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Abstract. In 1996, M. Stojaković and Z. Stojaković examined the convergence of a sequence of fuzzy
numbers via Zadeh’s Extension Principle, which is quite difficult for practical use. In this paper, we utilize
the notion λ−level sets to deal with convergence and summable related notions and adopted a relatively
new approach to characterize matrix classes involving some sets of single sequences of fuzzy numbers. The
approach is expected to be useful in dealing with characterization of several other matrix classes involving
different kinds of sets of sequences of fuzzy numbers, single or multiple.

1. Introduction and Definitions

The concepts of fuzzy sets and fuzzy set operations were first introduced by Zadeh [23] as an extension
of the classical notion of set and subsequently several authors have discussed various aspects of the theory
and applications of fuzzy sets such as fuzzy topological spaces, similarity relations and fuzzy orderings,
fuzzy possibility theory, fuzzy measures of fuzzy events, fuzzy mathematical programming, etc. Working
as a powerful mathematical tool for approximate reasoning, they play a significant role in decision making
in complex phenomena which are difficult to describe by traditional mathematics. Matloka [9] introduced
bounded and convergent sequences of fuzzy numbers and studied their properties. Later on sequences
of fuzzy numbers have been discussed by various authors. For further relevant studies related to various
operations and notions involving fuzzy sets, and different sets of sequences of fuzzy numbers, we refer to
[1–6, 8, 10–12, 14–17, 19–22].

Definition 1.1. (Goetschel and Voxman [7]) A fuzzy number is a fuzzy set on the real axis, i.e., a mapping
u : R −→ [0, 1] which satisfies the following four conditions:

(i) u is normal, i.e., there exists an x0 ∈ R such that u(x0) = 1.
(ii) u is fuzzy convex, i.e., u[λx + (1 − λ)y] ≥ min{u(x), v(y)} for all x, y ∈ R and for all λ ∈ [0, 1].
(iii) u is upper semi-continuous.
(iv) The set [u]0 = {x ∈ R(x) > 0} is compact, where {x ∈ R(x) > 0} denotes the closure of the set

{x ∈ R(x) > 0} in the usual topology of R.
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Research is supported by University Grants commission, New Delhi, India, Award letter number F./2015-16/NFO-2015-17-OBC-

ASS-36722/(SA-III/Website)
Email addresses: hemen_dutta08@rediffmail.com (Hemen Dutta), jyotishmgogoi@gmail.com (Jyotishmaan Gogoi)



H. Dutta, J. Gogoi / Filomat 31:19 (2017), 6101–6112 6102

We denote the set of all fuzzy numbers on R by E1 and called it as the space of fuzzy numbers. λ−level
set [u]λ of u ∈ E1 is defined by

[u]λ = {t ∈ R : u(t) ≥ λ}, (0 < λ ≤ 1),

= {t ∈ R : u(t) > λ}, (λ = 0).

The set [u]λ is a closed, bounded and non-empty interval for each λ ∈ [0, 1] which is defined by
[u]λ = [u−(λ),u+(λ)]. R can be embedded in E1, since each r ∈ R can be regarded as a fuzzy number

r(t) = 1, t = r,

= 0, t , r.

Definition 1.2. (Talo and Başar [18]) Let W be the set of all closed bounded intervals A of real numbers
such that A = [A1,A2]. Define the relation d on W as follows:

d(A,B) = max {|A1 − B1|, |A2 − B2|}.

Then (W, d) is a complete metric space (see Diamond and Kloeden [4], Nanda [10]). Then Talo and Başar
[18] defined the metric D on E1 by means of Hausdorff metric d as

D(u, v) = sup
λ∈[0,1]

d([u]λ, [v]λ) = sup
λ∈[0,1]

max{|u−(λ) − v−λ|, |u+(λ) − v+(λ)|}.

The partial ordering relation on E1 is defined as follows:

u 4 v⇔ [u]λ 4 [v]λ ⇔ u−(λ) ≤ v−(λ) and u+(λ) ≤ v+(λ) for all λ ∈ [0, 1].

