
Filomat 31:19 (2017), 6113–6129
https://doi.org/10.2298/FIL1719113S

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. It is shown that the following class of systems of difference equations

zn+1 = αza
nwb

n, wn+1 = βwc
nzd

n−2, n ∈N0,

where a, b, c, d ∈ Z, α, β, z−2, z−1, z0,w0 ∈ C \ {0}, is solvable, continuing our investigation of classification
of solvable product-type systems with two dependent variables. We present closed form formulas for
solutions to the systems in all the cases. In the main case, when bd , 0, a detailed investigation of the form
of the solutions is presented in terms of the zeros of an associated polynomial whose coefficients depend
on some of the parameters of the system.

1. Introduction

The area of difference equations and systems is of a great interest. For some classical results see [6]-[9].
Many concrete types of the equations and systems have been considerably studied recently (see, for example,
[1], [2], [4], [5], [10]-[16], [18]-[49]). After some initial studies of symmetric systems by Papaschinopoulos
and Schinas in [12]-[14], these and some other experts have continued the investigation in several directions
(see, for example, [2], [4], [10], [11], [16], [18], [19], [21], [23]-[29], [31]-[33], [36], [38]-[49]). Among others, the
solvability problem has been studied considerably recently (see, for example, [2], [15], [21]-[38], [40]-[49]
and the references therein), since some new interesting solvable classes of equations and systems have
appeared recently. Many equations and systems are solved by reducing them to known solvable ones by
employing some transformations (see, for example, [2], [15], [21], [22], [24]-[27], [35], [40]-[45]). For many
of them the transformations are not so obvious, for example, for the systems in [2] and [21], or for some
cases of the equation in [35], where can be found several methods for solving difference equations. For
some classes of partial difference equations, which can be solved by some related methods, see [30, 34, 37].

Some classes of the equations and systems contain product-type ones as their special cases. We will
mention only paper [20] on a class of such equations and [39] on a class of such systems (an interested
reader can find many related equations and systems in the lists of the references in these two papers).
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The work of Zdeňek Šmarda was supported by the project FEKT-S-17-4225 of Brno University of Technology.
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Having studied these types of equations and systems and noticing their connection to product-type ones
we came up with an idea to study the later ones, but on the set of real or complex numbers, since the case of
positive initial values and parameters is well-known (the system studied in [23] was solved by transforming
it to a product-type one with such initial values). However, working on the domains causes some typical
problems, usually connected to the multi-valuedness of complex functions.

Bearing in mind that the related product-type system to the one in [39] has the following form

zn = zp
n−kwq

n−l, wn = wr
n−mzt

n−s, n ∈N0,

for some k, l,m, s ∈ N, p, q, r, t ∈ R, it is naturally imposed to study the problem of solvability for special
cases of the system or for some of its extensions. It turned out that the problem was not so easy. The case
k = m = 2, l = s = 1, was the first one that was studied (see [38]). The corresponding three-dimensional
system was studied in [31]. Somewhat later in [46] was studied the case k = m = 1, l = s = 2. Motivated
by [35], in the course of the study we have noticed that introducing some multipliers will not violate
the solvability. The first product-type system with multipliers was considered in [29], while in [47] was
considered the corresponding extension of the system in [38]. We have also realized that in some technically
complicated cases the structure of the solutions to some product-type systems can be described in detail,
which was first successfully done for the systems in [33] and [49]. For the system studied in [48] such
analysis was not necessary, since for its solutions are found closed-form formulas in a reasonably concise
way. Another method for solving product-type systems has been recently presented in [32]. We would
also like to mention that paper [35] deals with some product-type equations, which are special cases of the
equation studied there.

Analysing the methods used in papers [29], [32], [33], [38], [46]-[49] it can be seen that the number of
solvable product-type systems of the above form is finite, the fact that is connected to the impossibility of
solving the polynomial equations of degree five or more.

Here we continue studying the solvability of product-type systems by investigating the following one:

zn+1 = αza
nwb

n, wn+1 = βwc
nzd

n−2, n ∈N0, (1)

where a, b, c, d ∈ Z, α, β ∈ C and z−2, z−1, z0,w0 ∈ C.
We show the solvability of system (1) by developing our previous methods in [29], [32], [33], [38],

[46]-[49], especially for the most difficult case bd , 0, where we conduct a detailed analysis of the structure
of the solutions to the system by analysing the nature of the roots of a polynomial of the fourth degree
whose coefficients depend on parameters a, b, c, d.

Note that if any of initial values z−2, z−1, z0,w0 is equal to zero, then if some of parameters a, b, c, d is
negative it will produce a not well-defined solution. If all the parameters are positive then such initial
values will produce eventually trivial solutions. The same situation appears if α = 0 or β = 0. This is why
we consider the case z−2, z−1, z0,w0, α, β ∈ C \ {0}. As usual, we regard

∑l
i=k ai = 0, if l < k.

2. Auxiliary Results

This section quotes three lemmas. The first one is well-known (see, e.g., [7, 9]).

Lemma 1. Let i ∈N0 and

s(i)
n (z) = 1 + 2iz + 3iz2 + · · · + nizn−1, n ∈N, (2)

where z ∈ C.
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Then

s(0)
n (z) =

1 − zn

1 − z
,

s(1)
n (z) =

1 − (n + 1)zn + nzn+1

(1 − z)2 ,

s(2)
n (z) =

1 + z − (n + 1)2zn + (2n2 + 2n − 1)zn+1
− n2zn+2

(1 − z)3 ,

s(3)
n (z) =

n3zn(z − 1)3
− 3n2zn(z − 1)2 + 3nzn(z2

− 1) − (zn
− 1)(z2 + 4z + 1)

(1 − z)4 ,

for every z ∈ C \ {1} and n ∈N.

