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Abstract. The purpose of this article is to prove some coincidence point and approximate solution
method for generalized weak contraction mapping in b−metric spaces by using the concept of b-generalized
pseudodistance. Also, we give some examples to illustrate our main results.

1. Introduction

In 1993, Bakhtin[5], (see also Czerwik [8]) was introduced the concept b-metric space and show that
the class of b-metric spaces contains the class of metric spaces. Later, in 1996 Kada, Suzuki and Takahashi
[11] defined the concept of w-distance in a metric space which is a generalized distance difference way
from b-metric spaces. In 2010, Wlodarczyk and Plebaniak [20] introduced the concept of generalized
pseudodistance which is generalized w-distance. Recently, in 2014, Plebaniak [14] introduce the concept
of b-generalized pseudodistance which is an extension of the b-metric and generalized pseudodistances.
They are also gave the sufficient conditions that as certain the existence of an optimal solution and fixed
point problem. On the other hand, the concept of weak contraction was introduced by Alber and Guerre -
Delabriere [3] in 1997 in Hilbert spaces. Later, in 2001 Rhoades [16] has show that the result which Alber
et al. is also valid in complete metric spaces. In 2008 Dutta and Choudhury [10] extended the notion of
weak contraction by using the concept of two altering distance functions. Afterward, Dorić [9] (see also [1])
replaced the continuity ofϕby ”lower semi-continuous” and proved fixed point theorems for such mapping.
In 2014 Aghajani et al. [2] proved some common fixed point results for four mappings satisfying generalized
weak contractive condition in partially ordered complete b-metric spaces. In the same year, Roshan et al.
[17] presented some coincidence point results for four mappings satisfying generalized weak contraction
mapping in ordered b-metric spaces. Fixed point results involving weak contraction and generalized weak
contraction mappings have extensively been studied in the literature (see, e.g., [4, 7, 13, 15, 19, 21] and
references therein).
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From above mentioned, the main purpose of this article is to prove the existence of coincidence points
theorem for generalized weak contraction in b-metric spaces via b-generalized pseudodistance. Further-
more, we also give some examples to illustrate our main results.

2. Preliminaries

In this section, we give some notations and basic knowledge for our consideration. Throughout this
paper, we denote byN,R+ andR the sets of positive integers, non-negative real numbers and real numbers,
respectively.

2.1. b-metric Spaces
Definition 2.1 ([5, 8]). Let X be a nonempty set and a b−metric is a function d : X × X→ [0,∞) satisfying

(bM1) d(x, y) = 0 if and only if x = y
(bM2) d(x, y) = d(y, x)
(bM3) there exists a real number s ≥ 1 such that d(x, y) ≤ s[d(x, z) + d(z, y)],

for all x, y, z ∈ X. Then (X, d) is called b−metric space with coefficient s.

It is obvious that the class of b-metric spaces is effectively larger than that of metric spaces since any
metric space is a b-metric space with s = 1. The following examples show that, in general, a b-metric space
need not necessarily be a metric space.

Example 2.2. Let X = R and the mapping d : X × X→ R+ be defined by

d(x, y) = (x − y)2 for all x, y ∈ X.

Then (X, d) is a b-metric space with coefficient s = 2.

Example 2.3. ([18]) Let (X, d) be a metric space and the mapping σd : X × X→ R+ be defined by

σd(x, y) = [d(x, y)]p for all x, y ∈ X,

where p > 1 is a fixed real number. Then (X, σd) is a b-metric space with coefficient s = 2p−1.

Next, we recall the concepts of b-convergence, b-Cauchy sequence, b-continuity and b-completeness in
a b-metric spaces.

Definition 2.4 ([6]). Let (X, d) be a b-metric space. Then a sequence {xn} in X is called:

(a) b-convergent if there exists x ∈ X such that d(xn, x)→ 0 as n→∞. In this case, we write lim
n→∞

xn = x.

(b) b-Cauchy if d(xn, xm)→ 0 as n,m→∞.

Each b-convergent sequence in b-metric spaces has a unique limit and it is also a b-Cauchy sequence.
Moreover, in general, a b-metric is not continuous.

Lemma 2.5 ([2]). Let (X, d) be a b-metric space with coefficient s ≥ 1 and let {xn} and {yn} be b-convergent to points
x, y ∈ X , respectively. Then we have

1
s2 d(x, y) ≤ lim inf

n→∞
d(xn, yn) ≤ lim sup

n→∞
d(xn, yn) ≤ s2d(x, y).

In particular, if x = y, then we have lim
n→∞

d(xn, yn) = 0. Moreover, for each z ∈ X, we have

1
s

d(x, z) ≤ lim inf
n→∞

d(xn, z) ≤ lim sup
n→∞

d(xn, z) ≤ sd(x, z).
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Definition 2.6 ([6]). Let (X, dX) and (Y, dY) be two b-metric spaces.

1. The space (X, dX) is b-complete if every b-Cauchy sequence in X b-converges.
2. A function f : X→ Y is b-continuous at a point x ∈ X if it is b-sequentially continuous at x, that is, whenever
{xn} is b-convergent to x, { f xn} is b-convergent to f x.

