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Abstract. We simplify the most general Taylor condition.

1. Introduction

By a strong Mal’cev condition we mean a finite set of identities in some language. Informally, a strong
Mal’cev condition is realized in an algebra A (or varietyV) if there is a way to interpret the function symbols
appearing in the condition as term operations of A (or V) so that the identities in the Mal’cev condition
become true equations in A (or V). A Mal’cev condition is a sequence {Cn : n ∈ ω} of strong Mal’cev
conditions such that any variety which realizes Cn must also realize Cn+1 for all n ∈ ω. We say that the
varietyV realizes the Mal’cev condition {Cn : n ∈ ω} if there exists an n ∈ ω such thatV realizes Cn. We say
that a varietal property P is a (strong) Mal’cev property if there exists a (strong) Mal’cev condition C such
that for any varietyV, C is realized inV iffV has the property P. Also, the previous sentence is commonly
relativized to locally finite varieties, so we say that some varietal property is a (strong) Mal’cev property of
locally finite varieties if there exists a (strong) Mal’cev condition C such that for any locally finite variety
V, C is realized inV iffV has the property P.

W. Taylor in [6] proved that a variety realizes a nontrivial idempotent strong Mal’cev condition iff it
realizes an idempotent linear strong Malcev condition in a one-operation language with identities in only
two variables. We will call such strong Mal’cev condition a Taylor condition. If the variety V realizes a
Taylor condition C, then any term which interprets the only operation symbol used in C is called a Taylor
term for the varietyV.

In the definition of Taylor condition there is no mention of a single (uniform) Taylor condition which is
realized in a variety iff any Taylor condition is realized. Until recently, it was thought no such condition
exists. M. Siggers proved in [5] that there exists a Taylor condition (S) with a six-ary operation symbol
such that for any locally finite variety V, (S) is realized in V iff any Taylor condition is realized in V. In
other words, Siggers proved that existence of a Taylor term is a strong Mal’cev property of locally finite
varieties. This astonishing development led to further investigations which simplified the Siggers condition
to a four-ary operation [2], proved that congruence meet-semidistributivity is a strong Mal’cev property of
locally finite varieties, but that most other natural properties are not strong Mal’cev properties even in the
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locally finite case in [3], and simplified the strong Mal’cev condition for congruence meet-semidistributivity,
while proving its optimality [1]. The even more astonishing recent development is a result by M. Olšák [4]
which proves that existence of a Taylor term is a strong Mal’cev property generally, not just in the locally
finite case. Initially, Olšák proved that the weakest Taylor condition is the ”double loop” term of arity
twelve. Both the Siggers term and the Taylor terms found in [2] can be obtained from the double loop term
by considering some variables as dummy variables. Motivated by this fact, we proceed to ”remove the
variables” from the double loop term in this note. After seeing a draft of our paper, Olšák further simplified
the double loop term to the ”weak 3-cube term” of arity 6. The weak 3-cube term and our Taylor term do
not trivially imply each other in any direction (only an existential proof is known, not a constructive one).

2. Setup

Definition 2.1. We say that a varietyV has a double loop term t if t is a 12-ary term in the language ofV such that
the following identities hold inV:

t(x, x, x, x, x, x, x, x, x, x, x, x) ≈ x
t(x, x, y, y, x, x, y, y, x, x, y, y) ≈ t(x, x, y, y, y, y, x, x, y, y, x, x)
t(x, y, x, y, x, y, x, y, x, y, x, y) ≈ t(y, x, y, x, x, y, x, y, y, x, y, x).

(O)

Olšak’s result announced in the Introduction states:

Theorem 2.2 (M. Olšák, [4]). Any variety which has a Taylor term has a double loop term.

Let V be a variety. ByW we denote the idempotent reduct of V, which is the variety whose clone is
the clone of idempotent term operations ofV and whose fundamental operations are the distinct elements
of this clone. Since all Mal’cev conditions C which we will consider in this paper are idempotent, it follows
thatV realizes C iffW realizes C. In other words, without loss of generality, we may restrict ourselves to
idempotent varieties.

In order to make our proofs easier to read we introduce a convention that the elements of AW (mappings
from W to A) are written as vector columns. This allows us to see better how to apply an operation which
acts coordinatewise on several such vectors. When we describe the constraint C ⊆ AW , we linearly order
the elements of W = {xi1 , . . . , xik }. Then we write ρi1,...,ik = R, for some previously fixed R ⊆ A|W|, which
means that the uppermost coordinate of the vector column in R is the image of xi1 , below it the image of
xi2 , and so on. In some cases, to save space we will use the transpose of the vector column, which will be
denoted by [a1, . . . , ak]T.

Lemma 2.3. LetV be a variety. IfV has a double loop term, thenV realizes the following strong Mal’cev condition:

f (x, x, x, x, x, x, x, x, x, x) ≈ x
f (x, x, y, y, x, x, y, y, x, x) ≈ f (x, x, y, y, y, y, x, x, y, y)
f (x, y, x, y, x, y, x, y, x, y) ≈ f (y, x, y, x, x, y, x, y, y, x)

(PV1)

Proof. As mentioned above, we may assume thatV is idempotent. Let t be the double loop term inV. Let
F be the two-generated free algebra inW, freely generated by x and y. Let
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We also define some elements of F, namely

a = t(x, x, y, y, x, x, y, y, x, x, y, y),
a = t(y, y, x, x, x, x, y, y, x, x, y, y),
b = t(x, y, x, y, x, y, x, y, x, y, x, y) and

b′ = t(x, y, x, y, x, y, x, y, x, y, y, x).