The following lemma is also classical one. For an elementary proof see, for example, [3, 7]. For a proof
which uses a complex analysis method, see, for example, [46].

Lemma 2. If λ j, j = 1, k, are mutually different zeros of the polynomial

P(t) = aktk + ak−1tk−1 + · · · + a1t + a0,

with aka0 , 0, then
k∑

j=1

λl
j

P′(λ j)
= 0

for l = 0, k − 2, and
k∑

j=1

λk−1
j

P′(λ j)
=

1
ak
.

The results proved in [17] can be summarized into the following lemma.

Lemma 3. Let
P4(t) = t4 + bt3 + ct2 + dt + e,

∆0 = c2
− 3bd + 12e, ∆1 = 2c3

− 9bcd + 27b2e + 27d2
− 72ce, ∆ =

1
27

(4∆3
0 − ∆2

1),

P = 8c − 3b2, Q = b3 + 8d − 4bc, D = 64e − 16c2 + 16b2c − 16bd − 3b4.

(a) If ∆ < 0, then two zeros of P4 are real and different, and two are non-real complex conjugate;
(b) If ∆ > 0, then all the zeros of P4 are real or none is. More precisely,

1◦ if P < 0 and D < 0, then all four zeros of P4 are real and different;
2◦ if P > 0 or D > 0, then there are two pairs of complex conjugate zeros of P4.

(c) If ∆ = 0, then and only then P4 has a multiple zero. The following cases can occur:
1◦ if P < 0, D < 0 and ∆0 , 0, then two zeros of P4 are real and equal and two are real and simple;
2◦ if D > 0 or (P > 0 and (D , 0 or Q , 0)), then two zeros of P4 are real and equal and two are complex

conjugate;
3◦ if ∆0 = 0 and D , 0, there is a triple zero of P4 and one simple, all real;
4◦ if D = 0, then

4.1◦ if P < 0 there are two double real zeros of P4;
4.2◦ if P > 0 and Q = 0 there are two double complex conjugate zeros of P4;
4.3◦ if ∆0 = 0, then all four zeros of P4 are real and equal to −b/4.
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3. Main Results

The main results in this paper are proved in this section.

Theorem 1. Assume that a, c, d ∈ Z, b = 0, α, β, z−2, z−1, z0,w0 ∈ C \ {0}. Then system (1) is solvable in closed form.

Proof. Since b = 0 system (1) is

zn+1 = αza
n, wn+1 = βwc

nzd
n−2, n ∈N0. (3)

From (3), we obtain

zn = α
∑n−1

j=0 a j
zan

0 , n ∈N. (4)

Hence

zn = α
1−an
1−a zan

0 , n ∈N, (5)

when a , 1, and

zn = αnz0, n ∈N, (6)

when a = 1.
From the second equation in (3) and (4), it follows that

wn = βαd
∑n−4

j=0 a j
zdan−3

0 wc
n−1, n ≥ 4. (7)

Assume that

wn = β
∑k−1

j=0 c j
αd

∑k−1
j=0 c j ∑n− j−4

i=0 ai
z

d
∑k−1

j=0 c jan− j−3

0 wck

n−k, (8)

for some k and all n ≥ k + 3.
If we replace n by n − k in (7) and use it in (8), we obtain

wn = β
∑k−1

j=0 c j
αd

∑k−1
j=0 c j ∑n− j−4

i=0 ai
z

d
∑k−1

j=0 c jan− j−3

0 (βαd
∑n−k−4

j=0 a j
zdan−k−3

0 wc
n−k−1)ck

= β
∑k

j=0 c j
αd

∑k
j=0 c j ∑n− j−4

i=0 ai
z

d
∑k

j=0 c jan− j−3

0 wck+1

n−k−1,

for n ≥ k + 4. This inductive argument shows that (8) holds for every k,n ∈N such that n ≥ k + 3.
By taking k = n − 3 in (8), and using the following fact

w3 = β1+c+c2
wc3

0 zdc2

−2 zdc
−1zd

0,

we have

wn = β
∑n−4

j=0 c j
αd

∑n−4
j=0 c j ∑n− j−4

i=0 ai
z

d
∑n−4

j=0 c jan− j−3

0 wcn−3

3

= β
∑n−4

j=0 c j
αd

∑n−4
j=0 c j ∑n− j−4

i=0 ai
z

d
∑n−4

j=0 c jan− j−3

0 (β1+c+c2
wc3

0 zdc2

−2 zdc
−1zd

0)cn−3

= β
∑n−1

j=0 c j
αd

∑n−4
j=0 c j ∑n− j−4

i=0 ai
z

d
∑n−3

j=0 c jan− j−3

0 zdcn−1

−2 zdcn−2

−1 wcn

0 , (9)

for n ≥ 4.



S. Stević et al. / Filomat 31:19 (2017), 6113–6129 6117

Case a , 1 , c , a. From (9) and some calculation, we get

wn = β
1−cn
1−c αd

∑n−4
j=0 c j 1−an− j−3

1−a zd an−2
−cn−2

a−c
0 zdcn−1

−2 zdcn−2

−1 wcn

0

= β
1−cn
1−c α

d
1−a ( 1−cn−3

1−c −a an−3
−cn−3

a−c )zd an−2
−cn−2

a−c
0 zdcn−1

−2 zdcn−2

−1 wcn

0

= β
1−cn
1−c α

d(a−c+(1−a)cn−2+(c−1)an−2)
(1−a)(1−c)(a−c) zd an−2

−cn−2
a−c

0 zdcn−1

−2 zdcn−2

−1 wcn

0 . (10)