Definition 1.3. (Talo and Başar [18])Let u, v,w ∈ E1 and k ∈ R. Then the operations addition, scalar
multiplication and product defined on E1 by

u + v = w ⇔ [w]λ = [u]λ + [v]λ for all λ ∈ [0, 1]⇔ w−(λ) = u−(λ) − v−(λ) and w+(λ) = u+(λ) + v+(λ) for
all λ ∈ [0, 1],
[ku]λ = k[u]λ for all λ ∈ 0, 1]
and
uv = w⇔ [w]λ = [u]λ[v]λ for all λ ∈ [0, 1],
where it is immediate that

w−(λ) = min{u−(λ)v−(λ),u−(λ)v+(λ),u+(λ)v−(λ),u+(λ)v+(λ)}

and
w+(λ) = max{u−(λ)v−(λ),u−(λ)v+(λ),u+(λ)v−(λ),u+(λ)v+(λ)},

for all λ ∈ [0, 1].

Definition 1.4. (Talo and Başar [18]) u ∈ E1 is a non-negative fuzzy number if and only if u(x0) = 0 for all
x0 < 0. It is immediate that u < 0 if x is a non-negative fuzzy number.
One can see that

D(u, 0) = sup
λ∈[0,1]

max{|u−(λ)|, |u+(λ)|} = max{|u−(0)|, |u+(0)|}. (1)
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Lemma 1.5. (Talo and Başar [18]) Let x, y, z,u ∈ E1 and k ∈ R. Then:
(i) (E1,D) is a complete metric space.
(ii) D(kx, ky) = |k| D(x, y).
(iii) D(x + y, z + y) = D(x, z).
(iv) D(x + y, z + u) ≤ D(x, z) + D(y,u).
(v) |D(x, 0) −D(y, 0)| ≤ D(x, y) ≤ D(x, 0) + D(y, 0).

Lemma 1.6. (Talo and Başar [18]) The following statements hold:
(i) D(xy, 0) ≤ D(x, 0)D(y, 0) for all x, y ∈ E1.
(ii) If xk −→ x, as k −→ ∞ then D(xk, 0) −→ D(x, 0) as k −→ ∞.

By wF we denote the set of all single sequences of fuzzy numbers onR. Matloka [9] introduced bounded
and convergent sequences of fuzzy numbers and studied their properties. We now quote the following
definitions given by Talo and Başar [18] which we will use in later part of this paper.

Definition 1.7. A sequence of fuzzy numbers (xk) is said to be bounded if the set of fuzzy numbers consist-
ing of the terms of the sequence (xk) is a bounded set. That is to say that a sequence (xk) ∈ wF is bounded
if and only if there exist two fuzzy numbers m and M such that m 4 xk 4 M for all k ∈ N. This means that
m−(λ) ≤ x−k (λ) ≤M−(λ) and m+(λ) ≤ x+

k (λ) ≤M+(λ) for all λ ∈ [0, 1].

The fact that the boundedness of the sequence (xk) ∈ wF is equivalent to the uniform boundedness of
the functions x−k (λ) and x+

k (λ) on [0, 1]. Therefore, one can say by using relation (1) that the boundedness of
the sequence (xk) ∈ wF is equivalent to the fact that

sup
k∈N

D(xk, 0) = sup
k∈N

sup
λ∈[0,1]

max (|x−k (λ)|, |x+
k (λ)|) < ∞.

Definition 1.8. A sequence of fuzzy numbers (xk) ∈ wF is called convergent with limit x ∈ E1, if and only if
for every ε > 0 there exists n0 = n0(ε) ∈N such that D(xk, x) < ε for all k ≥ n0.

If the sequence (xk) ∈ wF converges to a fuzzy number x then by the definition of D the sequence of
functions

{
x−k (λ)

}
and
{
x+

k (λ)
}

are uniformly convergent to x−(λ) and x+(λ) in [0, 1], respectively.

Definition 1.9. Let (xk) ∈ wF. Then the expression
∑
k

xk is called a series corresponding to the sequence (xk)

of fuzzy numbers. We denote

sn =
n∑

k=1
xk for all n ∈N.

If the sequence (sn) converges to a fuzzy number x, then we say that the series
∑
k

xk converges to x and

write
∑
k

xk = x, which implies as n −→ ∞ that

n∑
k=1

x−k (λ) −→ x−(λ) and
n∑

k=1

x+
k (λ) −→ x+(λ),

uniformly in λ ∈ [0, 1]. Conversely, if the fuzzy numbers xk = {(x−k (λ), x+
k (λ)) : λ ∈ [0, 1]},

∑
k

x−k (λ) = x−(λ)

and
∑
k

x+
k (λ) = x+(λ) converge uniformly in λ ∈ [0, 1], then x = {(x−(λ), x+(λ)) : λ ∈ [0, 1]} defines a fuzzy

number such that x =
∑
k

xk. The proof is due to Talo and Başar [18] in the form of the following lemma.