From (O) follow the equations

a = t(x, x, y, y, y, y, x, x, y, y, x, x),
a = t(y, y, x, x, y, y, x, x, y, y, x, x) and
b = t(y, x, y, x, x, y, x, y, y, x, y, x).

We prove that certain vectors are in G. Let ϕ be the automorphism of F which extends the map ϕ(x) = y and
ϕ(y) = x. Since [x, y, x, x]T, [y, x, x, x]T

∈ G, then for any u ∈ F, we get [u, ϕ(u), x, x]T
∈ G by the idempotence.

Similarly, from [x, y, y, y]T, [y, x, y, y]T
∈ G and idempotence follows that for any u ∈ F, [u, ϕ(u), y, y]T

∈ G.
Since ϕ(a) = a and ϕ(a) = a, we get [a, a, x, x]T, [a, a, x, x]T, [a, a, y, y]T, [a, a, y, y]T

∈ G. Assuming that
v = v(x, y) ∈ F, idempotence of the term v implies [a, a, v, v]T, [a, a, v, v]T

∈ G. For the appropriate choices of
v we get
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We proceed by directly computing that certain tuples are in G:
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Finally, we note that the generating set of G is closed under the transposition of the bottom two coordinates,
which is an automorphism of F4. Therefore, G is also closed under the transposition of the bottom two
coordinates. Thus we also get
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Finally, we apply t to the twelve obtained vectors in G to obtain:

t
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However, the first two coordinates of the resulting vector are equal by the identity

t(x, x, y, y, x, x, y, y, x, x, y, y) ≈ t(x, x, y, y, y, y, x, x, y, y, x, x),

while the second two coordinates are equal according to the identity

t(x, y, x, y, x, y, x, y, x, y, x, y) ≈ t(y, x, y, x, x, y, x, y, y, x, y, x).

So, let the resulting vector be [c, c, d, d]T.
Therefore, there exists a term f in ten variables which, when applied to the ten generators of G, equals

[c, c, d, d]T. (This term is implicitly given by our construction, but we omit it to save space.) This term is
computed in F4 coordinatewise, so

f F(x, x, y, y, x, x, y, y, x, x) = c = f F(x, x, y, y, y, y, x, x, y, y)

and
f F(x, y, x, y, x, y, x, y, x, y) = d = f F(x, y, x, y, y, x, y, x, y, x).

But since F is theV-free algebra, this implies that

V |= f (x, x, y, y, x, x, y, y, x, x) ≈ f (x, x, y, y, y, y, x, x, y, y)

and
V |= f (x, y, x, y, x, y, x, y, x, y) ≈ f (x, y, x, y, y, x, y, x, y, x).

As idempotence of f is guaranteed inV, f realizes the strong Mal’cev condition we wanted to prove.

Theorem 2.4. LetV be a variety with a double loop term. V also realizes the following strong Mal’cev condition:

f (x, x, x, x, x, x, x, x, x) ≈ x
f (x, x, y, y, x, x, y, y, x) ≈ f (x, x, y, y, y, y, x, x, y)
f (x, y, x, y, x, y, x, y, x) ≈ f (y, x, y, x, x, y, x, y, y)

(PV2)

Proof. We use the same technique as in the previous proof. Let f be the term which satisfies the identities
in (PV1), provided by Lemma 2.3. Define

H = SgF4
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As in the proof of Lemma 2.3, it suffices to prove that H contains a vector of the form [u,u, v, v]T for some
u, v ∈ F. We define

a = f (x, x, y, y, x, x, y, y, x, x),
b = f (x, y, x, y, x, y, x, y, x, y) and
c = f (y, y, y, y, x, x, x, x, y, y).
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From (PV1) follow the equations

a = f (x, x, y, y, y, y, x, x, y, y) and
b = f (y, x, y, x, x, y, x, y, y, x).

H contains
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Finally, H contains
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where d = f (b, b, b, b, a, a, a, a, b, b). This is what we needed to prove, the rest is analogous as in Lemma 2.3.

3. Final Remarks

Since we discovered the condition (PV2), M. Olšák also discovered improvements to his condition. Its
new equivalent form is called the ”weak 3-cube term” and entails idempotence and

s(x, y, y, y, x, x) ≈ s(y, x, y, x, y, x) ≈ s(y, y, x, x, x, y) . (S)

Since the weak 3-cube term has only six variables, it is more optimized than (PV2). However, it does not
trivially imply (PV2), and our feeling is that there is some optimal condition which entails both our (PV2)
and the weak 3-cube term.

What could that condition be? Well, in [4] it is proved (example attributed to A. Kazda) that the optimal
condition from [2], t(x, y, x, z) ≈ t(y, x, z, y) plus idempotence (this is not a Taylor term since the equations
use three variables), is not realized in all Taylor varieties, just in all locally finite ones. However, among
its consequences there are three which use only two variables, which are realized in all locally finite Taylor
varieties and which might be optimal Taylor conditions for all varieties. Those are (idempotence and)

t1(x, x, y, y) ≈ t1(x, y, x, y) ≈ t1(y, y, y, x) (C1)

t2(x, x, x, y) ≈ t2(x, x, y, x) and
t2(x, y, x, x) ≈ t2(y, x, y, x) (C2)

and finally

t3(x, x, x, y) ≈ t3(x, x, y, x) and
t3(x, y, x, x) ≈ t3(y, x, x, y). (C3)

Of the three, only the condition (C1), called the ”weak 3-edge term” in [2] is known to syntactically
imply both (S) and (PV2). The other two also imply (PV2) syntactically, but we only know they imply (S)
by going through the whole Olšák’s proof which is existential in parts, not constructive. So our conjecture
is that the weak 3-edge term is the optimal weakest Taylor condition.
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