Case a = c , 1. From (9) and some calculation, we get

wn = β
∑n−1

j=0 c j
αd

∑n−4
j=0 c j ∑n− j−4

i=0 ci
z

d
∑n−3

j=0 c jcn− j−3

0 zdcn−1

−2 zdcn−2

−1 wcn

0

= β
1−cn
1−c αd

∑n−4
j=0 c j 1−cn− j−3

1−c zd(n−2)cn−3

0 zdcn−1

−2 zdcn−2

−1 wcn

0

= β
1−cn
1−c α

d
1−c ( 1−cn−3

1−c −(n−3)cn−3)zd(n−2)cn−3

0 zdcn−1

−2 zdcn−2

−1 wcn

0

= β
1−cn
1−c α

d(1−(n−2)cn−3+(n−3)cn−2)
(1−c)2 zd(n−2)cn−3

0 zdcn−1

−2 zdcn−2

−1 wcn

0 . (11)

Case a = 1 , c. From (9) and some calculation, we get

wn = β
∑n−1

j=0 c j
αd

∑n−4
j=0 c j(n− j−3)z

d
∑n−3

j=0 c j

0 zdcn−1

−2 zdcn−2

−1 wcn

0

= β
1−cn
1−c α

d
(

(n−3) 1−cn−3
1−c −c

∑n−4
j=1 jc j−1

)
zd 1−cn−2

1−c
0 zdcn−1

−2 zdcn−2

−1 wcn

0

= β
1−cn
1−c α

d
(

(n−3) 1−cn−3
1−c −c 1−(n−3)cn−4+(n−4)cn−3

(1−c)2

)
zd 1−cn−2

1−c
0 zdcn−1

−2 zdcn−2

−1 wcn

0

= β
1−cn
1−c α

d(n−3−(n−2)c+cn−2)
(1−c)2 zd 1−cn−2

1−c
0 zdcn−1

−2 zdcn−2

−1 wcn

0 . (12)

Case a , 1 = c. From (9) and some calculation, we get

wn = βnαd
∑n−4

j=0
1−an− j−3

1−a z
d
∑n−3

j=0 an− j−3

0 zd
−2zd
−1w0

= βnα
d

1−a (n−3−a 1−an−3
1−a )zd an−2

−1
a−1

0 zd
−2zd
−1w0

= βnα
d(an−2

−(n−2)a+n−3)
(1−a)2 zd an−2

−1
a−1

0 zd
−2zd
−1w0. (13)

Case a = c = 1. From (9) in this case, we have

wn = βnαd
∑n−4

j=0 (n− j−3)zd(n−2)
0 zd

−2zd
−1w0

= βnαd (n−3)(n−2)
2 zd(n−2)

0 zd
−2zd
−1w0. (14)

From all the above the theorem follows. �

Theorem 1 yields the following corollary.

Corollary 1. Assume that a, c, d ∈ Z, b = 0, α, β, z−2, z−1, z0,w0 ∈ C \ {0}. Then the following statements are true.

(a) If a , 1 , c , a, then the general solution to system (1) is given by (5) and (10).
(b) If a = c , 1, then the general solution to system (1) is given by (5) and (11).
(c) If a = 1 , c, then the general solution to system (1) is given by (6) and (12).
(d) If a , 1 = c, then the general solution to system (1) is given by (5) and (13).
(e) If a = c = 1, then the general solution to system (1) is given by (6) and (14).
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The following result was proved in [49]. Hence, we will only sketch the proof for the completeness and
the benefit of the reader.

Theorem 2. Assume that a, b, c ∈ Z, d = 0, α, β, z−2, z−1, z0,w0 ∈ C \ {0}. Then system (1) is solvable in closed form.

Proof. Since d = 0 system (1) is

zn+1 = αza
nwb

n, wn+1 = βwc
n, n ∈N0. (15)

The second equation in (15) yields

wn = β
∑n−1

i=0 ci
wcn

0 , n ∈N. (16)

Hence, for c , 1

wn = β
1−cn
1−c wcn

0 , n ∈N, (17)

while for c = 1

wn = βnw0, n ∈N. (18)

From the first equation in (15) and (16), is obtained

zn = αβb
∑n−2

i=0 ci
wbcn−1

0 za
n−1, (19)

for n ≥ 2.
By using the induction is obtained

zn = α
∑k−1

i=0 ai
β

b
∑k−1

j=0

(
a j ∑n− j−2

i=0 ci
)
wb

∑k−1
i=0 aicn−i−1

0 zak

n−k, (20)

for n ≥ k + 1.
By taking k = n − 1 into (20) and using the fact z1 = αza

0wb
0, we get

zn =α
∑n−1

i=0 ai
β

b
∑n−2

j=0

(
a j ∑n− j−2

i=0 ci
)
wb

∑n−1
i=0 aicn−i−1

0 zan

0 , (21)

for n ≥ 2.

Subcase a , c. In this case from (21), we get

zn = α
∑n−1

i=0 ai
β

b
∑n−2

j=0

(
a j ∑n− j−2

i=0 ci
)
zan

0 wb an
−cn

a−c
0 , n ∈N. (22)

If a , 1 and c , 1, then by Lemma 1 is obtained

zn = α
1−an
1−a βb a−c+cn

−an+can
−acn

(1−a)(1−c)(a−c) zan

0 wb an
−cn

a−c
0 , n ∈N. (23)

If a , c and a = 1, then by Lemma 1, we get

zn = αnβ
b n−1−nc+cn

(1−c)2 z0wb cn
−1

c−1
0 , n ∈N, (24)

while if a , c and c = 1, then by Lemma 1, we get

zn = α
1−an
1−a β

b n−1−na+an

(1−a)2 zan

0 wb an
−1

a−1
0 , n ∈N. (25)

Subcase a = c. In this case from (21), we get

zn = α
∑n−1

i=0 ai
β

b
∑n−2

j=0

(
a j ∑n− j−2

i=0 ai
)
zan

0 wbnan−1

0 , n ≥ 2. (26)
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If a = c , 1, then by using Lemma 1, (26) becomes

zn = α
1−an
1−a β

b 1−nan−1+(n−1)an

(1−a)2 zan

0 wbnan−1

0 , n ≥ 2, (27)

while if a = c = 1, then by using Lemma 1, we get

zn = αnβb (n−1)n
2 z0wbn

0 , n ∈N, (28)

completing the proof. �

Corollary 2. Assume that a, b, c ∈ Z, d = 0 and α, β, z0,w0 ∈ C \ {0}. Then the following statements are true.