Otherwise, we say the series of fuzzy numbers diverges. Additionally, if the sequence (sn) is bounded
then we say that the series

∑
k

xk of fuzzy numbers is bounded.
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Lemma 1.10. If the fuzzy numbers xk = {(x−k (λ), x+
k (λ)) : λ ∈ [0, 1]},

∑
k

x−k (λ) = x−(λ) and
∑
k

x+
k (λ) = x+(λ) con-

verge uniformly in λ ∈ [0, 1], then x = {(x−(λ), x+(λ)) : λ ∈ [0, 1]} defines a fuzzy number such that x =
∞∑

k=0
xk.

Throughout the paper, the summations without limit run from 1 to∞, for example,
∑
k

xk means that
∞∑

k=1
xk.

We also suppose that 1 ≤ p < ∞with p−1 + q−1 = 1 andN = {1, 2, 3, ...}.

Definition 1.11. We have the sets `F
1 , `

F
p , `

F
∞, cF, cF

0 consisting of the absolutely summable, p−absolutely
summable, bounded, convergent and convergent to 0 sequences of fuzzy numbers (Talo and Başar [18]) as
follows:

`F
1 = {(xk) ∈ wF :

∑
k

D(xk, 0) < ∞},

`F
p = {(xk) ∈ wF :

∑
k

D(xk, 0)p < ∞},

`F
∞ = {(xk) ∈ wF : sup

k
D(xk, 0) < ∞},

cF = {(xk) ∈ wF : there exists l ∈ E1 such that lim
k−→∞

D(xk, l) = 0},

cF
0 = {(xk) ∈ wF : lim

k−→∞
D(xk, 0) = 0}.

We denote by csF and bsF, the set of all convergent and bounded series of fuzzy numbers respectively.
Now we define α−, β− and γ−duals of a set µF

⊂ wF which are respectively denoted by {µF
}
α, {µF

}
β and

{µF
}
γ as follows:

{µF
}
α = {(uk) ∈ wF : (ukvk) ∈ `F

1 , f or all (vk) ∈ µF
},

{µF
}
β = {(uk) ∈ wF : (ukvk) ∈ csF, f or all (vk) ∈ µF

},

{µF
}
γ = {(uk) ∈ wF : (ukvk) ∈ bsF, f or all (vk) ∈ µF

}.

2. Matrix Transformations Between Some Sets of Sequences of Fuzzy Numbers

An infinite matrix is one of the most general linear operators between two sequence spaces. The study
of theory of matrix transformations has always been of great interest to mathematicians in the study of
sequence spaces, which is motivated by special results in summability theory. Talo and Başar [18] gave
some matrix transformations between some sets of sequences of fuzzy numbers. We try to give some
results characterizing matrix transformations involving some classes of sequences of fuzzy numbers whose
classical counterparts can be found in Nanda [10].

Definition 2.1. Let µF
1 , µ

F
2 ⊂ wF and A = (ank) be any two dimensional matrix of fuzzy numbers. Then we

say that A defines a mapping from µF
1 into µF

2 , denote it by writing A : µF
1 −→ µF

2 if for every sequence
x = (xk) ∈ µF

1 , the A − trans f orm of x, Ax = {(Ax)n} given by

(Ax)n =
∑

k

ankxk (2)

exists for each n ∈N and is in µF
2 .
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A ∈ (µF
1 : µF

2) if and only if the series on the right hand side of (2) converges for each n ∈ N and every
x = (xk) ∈ µF

1 and we have Ax = {(Ax)n}n∈N ∈ µF
2 . A sequence x is said to be A− summable to α if Ax converges

to α which is called the A − limit of x. Also by A ∈ (µF
1 : µF

2 ; P) we mean that A preserves the limit that is
A − limit of x is equal to limit of x for all x = (xk) ∈ µF

1 .

