(
t−

)]
dt + 3dB(t) +

∫
Z

Ñ(dt,dµ)
}
, (93)

and

dx(t) =x
(
t−

) {[
5 − 2x

(
t−

)]
dt + dB(t) +

∫
Z

Ñ(dt,dµ)
}
. (94)

Here, λ(Z) = 1 and

r(1) = 2, r(2) = 5, a(1) = 1, a(2) = 2, σ(1) = 3, σ(2) = 1, γ(µ, 1) = 1, γ(µ, 2) = 1. (95)

Based on (95), we compute

α(1) = −
7
2

+ ln 2, α(2) =
7
2

+ ln 2. (96)

From Corollary 3.2, system (93) is extinctive. By Corollary 4.10, system (94) is stochastically permanent.
Case 1. Let the generator of the Markov chain ρ(t) be

Γ = (γi j)2×2 =

(
−5 5
1 −1

)
. (97)

Solving equation (8) yields the unique stationary probability distribution

π = (π1, π2) =
(1

6
,

5
6

)
. (98)

Thus, we have

2∑
i=1

πiα(i) =
7
3

+ ln 2 > 0. (99)
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Therefore, according to Theorem 4.7, system (92) is stochastically permanent. Moreover, in view of Theorem
5.3, we obtain

7
6

+
ln 2

2
≤ lim inf

t→+∞

1
t

∫ t

0
x(s)ds ≤ lim sup

t→+∞

1
t

∫ t

0
x(s)ds ≤

7
3

+ ln 2. (100)

Case 2. Let the generator of the Markov chain ρ(t) be

Γ = (γi j)2×2 =

(
−1 1
3 −3

)
. (101)

Solving equation (8) yields the unique stationary probability distribution

π = (π1, π2) =
(3

4
,

1
4

)
. (102)

Then, we get

2∑
i=1

πiα(i) = −
7
4

+ ln 2 < 0. (103)

So based on Theorem 3.1, system (92) is extinctive.
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