(a) If a , c, a , 1 and c , 1, then the general solution to system (1) is given by (17) and (23).
(b) If a , c and a = 1, then the general solution to system (1) is given by (17) and (24).
(c) If a , c and c = 1, then the general solution to system (1) is given by (18) and (25).
(d) If a = c , 1, then the general solution to system (1) is given by (17) and (27).
(e) If a = c = 1, then the general solution to system (1) is given by (18) and (28).

Theorem 3. Assume that a, b, c, d ∈ Z, bd , 0, α, β, z−2, z−1, z0,w0 ∈ C \ {0}. Then system (1) is solvable in closed
form.

Proof. Since z−2, z−1, z0,w0, α, β ∈ C \ {0}, from (1) it easily follows that znwn , 0 for n ∈ N0. Hence, from
(1) we have

wb
n =

zn+1

αza
n
, n ∈N0, (29)

and

wb
n+1 = βbwbc

n zbd
n−2, n ∈N0. (30)

Using (29) in (30) is obtained

zn+2 = α1−cβbza+c
n+1z−ac

n zbd
n−2, n ∈N0. (31)

Let δ = α1−cβb,

a1 = a + c, b1 = −ac, c1 = 0, d1 = bd, y1 = 1. (32)

Then (31) is presented in the following form

zn+2 = δy1 za1
n+1zb1

n zc1
n−1zd1

n−2, n ∈N0. (33)

We have

zn+2 = δy1 (δza1
n zb1

n−1zc1
n−2zd1

n−3)a1 zb1
n zc1

n−1zd1
n−2,

= δy1+a1 za1a1+b1
n zb1a1+c1

n−1 zc1a1+d1
n−2 zd1a1

n−3

= δy2 za2
n zb2

n−1zc2
n−2zd2

n−3, (34)

for n ∈N, where

a2 := a1a1 + b1, b2 := b1a1 + c1, c2 := c1a1 + d1, d2 := d1a1, y2 := y1 + a1. (35)

Assume that

zn+2 = δyk zak
n+2−kzbk

n+1−kzck
n−kzdk

n−k−1, (36)
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for a k ∈N \ {1} and all n ≥ k − 1, and that

ak = a1ak−1 + bk−1, bk = b1ak−1 + ck−1,

ck = c1ak−1 + dk−1, dk = d1ak−1,
(37)

yk = yk−1 + ak−1. (38)

Then by using (33) where n is replaced by n − k in (36), we obtain

zn+2 = δyk (δza1
n+1−kzb1

n−kzc1
n−k−1zd1

n−k−2)ak zbk
n+1−kzck

n−kzdk
n−k−1

= δyk+ak za1ak+bk
n+1−k zb1ak+ck

n−k zc1ak+dk
n−k−1 zd1ak

n−k−2

= δyk+1 zak+1
n+1−kzbk+1

n−kzck+1
n−k−1zdk+1

n−k−2,

for n ≥ k, where

ak+1 := a1ak + bk, bk+1 := b1ak + ck,

ck+1 := c1ak + dk, dk+1 := d1ak,

yk+1 := yk + ak.

This along with (34), (35) and the induction shows that (36)-(38), hold for every k,n ∈N such that 2 ≤ k ≤ n+1
(note that (36) holds for 1 ≤ k ≤ n + 1).

By taking k = n + 1 in (36), using the fact z1 = αza
0wb

0, (37) and (38), we have

zn+2 =δyn+1 zan+1
1 zbn+1

0 zcn+1
−1 zdn+1

−2

=(α1−cβb)yn+1 (αza
0wb

0)an+1 zbn+1
0 zcn+1

−1 zdn+1
−2

=α(1−c)yn+1+an+1βbyn+1 zaan+1+bn+1
0 zcn+1

−1 zdn+1
−2 wban+1

0

=αyn+2−cyn+1βbyn+1 zan+2−can+1
0 zbdan−1

−1 zbdan
−2 wban+1

0 , n ≥ 2. (39)

From (37) we see that (ak)k≥5 is a solution to

ak = a1ak−1 + b1ak−2 + c1ak−3 + d1ak−4, (40)

which along with the relations bk = ak+1 − a1ak, ck = bk+1 − b1ak, dk = d1ak−1 shows that (bk)k≥5, (ck)k≥5 and
(dk)k≥5 are also solutions to (40).

From (37) with k = 1, 0,−1,−2, some calculation and by using the assumption bd , 0, it is not difficult to
see that

a−3 = 0, a−2 = 0, a−1 = 0, a0 = 1;
b−3 = 0, b−2 = 0, b−1 = 1, b0 = 0;
c−3 = 0, c−2 = 1, c−1 = 0, c0 = 0;
d−3 = 1, d−2 = 0, d−1 = 0, d0 = 0.

(41)

Hence, (ak)k≥−3, is the solution to (40) with the initial conditions a−3 = a−2 = a−1 = 0, a0 = 1, whereas
(yk)k≥−3 satisfies (38) and

y−3 = y−2 = y−1 = y0 = 0, y1 = 1, (42)

from which along with a0 = 1 is obtained

yk =

k−1∑
j=0

a j, k ∈N. (43)
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The solvability of (40) implies that a closed form formula for (ak)k≥−3 can be found, from which along
with (43) and by the formulas in Lemma 1 a closed-form formula for (yk)k≥−3 is found. Employing such
obtained formulas in (39) shows the solvability of (31).