Talo and Başar [18] characterized the following classes (µF : `F
∞), (cF

0 : cF), (cF
0 : cF

0), (cF : cF; P), (`F
p : cF),

(`F
p : cF

0) and (`F
∞ : cF

0) of infinite matrices of fuzzy numbers, where µF = {`F
∞, cF, cF

0 , `
F
p }.

Theorem 2.2. (Talo and Başar [18]) Let A = (ank) be any two dimensional infinite matrix of fuzzy numbers. Then

(i) A = (ank) ∈ (`F
∞ : `F

∞) if and only if

M = sup
n

∑
k

D(ank, 0) < ∞. (3)

(ii) A = (ank) ∈ (cF : `F
∞) if and only if (3) holds.

(iii) A = (ank) ∈ (cF
0 : `F

∞) if and only if (3) holds.

(iv) A = (ank) ∈ (`F
p : `F

∞) if and only if

C = sup
n

∑
k

[D(ank, 0)]q < ∞.

Theorem 2.3. (Theorem 4.6, Talo and Başar [18]) Let A = (ank) be a two dimensional infinite matrix of fuzzy
numbers with ank < 0 for all n, k ∈N. Then A ∈ (cF : cF; P) if and only if (3) holds and

lim
n−→∞

ank = 0, (4)

lim
n−→∞

∑
k

ank = 1, (5)

for all k ∈N.

The proof of the following theorem follows using similar arguments applied in the proof of above
Theorem 2.3. However, we give the detailed proof for the benefit of new readers in the field of our paper.

Theorem 2.4. Let A = (ank) be a two dimensional matrix of fuzzy numbers with ank < 0 for all n, k ∈ N. Then
A ∈ (cF : cF) if and only if (3) holds and

there exists ᾱk ∈ E1 such that lim
n−→∞

ank = ᾱk, (6)

there exists ᾱ ∈ E1 such that lim
n−→∞

∑
k

ank = ᾱ, (7)

for all k ∈N.

Proof. Let us suppose that A = (ank) ∈ (cF : cF) and x = (xk) ∈ cF. Since the inclusion cF
⊂ `F

∞ holds, the
inclusion (cF : cF) ⊂ (cF : `F

∞) also hold. Thus, the necessity of (3) holds.
We define the sequence x = (xk) ∈ cF by

xk = 1, n = k,
= 0, n , k,

for all n ∈N. Then
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(Ax)n = (ank)∞n=1 ∈ cF.

Thus, as n −→ ∞, (Ax)n tends to a limit say, ᾱk ∈ E1. So, (6) holds.
Similarly, taking u = (uk) := (1) ∈ cF, we get that (7) holds.
For the converse part, let us consider that the conditions (3), (6) and (7) hold. Let (xk) ∈ cF. Then since

Ax exists, the series
∑
k

ankxk converges for each fixed n ∈N. Hence, An ∈ {cF
}
β for all n ∈N.

It is obvious that (3) holds if and only if

sup
n

∑
k

sup
λ∈[0,1]

|a−nk(λ)| < ∞,

and

sup
n

∑
k

sup
λ∈[0,1]

|a+
nk(λ)| < ∞.

(6) holds if and only if

lim
n−→∞

sup
λ∈[0,1]

|a−nk(λ) − α−k (λ)| = 0,

and

lim
n−→∞

sup
λ∈[0,1]

|a+
nk(λ) − α+

k (λ)| = 0.

Similarly, (7) holds if and only if

lim
n−→∞

sup
λ∈[0,1]

|
∑
k

a−nk(λ) − α−(λ)| = 0,

and

lim
n−→∞

sup
λ∈[0,1]

|
∑
k

a+
nk(λ) − α+(λ)| = 0.

Now, suppose that xk −→ x as k −→ ∞. This implies that, x−k (λ) −→ x−(λ) as k −→ ∞ and x+
k (λ) −→ x+(λ)

as k −→ ∞, uniformly in λ’s.
Since,

|
∑
k

a−nk(λ)x−k (λ) − α−(λ)x−(λ)|

= |
∑
k

a−nk(λ)x−k (λ) − x−(λ)
∑
k

a−nk(λ) + x−(λ)
∑
k

a−nk(λ) − α−(λ)x−(λ)|

≤ |
∑
k

a−nk(λ)x−k (λ) − x−(λ)
∑
k

a−nk(λ)| + |x−(λ)
∑
k

a−nk(λ) − α−(λ)x−(λ)|

≤
∑
k
|a−nk(λ)||x−k (λ) − x−(λ)| + |x−(λ)||

∑
k

a−nk(λ) − α−(λ)|

≤
∑
k

sup
λ∈[0,1]

|a−nk(λ)| sup
λ∈[0,1]

|x−k (λ) − x−(λ)| + sup
λ∈[0,1]

|x−(λ)| sup
λ∈[0,1]

|
∑
k

a−nk(λ) − α−(λ)|,

We have

sup
λ∈[0,1]

|
∑
k

a−nk(λ)x−k (λ) − α−(λ)x−(λ)| −→ 0 as n −→ ∞.