Further, we have

zd
n−2 =

wn+1

βwc
n
, n ∈N0, (44)

and

zd
n+1 = αdzad

n wbd
n , n ∈N0. (45)

Combining (44) and (45) we obtain

wn+4 = αdβ1−awa+c
n+3w−ac

n+2wbd
n , n ∈N0. (46)

Note also that

w1 = βwc
0zd
−2, w2 = β1+cwc2

0 zcd
−2zd
−1 and w3 = β1+c+c2

wc3

0 zc2d
−2 zcd

−1zd
0. (47)

Following the lines of the method for getting the closed-form formula for zn is obtained that for all
k,n ∈N, 1 ≤ k ≤ n + 1

wn+4 = ηyk wak
n+4−kwbk

n+3−kwck
n+2−kwdk

n+1−k, (48)

where η = αdβ1−a, (ak)k∈N, (bk)k∈N, (ck)k∈N and (dk)k∈N are solutions to the problem (37), (41), whereas (yk)k∈N
satisfies (38), the condition y1 = 1, and (43).

By taking k = n + 1 in (48) and employing (47), it follows that

wn+4 =ηyn+1 wan+1
3 wbn+1

2 wcn+1
1 wdn+1

0

=(αdβ1−a)yn+1 (β1+c+c2
wc3

0 zc2d
−2 zcd

−1zd
0)an+1 (β1+cwc2

0 zcd
−2zd
−1)bn+1 (βwc

0zd
−2)cn+1 wdn+1

0

=αdyn+1β(1−a)yn+1+(1+c+c2)an+1+(1+c)bn+1+cn+1 wc3an+1+c2bn+1+ccn+1+dn+1
0 zc2dan+1+cdbn+1+dcn+1

−2 zcdan+1+dbn+1
−1 zdan+1

0

=αdyn+1βyn+4−ayn+3 wan+4−aan+3
0 zd(an+3−aan+2)

−2 zd(an+2−aan+1)
−1 zdan+1

0 , (49)

for n ∈N0.
Since (40) is solvable we have that closed-form formulas for (ak)k≥−3 and (yk)k≥−3 can be found. Using

such obtained formulas in (49) shows the solvability of (46). By some calculation it is shown that (39) and
(49) are solutions to (1), completing the proof. �

Corollary 3. Assume that a, b, c, d ∈ Z, bd , 0, α, β, z−2, z−1, z0,w0 ∈ C \ {0}. Then the general solution to system
(1) is given by (39) and (49), where sequence (ak)k≥−3 is given by (40) and a−3 = a−2 = a−1 = 0, a0 = 1, while (yk)k≥−3
is given by (42) and (43).

3.1. Structure of sequence an in the case bd , 0

Equation (40) is solvable, since its characteristic polynomial

p4(λ) = λ4
− (a + c)λ3 + acλ2

− bd, (50)

for the case bd , 0, is of the forth degree, so, solvable by radicals. By using the Ferrari-type argument given
in [3] we can write the equation p4(λ) = 0 in the following form(

λ2
−

a + c
2

λ +
s
2

)2

−

(( (a − c)2

4
+ s

)
λ2
−

(a + c)s
2

λ +
s2

4
+ bd

)
= 0, (51)
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and choose parameter s so that the expression in the second bracket in (51) is a perfect square, i.e., ((a+c)s)2 =
((a − c)2 + 4s)(s2 + 4bd), which is equivalent to

s3
− acs2 + 4bds + bd(a − c)2 = 0, (52)

while equation (51) becomes(
λ2
−

a + c
2

λ +
s
2

)2

−

( √
(a − c)2 + 4s

2
λ −

(a + c)s

2
√

(a − c)2 + 4s

)2

= 0, (53)

which is equivalent to the following two quadratic equations

λ2
−

(a + c
2

+

√
(a − c)2 + 4s

2

)
λ +

s
2

+
(a + c)s

2
√

(a − c)2 + 4s
= 0, (54)

λ2
−

(a + c
2
−

√
(a − c)2 + 4s

2

)
λ +

s
2
−

(a + c)s

2
√

(a − c)2 + 4s
= 0. (55)

By using the change of variables s = t + ac
3 equation (52) becomes

t3 + pt + q = 0, (56)

where

p =
12bd − a2c2

3
and q =

(27a2 + 27c2
− 18ac)bd − 2a3c3

27
.

A solution to equation (56) is found in the following form t = u + v. If we put it into (56) and request
that uv = −p/3, it is obtained that u3 + v3 = −q and u3v3 = −p3/27,which implies that u3 and v3 are solutions
to the quadratic equation z2 + qz − p3/27, so consequently they are equal to (−q ±

√
q2 + 4p3/27)/2. Hence

t =
3

√
−

q
2
−

√
q2

4
+

p3

27
+

3

√
−

q
2

+

√
q2

4
+

p3

27
. (57)

If p = −∆0/3 and q = −∆1/27, from (57), we have

t =
1

3 3√2

(
3

√
∆1 −

√
∆2

1 − 4∆3
0 +

3

√
∆1 +

√
∆2

1 − 4∆3
0

)
. (58)

For such chosen t, that is, s, equations (54) and (55) are easily solved and by some calculation it is obtained
that the zeros of polynomial (50) are the following:

λ1 =
a + c

4
+

1
2

√
(a + c)2

4
−

2ac
3

+ t +
1
2

√√√ (a + c)2

2
−

4ac
3
− t −

Q

4
√

(a+c)2

4 −
2ac
3 + t

, (59)

λ2 =
a + c

4
+

1
2

√
(a + c)2

4
−

2ac
3

+ t −
1
2

√√√ (a + c)2

2
−

4ac
3
− t −

Q

4
√

(a+c)2

4 −
2ac
3 + t

, (60)