Since, ank < 0 for all n, k ∈N and x−k (λ) ≤ x+
k (λ) for all λ ∈ [0, 1],we have
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a−nk(λ)x−k (λ) ≤ a−nk(λ)x+
k (λ) and a+

nk(λ)x−k (λ) ≤ a+
nk(λ)x+

k (λ),
which implies,

(ankxk)−(λ) = min{a−nk(λ)x−k (λ), a−nk(λ)x+
k (λ), a+

nk(λ)x−k (λ), a+
nk(λ)x+

k (λ)}
= min {a−nk(λ)x−k (λ), a+

nk(λ)x−k (λ)}.

Similarly,

(ankxk)+(λ) = max{a−nk(λ)x−k (λ), a−nk(λ)x+
k (λ), a+

nk(λ)x−k (λ), a+
nk(λ)x+

k (λ)}
= max {a−nk(λ)x+

k (λ), a+
nk(λ)x+

k (λ)}.

Consequently,

lim
n−→∞

∑
k

(ankxk)−(λ) = lim
n−→∞

∑
k

min{a−nk(λ)x−k (λ), a+
nk(λ)x−k (λ)} = α−(λ)x−(λ),

and
lim

n−→∞

∑
k

(ankxk)+(λ) = lim
n−→∞

∑
k

max{a−nk(λ)x+
k (λ), a+

nk(λ)x+
k (λ)} = α+(λ)x+(λ),

uniformly in λ’s.

Hence
∑
k

ankxk −→ ᾱx as n −→ ∞.

So, A ∈ (cF : cF).

This step completes the proof.

Theorem 2.5. Let A = (ank) be a two dimensional matrix of fuzzy numbers with ank < 0 for all n, k ∈ N. Then
A ∈ (`F

1 : `F
p ) if and only if for all k ∈N,

M = sup
k

∑
n

(D(ank, 0))p < ∞, (1 ≤ p < ∞), (8)

sup
n,k

(D(ank, 0))p < ∞, (p = ∞). (9)

Proof. Since the proofs are similar, we give the proof only for (8). Suppose that the condition (8) holds and
let x = (xk) ∈ `F

1 .
Now,

(
∑
n

D((Ax)n, 0)p)1/p = (
∑
n

(D(
∑
k

ankxk, 0))p)1/p

We have,

(D(
∑
k

ankxk, 0))p
≤ (
∑
k

D(ankxk, 0))p.

Then∑
n

(D(
∑
k

ankxk, 0))p
≤
∑
n

(
∑
k

D(ankxk, 0))p

⇒ (
∑
n

(D(
∑
k

ankxk, 0))p)1/p
≤ (
∑
n

(
∑
k

D(ankxk, 0))p)1/p.

Using Minkowski’s inequality, we have,
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(
∑
n

(
∑
k

D(ankxk, 0))p)1/p
≤ (
∑
n

D(an1x1, 0)p)1/p + (
∑
n

D(an2x2, 0)p)1/p + ...

=
∑
k

(
∑
n

D(ankxk, 0)p)1/p

≤
∑
k

(
∑
n

D(ank, 0)pD(xk, 0)p)1/p

=
∑
k

(D(xk, 0)p)1/p(
∑
n

D(ank, 0)p)1/p

≤M1/p∑
k

(D(xk, 0)p)1/p < ∞.

Thus, Ax ∈ `F
p , i.e., A ∈ (`F

1 : `F
p ).