λ3 =
a + c

4
−

1
2

√
(a + c)2

4
−

2ac
3

+ t +
1
2

√√√ (a + c)2

2
−

4ac
3
− t +

Q

4
√

(a+c)2

4 −
2ac
3 + t

, (61)
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λ4 =
a + c

4
−

1
2

√
(a + c)2

4
−

2ac
3

+ t −
1
2

√√√ (a + c)2

2
−

4ac
3
− t −

Q

4
√

(a+c)2

4 −
2ac
3 + t

, (62)

where

∆0 :=a2c2
− 12bd, (63)

∆1 :=2a3c3
− 27(a + c)2bd + 72acbd, (64)

Q := − (a + c)(a − c)2. (65)

From Lemma 3 we see that the nature of the zeros is determined by the discriminant

∆ :=
1
27

(4∆3
0 − ∆2

1), (66)

and the signs of

P : −3a2 + 2ac − 3c2 (67)

and

D := −64bd − 16a2c2 + 16ac(a + c)2
− 3(a + c)4. (68)

First note that P < 0 for every (a, c) , (0, 0), since the polynomial −3t2 + 2t − 3 is negative for all t ∈ R,
and that P = 0 if and only if a = c = 0.

All the zeros of p4 are different and none of them is equal to 1. If, for example, a = 1, c = 2 and bd = 3,
polynomial (50) becomes

p4(λ) = λ4
− 3λ3 + 2λ2

− 3.

Since ∆ < 0, by Lemma 3 we see that p4 has four different zeros (two real and two complex-conjugate). Note
that the same situation always appears when ∆0 < 0, that is, if a2c2 < 12bd, since this implies ∆ < 0.

If a = c and a4 > 16bd > 0, then by some calculation it is shown that ∆ > 0 and D < 0, which along with
the fact P < 0 and by using Lemma 3 shows that in this case polynomial p4 have four different real zeros.
Since the case P > 0 is not possible, p4 cannot have two pairs of complex-conjugate zeros.

In these cases the zeros λ j, j = 1, 4, of (50) are different, so the general solution to (40) has the form

an = α1λ
n
1 + α2λ

n
2 + α3λ

n
3 + α4λ

n
4 , n ∈N, (69)

where α j, j = 1, 4, are arbitrary constants.
Employing Lemma 2 to p4, we have

4∑
j=1

λl
j

p′4(λ j)
= 0,

for l = 0, 2, and
4∑

j=1

λ3
j

p′4(λ j)
= 1,

where λ j, j = 1, 4, are given by (59)-(62).
From this, since a−3 = a−2 = a−1 = 0 and a0 = 1, and the form of the solution to (40), it follows that

an =

4∑
j=1

λn+3
j

p′4(λ j)
=

λn+3
1

(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)
+

λn+3
2

(λ2 − λ1)(λ2 − λ3)(λ2 − λ4)

+
λn+3

3

(λ3 − λ1)(λ3 − λ2)(λ3 − λ4)
+

λn+3
4

(λ4 − λ1)(λ4 − λ2)(λ4 − λ3)
, (70)
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for n ≥ −3.
Employing (70) into (43), is obtained

yn =

n−1∑
j=0

4∑
i=1

λ j+3
i

p′4(λi)
=

4∑
i=1

λ3
i (λn

i − 1)

p′4(λi)(λi − 1)
, n ∈N, (71)

when λ j , 1, j = 1, 4, which is equivalent to p4(1) , 1. It is easily verified by Lemma 2 that (71) also holds
for n = − j, j = 0, 3.

All the zeros of p4 are different and one of them is equal to 1. Polynomial p4 will have a zero equal to 1 if
p4(1) = 1 − a − c + ac − bd = 0, that is, if

(a − 1)(c − 1) = bd. (72)

Hence

p4(λ) =λ4
− (a + c)λ3 + acλ2

− (a − 1)(c − 1)

=(λ − 1)(λ3
− (a + c − 1)λ2 + (a − 1)(c − 1)λ + (a − 1)(c − 1)).

By using the change of variables λ = t + (a + c − 1)/3, the equation

λ3
− (a + c − 1)λ2 + (a − 1)(c − 1)λ + (a − 1)(c − 1) = 0,

is transformed to t3 + p̂t + q̂ = 0 with

p̂ = −
(a + c − 1)2

3
+ (a − 1)(c − 1) and q̂ = −

2(a + c − 1)3

27
+

(a − 1)(c − 1)(a + c + 2)
3

.

Hence, as in (57), it is obtained that the zeros of the last equation are:

t j = ε j
3

√
−

q̂
2
−

√
q̂2

4
+

p̂3

27
+ ε j

3

√
−

q̂
2

+

√
q̂2

4
+

p̂3

27
, j = 0, 2, (73)

where ε3 = 1 and ε , 1, and consequently

λ j =
a + c − 1

3
+ ε j−2

3

√
−

q̂
2
−

√
q̂2

4
+

p̂3

27
+ ε j−2

3

√
−

q̂
2

+

√
q̂2

4
+

p̂3

27
, j = 2, 4. (74)

If, for example, a = 3 and c = 2, then bd = 2, ∆ , 0. Thus, p4 has four different zeros one of which is
equal to 1, and

p4(λ) = λ4
− 5λ3 + 6λ2

− 2 = (λ − 1)(λ3
− 4λ2 + 2λ + 2). (75)

Formula (70) also holds but with λ1 = 1. Further, we have

yn =

n−1∑
j=0

1
p′4(1)

+

n−1∑
j=0

4∑
i=2

λ j+3
i

p′4(λi)

=
n

4 − 3a − 3c + 2ac
+

4∑
i=2

λ3
i (λn

i − 1)

p′4(λi)(λi − 1)
, (76)

since p′4(1) = 4 − 3a − 3c + 2ac. Some calculation shows that (76) holds for n ≥ −3.

From this and by Corollary 3 we get the following result.

Corollary 4. Consider system (1) with a, b, c, d ∈ Z and bd , 0. Assume that z−2, z−1, z0,w0 ∈ C \ {0} and ∆ , 0.
Then the following statements are true.
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(a) If none of the zeros of polynomial (50) is equal to 1, i.e., if (a − 1)(c − 1) , bd, then the general solution to system
(1) is given by formulas (39) and (49), where the sequence (an)n≥−3 is given by (70), (yn)n≥−3 is given by (71),
while λ j-s, j = 1, 4, are given by (59)-(62).

(b) If (exactly) one of the zeros of polynomial (50) is equal to 1, sayλ1, i.e., if (a−1)(c−1) = bd and 4−3a−3c+2ac , 0,
then the general solution to system (1) is given by formulas (39) and (49), where the sequence (an)n≥−3 is given
by (70) with λ1 = 1, (yn)n≥−3 is given by (76), while λ j-s, j = 2, 4, are given by (74).

Case when p4 has exactly one double zero which is different from 1. If a = 4, c = 0 and bd = −27, then (50) is

p4(λ) = λ4
− 4λ3 + 27 = (λ − 3)2(λ2 + 2λ + 3).

So there is a polynomial with exactly one double zero (here it is λ1,2 = 3) different from one. The other two
zeros are complex conjugate λ3,4 = −1 ± i

√
2.

In the case when only two zeros are equal, say λ1 and λ2, then the general solution has the following
form

an = (γ1 + γ2n)λn
2 + γ3λ

n
3 + γ4λ

n
4 , n ∈N, (77)

where γ j, j = 1, 4, are arbitrary constants.
The solution satisfying conditions a−3 = a−2 = a−1 = 0 and a0 = 1 is obtained, for example, by letting

λ1 → λ2 in (70). It is shown that

an = lim
λ1→λ2

( λn+3
1

(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)
+

λn+3
2

(λ2 − λ1)(λ2 − λ3)(λ2 − λ4)

+
λn+3

3

(λ3 − λ1)(λ3 − λ2)(λ3 − λ4)
+

λn+3
4

(λ4 − λ1)(λ4 − λ2)(λ4 − λ3)

)
=
λn+2

2 ((n + 3)(λ2 − λ3)(λ2 − λ4) − λ2(2λ2 − λ3 − λ4))

(λ2 − λ3)2(λ2 − λ4)2

+
λn+3

3

(λ3 − λ2)2(λ3 − λ4)
+

λn+3
4

(λ4 − λ2)2(λ4 − λ3)
. (78)

Employing (78) in (43) and using Lemma 1, we get

yn =

n−1∑
j=0

(λ j+2
2 (( j + 3)(λ2 − λ3)(λ2 − λ4) − λ2(2λ2 − λ3 − λ4))

(λ2 − λ3)2(λ2 − λ4)2 +
λ j+3

3

(λ3 − λ2)2(λ3 − λ4)
+

λ j+3
4

(λ4 − λ2)2(λ4 − λ3)

)
=
λ3

2 − nλn+2
2 + (n − 1)λn+3

2

(λ2 − λ3)(λ2 − λ4)(1 − λ2)2 +
(λ4

2 − 2λ3
2λ3 − 2λ3

2λ4 + 3λ2
2λ3λ4)(λn

2 − 1)

(λ2 − λ3)2(λ2 − λ4)2(λ2 − 1)

+
λ3

3(λn
3 − 1)

(λ3 − λ2)2(λ3 − λ4)(λ3 − 1)
+

λ3
4(λn

4 − 1)

(λ4 − λ2)2(λ4 − λ3)(λ4 − 1)
. (79)

Case when p4 has three different zeros and 1 is a double zero. Polynomial p4 has a double zero equal to 1 if
(72) holds and if

p′4(1) = 4 − 3(a + c) + 2ac = 0, (80)

that is, if and only if

(2a − 3)(2c − 3) = 1. (81)
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From (81) we have that it must be a = c = 2 or a = c = 1. If a = c = 1, then bd = 0, which is impossible. If
a = c = 2, then bd = 1 , 0, from which it follows that

p4(λ) = λ4
− 4λ3 + 4λ2

− 1 = (λ − 1)2(λ2
− 2λ − 1). (82)

From (82) we have that

λ1,2 = 1, λ3,4 = 1 ±
√

2. (83)

From this, we have proved in passing, that there are no such a, c ∈ Z \ {1}, such that 1 is a triple zero of
p4.

In this case, we have

an =
n(1 − λ3)(1 − λ4) + 3λ3λ4 − 2λ3 − 2λ4 + 1

(1 − λ3)2(1 − λ4)2 +
λn+3

3

(λ3 − 1)2(λ3 − λ4)
+

λn+3
4

(λ4 − 1)2(λ4 − λ3)
, (84)

and

yn =

n−1∑
j=0

( j(1 − λ3)(1 − λ4) + 3λ3λ4 − 2λ3 − 2λ4 + 1
(1 − λ3)2(1 − λ4)2 +

λ j+3
3

(λ3 − 1)2(λ3 − λ4)
+

λ j+3
4

(λ4 − 1)2(λ4 − λ3)

)
=

(n − 1)n
2(1 − λ3)(1 − λ4)

+
n(3λ3λ4 − 2λ3 − 2λ4 + 1)

(1 − λ3)2(1 − λ4)2 +
λ3

3(λn
3 − 1)

(λ3 − 1)3(λ3 − λ4)
+

λ3
4(λn

4 − 1)

(λ4 − 1)3(λ4 − λ3)
. (85)

Corollary 5. Consider system (1) with a, b, c, d ∈ Z and bd , 0. Assume that z−2, z−1, z0,w0 ∈ C \ {0}. Then the
following statements are true.