We observe that since aik < 0 for all i, k ∈N and x−k (λ) ≤ x+
k (λ) for all λ ∈ [0, 1], we have,

a−ik(λ)x−k (λ) ≤ a−ik(λ)x+
k (λ) and a+

ik(λ)x−k (λ) ≤ a+
ik(λ)x+

k (λ),
which implies,

(aikxk)−(λ) = min{a−ik(λ)x−k (λ), a−ik(λ)x+
k (λ), a+

ik(λ)x−k (λ), a+
ik(λ)x+

k (λ)} = min{a−ik(λ)x−k (λ), a+
ik(λ)x−k (λ)}.

Similarly,

(aikxk)+(λ) = max{a−ik(λ)x−k (λ), a−ik(λ)x+
k (λ), a+

ik(λ)x−k (λ), a+
ik(λ)x+

k (λ)} = max{a−ik(λ)x+
k (λ), a+

ik(λ)x+
k (λ)}.

For the converse part, let us consider that A ∈ (`F
1 : `F

p ), so that∑
i

(D(Ai(x), 0))p < ∞,

on `F
1 where Ai(x) =

∑
k

aikxk.

To show sup
k

∑
i

(D(aik, 0))p < ∞ (1 ≤ p < ∞), it is sufficient to show that

sup
k

∞∑
i=1

sup
λ∈[0,1]

|a−ik(λ)|p < ∞ (10)

and

sup
k

∞∑
i=1

sup
λ∈[0,1]

|a+
ik(λ)|p < ∞, (11)

for all k ∈N.

Since
∑
k

aikxk converges for each i whenever x = (xk) ∈ `F
1 , we have,

∑
k

(aikxk)−(λ) and
∑
k

(aikxk)+(λ) con-

verges uniformly in λ ∈ [0, 1] for each i whenever x−k (λ) ∈ `−1 and x+
k (λ) ∈ `+

1 for all k ∈N, where

`−1 = {x−(λ) : x = [x]λ = [(xk)]λ = [x−k (λ), xk)+(λ)] ∈ `F
1 f or all λ ∈ [0, 1]},

and
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`+
1 = {x+(λ) : x = [x]λ = [(xk)]λ = [x−k (λ), xk)+(λ)] ∈ `F

1 f orallλ ∈ [0, 1]}, corresponding to each x = (xk) ∈ `F
1 .

It is easy to see that `−1 ⊆ `1 and `+
1 ⊆ `1.

Using Banach-Steinhaus theorem, we get,

sup
k
|a−ik(λ)| < ∞,

and

sup
k
|a+

ik(λ)| < ∞,

for all λ ∈ [0, 1] and for all each i.

Each member of `1 can be regarded as a member of `F
1 and our desired condition (11) is based on crisp

terms (λ-level sets), let us define a function 1n on `1 as follows:

If x+(λ) ∈ `+
1 ,

1n(x+(λ)) = (
n∑

i=1
|
∑
k

max{a−ik(λ)x+
k (λ), a+

ik(λ)x+
k (λ)}|p)1/p

= (
n∑

i=1
|
∑
k

(aikxk)+(λ)|p)1/p

= (
n∑

i=1
|(Ai(x))+(λ)|)1/p,

for all λ ∈ [0, 1] and for all k ∈N.

If x ∈ `1 r `+
1 then x+(λ) = x−(λ) = x for all λ ∈ [0, 1], we have 1n(x) = (

n∑
i=1
|
∑
k

aikxk|
p)1/p.

Thus, each 1n is a seminorm on `1. Also, each (Ai(x))+(λ) is a bounded linear functional on `+
1 . It is easy

to see that 1n is bounded on `1, and in particular on `+
1 . So we get a sequence (1n) of continuous seminorms

on `1 such that,

1n(x+(λ)) = (
n∑

i=1
|(Ai(x))+(λ)|p)1/p

≤ (
∞∑

i=1
|(Ai(x))+(λ)|p)1/p < ∞,

for each x+(λ) ∈ `1. It follows from the Banach-Steinhaus theorem that there exists a constant G < ∞
such that for all λ ∈ [0, 1],

(
∞∑

i=1
|(Ai(x))+(λ)|)p)1/p < G‖x+(λ)‖,

on `1 for all λ ∈ [0, 1].

Now letting x = (xk) defined by

x = (xk) := 1, i = k,

= 0, i , k,
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for all i ∈ N and considering (aikxk)+(λ) = max{a−ik(λ)x+
k (λ), a+

ik(λ)x+
k (λ)} = a+

ik(λ)x+
k (λ), we get for all

λ ∈ [0, 1],

(Ai(x))+(λ) =
∑
k

(aikxk)+(λ) =
∑
k

a+
ik(λ)x+

k (λ) = a+
ik(λ),

for each fixed k ∈N.