(a) If only one of the zeros of polynomial (50) is double and different from 1, then the general solution to system (1)
is given by formulas (39) and (49), where sequence (an)n≥−3 is given by (78), while (yn)n≥−3 is given by (79).

(b) If only double zero of polynomial (50) is equal to 1, say λ1 = λ2 = 1, then the general solution to system (1) is
given by formulas (39) and (49), where sequence (an)n≥−3 is given by (84), (yn)n≥−3 is given by (85), while λ j-s,
j = 1, 4, are given by (83).

Case when p4 has two pairs of different double zeros. According to Lemma 3 such a situation happens if
∆ = D = 0. Hence it must be

bd =
−16a2c2 + 16ac(a + c)2

− 3(a + c)4

64
. (86)

Using this in the relation ∆ = 0, we get

4
(
2ac −

3
4

(a + c)2
)6

=
(
− 24a3c3 +

99
4

a2c2(a + c)2
−

34

23 ac(a + c)4 +
34

26 (a + c)6
)2
,

from which it follows that

2048a3c3
− 2736a2c2(a + c)2 + 1080ac(a + c)4

− 135(a + c)6 = 0 (87)

or

(a + c)2(a − c)4 = 0. (88)
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If a = 0 or c = 0, then from (87) and (88), it follows that a = c = 0, which implies bd = 0, which
is impossible. Hence, if a , 0 , c for the case of equation (87), we can use the change of variables
t = (a + c)2/ac, and transform it into the equation

135t3
− 1080t2 + 2736t − 2048 = 0. (89)

Since the discriminant of equation (89) is negative it has only one real zero, which is equal to 4/3, and
two-complex conjugate ones. Hence, it must be 3(a + c)2 = 4ac, that is, 3a2 + 2ac + 3c2 = 0. Since a , 0 , c,
and the polynomial 3t2 + 2t + 3 is always positive it follows that such a and c do not exist, in this case.

If a − c = 0, then from (86) it follows that bd = 0, which is impossible. Finally, if a + c = 0, then from (86)
it follows that bd = −a4/4, from which it follows that

p4(λ) = λ4
− a2λ2 +

a4

4
=

(
λ2
−

a2

2

)2

.

Hence, this is the only case when p4 has two pairs of double zeros, which are

λ1,2 = a/
√

2 and λ3,4 = −a/
√

2. (90)

The characteristic polynomial (50), in this case, has two double zeros, say, λ1 = λ2 and λ3 = λ4, so the
general solution to equation (40) has the following form

an = (γ1 + γ2n)λn
2 + (γ3 + γ4n)λn

4 , n ∈N, (91)

where γ j, j = 1, 4, are arbitrary constants.
In this case, we have

an =
λn+2

2 (n(λ2 − λ4)2 + λ2
2 − 4λ2λ4 + 3λ2

4)

(λ2 − λ4)4 +
λn+2

4 (n(λ4 − λ2)2 + λ2
4 − 4λ2λ4 + 3λ2

2)

(λ4 − λ2)4 (92)

and

yn =

n−1∑
j=0

(λ j+2
2 ( j(λ2 − λ4)2 + λ2

2 − 4λ2λ4 + 3λ2
4)

(λ2 − λ4)4 +
λ j+2

4 ( j(λ4 − λ2)2 + λ2
4 − 4λ2λ4 + 3λ2

2)

(λ4 − λ2)4

)
=
λ3

2 − nλn+2
2 + (n − 1)λn+3

2

(λ2 − λ4)2(1 − λ2)2 +
(λ4

2 − 4λ3
2λ4 + 3λ2

2λ
2
4)(λn

2 − 1)

(λ2 − λ4)4(λ2 − 1)

+
λ3

4 − nλn+2
4 + (n − 1)λn+3

4

(λ4 − λ2)2(1 − λ4)2 +
(λ4

4 − 4λ2λ3
4 + 3λ2

2λ
2
4)(λn

4 − 1)

(λ4 − λ2)4(λ4 − 1)
. (93)

Since a ∈ Z, then numbers ±a/
√

2 are irrational, so it is not possible that polynomial p4 has two double
zeros, one of which is equal to 1.

Corollary 6. Consider system (1) with a, b, c, d ∈ Z and bd , 0. Assume z−2, z−1, z0,w0 ∈ C \ {0}. Then the
following statements are true.

(a) If polynomial (50) has two pairs of double zeros both different from 1, then the general solution to system (1) is
given by formulas (39) and (49), where sequence (an)n≥−3 is given by (92), (yn)n≥−3 is given by (93), while λ j-s,
j = 1, 4, are given by (90).

(b) The polynomial (50) cannot have two pairs of double zeros such that one of them is equal to 1.
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Triple zero case. If polynomial (50) has a triple zero, then it must be ∆ = ∆0 = 0 which is equivalent to
∆0 = ∆1 = 0, that is, bd = a2c2/12 and

∆1 = 2a3c3
− 27(a + c)2 a2c2

12
+ 72ac

a2c2

12
= −

a2c2

4
(9a2
− 14ac + 9c2).

Now note that ∆1 < 0 if a , 0 , c, since the polynomial 9t2
− 14t + 9 is positive for every t ∈ R, and ∆1 = 0

if and only if a = 0 or c = 0. If a = 0 or c = 0, we have that bd = 0 which is impossible. Hence, if bd , 0,
polynomial (50) cannot have a triple zero, and consequently it cannot have a zero of the fourth order either.
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[37] S. Stević, Solvability of boundary-value problems for a linear partial difference equation, Electron. J. Differential Equations, Vol.

2017, Article No. 17, (2017), 10 pages.
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