Thus,

(
∞∑

i=1
|a+

ik(λ)|)p)1/p
≤ G‖x+(λ)‖ < ∞,

for each fixed k ∈N and for all λ ∈ [0, 1]. Which implies that,

sup
k

∞∑
i=1

sup
λ∈[0,1]

|a+
ik(λ)|p < ∞.

Similarly, considering (aikxk)+(λ) = max{a−ik(λ)x+
k (λ), a+

ik(λ)x+
k (λ)} = a−ik(λ)x+

k (λ), we have the following
condition (10),

sup
k

∞∑
i=1

sup
λ∈[0,1]

|a−ik(λ)|p < ∞.

Consequently, we get that,

sup
k

∑
i

(D(aik, 0))p < ∞, (1 ≤ p < ∞).

This step completes the proof.

Theorem 2.6. Let A = (ank) be a two dimensional matrix of non-negative fuzzy numbers with ank < 0 for all
n, k ∈N. Then A ∈ (`F

1 : `F
1 ; P) if and only if the conditions

sup
k

∑
n

D(ank, 0) < ∞, (12)

∑
n

ank = 1, (13)

for all k ∈N.

Proof. Let us suppose the conditions (12)-(13) hold and let x = (xk) ∈ `F
1 . Since (12) holds, putting p = 1

in Theorem 2.5, we get A ∈ (`F
1 : `F

1 ). Also, since the condition (13) holds, considering (ankxk)+(λ) =
max{a−nk(λ)x+

k (λ), a+
nk(λ)x+

k (λ)} = a+
nk(λ)x+

k (λ), we get for all λ ∈ [0, 1],∑
n

(An(x))+(λ) =
∑
n

∑
k

(ankxk)+(λ)

=
∑
n

∑
k

a+
nk(λ)x+

k (λ)

=
∑
k

x+
k (λ)
∑
n

a+
nk(λ)

=
∑
k

x+
k (λ).

Similarly, taking (An(x))−(λ) =
∑
k

(ankxk)−(λ) for all n ∈ N and for all λ ∈ [0, 1], we get,
∑
n

(An(x))−(λ) =∑
k

x−k (λ).

From the above we can see that A ∈ (`F
1 : `F

1 ; P).
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For the converse part, suppose that A ∈ (`F
1 : `F

1 ,P). Then obviously (12) holds.

Taking (ankxk)+(λ) = max{a−nk(λ)x+
k (λ), a+

nk(λ)x+
k (λ)} = a−nk(λ)x+

k (λ), we get,∑
n

(An(x))+(λ) =
∑
n

∑
k

(ankxk)+(λ) =
∑
n

∑
k

a−nk(λ)x+
k (λ) =

∑
k

x+
k (λ).

for all λ ∈ [0, 1].

Again considering

(ankxk)+(λ) = max{a−nk(λ)x+
k (λ), a+

nk(λ)x+
k (λ)} = a+

nk(λ)x+
k (λ), we get,∑

n
(An(x))+(λ) =

∑
n

∑
k

(ankxk)+(λ) =
∑
n

∑
k

a+
nk(λ)x+

k (λ) =
∑
k

x+
k (λ).

for all λ ∈ [0, 1].

Now letting x = (xk) defined by

x = (xk) := 1, k = r,

= 0, k , r,

for all k ∈N, we get,

|
∑
n

a−nr(λ) − 1| = 0,

and

|
∑
n

a+
nr(λ) − 1| = 0,

for all λ ∈ [0, 1]. Which implies that the condition (13) holds as r is arbitrary.

This step completes the proof.
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[19] Ö. Talo, C. Çakan, On the Cesàro convergence of sequences of fuzzy numbers, Appl. Math. Letters 25 (2012) 676–681.
[20] E. Yavuz, Comparison theorems for summability methods of sequences of fuzzy numbers, arXiv: 1611.00387v1 [math.CA] 28

Oct 2016.
[21] E. Yavuz, Euler summability method of sequences of fuzzy numbers and a Tauberian theorem, J. Intelligent Fuzzy Syst. 32 (2017)

937–943.
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