Definition 2.7 ([6]). Let Y be a nonempty subset of a b-metric space (X, d). The closure of Y is denoted by Y and it
is the set of limits of all convergent sequences of points in Y, i.e.,

Y := {x ∈ X : there exists a sequence {xn} in Y such that lim
n→∞

xn = x}.

Definition 2.8 ([6]). A subset Y of a b-metric space (X, d) is called closed if and only if for each sequence {xn} in Y
which b-converges to an element x ∈ X, we have x ∈ Y (i.e. Y = Y).

2.2. b-generalized Pseudodistance Function
In the rest of the paper we assume that the b-metric d : X × X → [0,∞) is continuous on X2. Now, we

recal the concept of a generalized pseudodistance and b-generalized pseudodistance as follow.

Definition 2.9 ([14]). Let X be a b-metric space (with constant s ≥ 1. The map J : X × X → [0,∞) is said to be a
b-generalized pseudodistance on X if the following two conditions hold:

(J1) J(x, y) ≤ s[J(x, z) + J(z, y)] for all x, y, z ∈ X,
(J2) for any sequences {xm} and {ym} in X such that

lim
n→∞

sup
m>n

J(xn, xm) = 0 (1)

and

lim
m→∞

J(xm, ym) = 0 (2)

we have

lim
m→∞

d(xm, ym) = 0. (3)

In definition 2.9, if s = 1, then J is called generalized pseudodistance which defined by Włodarczyk and
Plebaniak [20]. Now, we give some examples of b-generalized pseudodistance.

Example 2.10. ([15]) Let X be a b-metric space (with a constant s ≥ 1) equipped in b-metric d : R × R → R+ Let
the closed set E ⊂ X, containing at least two different points, be arbitrary and fixed. Let c > 0 be such that c > δ(E),
where δ(E) = sup{d(x, y) : x, y ∈ X} is arbitrary and fixed. Define J : X × X→ [0,∞) by

J(x, y) =

{
d(x, y) E ∩ {x, y} = {x, y}
c E ∩ {x, y} , {x, y}.

Then J is b-generalized pseudodistance in X.

Example 2.11. Let X = [0, 2] and d(x, y) = (x − y)2 . Defined J : X × X→ [0,∞) by

J(x, y) =


0, x − y = −2
d(x, y), −2 < x − y ≤ 0
x + 22, 0 < x − y ≤ 2.

We will show that J is b-generalized pseudodistance wit s = 2. Suppose that x, y, z ∈ X, We consider the following
cases.
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case I If x − y = −2, then it is clear that J(x, y) = 0 ≤ 2J(x, z) + 2J(z, y) for all z ∈ X.
case II Suppose that −2 < x − y ≤ 0.
If x ≤ z and z ≤ y, then

J(x, y) = d(x, y) ≤ 2d(x, z) + 2d(z, y) = 2J(x, z) + 2J(z, y).

If x ≤ z and z > y, then
J(x, y) = d(x, y) = x2

− 2xy + y2

< x2
− 2xy + z2 + 2xz − 2xz

= (x − z)2 + 2xz − 2xy
< 2(x − z)2 + 2(z + 22)
= 2J(x, z) + 2J(z, y).

If x > z and z ≤ y then
J(x, y) = d(x, y) < 4 − 2yz + y2

< x + 22 + (z2
− 2yz + y2)

< 2(x + 22) + 2(z − y)2

= 2J(x, z) + 2J(z, y).

case III Suppose that 0 < x − y ≤ 2.
If x > z and z ≤ y then

J(x, y) = x + 22
≤ (x + 22) + (z − y)2

< 2J(x, z) + 2J(z, y).

If x > z and z > y then
J(x, y) = x + 22 < (x + 22) + (z + 22)

< 2J(x, z) + 2J(z, y).

If x ≤ z and z > y then
J(x, y) = x + 22

≤ (x − z)2 + (z + 22)
< 2J(x, z) + 2J(z, y).

There fore the condition (J1) hold. Next we will show that J is satisfies (J2). Let {xn} and {yn} be sequence in X such
that

lim
n→∞

sup
m>n

J(xn, xm) = 0 and lim
m→∞

J(xm, ym) = 0.

Since J(x, y) > 22 for all x > y and limm→∞ J(xm, ym) = 0, then we have limn→∞ d(xn, yn) = 0 and thus (J2) hold.
Therefore J is b-generalized pseudodistance wit s = 2. Further, since J(0, 0) = 0 = J(0, 2), but 0 , 2 and hence J is
not a b-metric.

Remark 2.12. Let (X, d) be a complete b-metric space (with s ≥ 1) and J is a b-generalized pseudodistance on X.

(A) d is a b-generalized pseudodistance on X. However, there exists a b-generalized pseudodistance on X which is
not b-metric.

(B) Let X0
J = {x ∈ X : J(x, x) = 0} and X+

J = {x ∈ X : J(x, x) > 0}, then X = X0
J ∪ X+

J .
(C) For each x, y ∈ X with x , y, then J(x, y) > 0 ∨ J(y, x) > 0(for more detail see ([14]).

Definition 2.13 ([15]). Let X be a b-metric space (with constant s ≥ 1). The map J : X × X → [0,∞) is a
b-generalized pseudodistance on X. We call that X is J-complete if for all sequence {xn} in X such that

lim
n→∞

sup
m>n

J(xn, xm) = 0

there exists x ∈ X such that
lim

m→∞
J(xm, x) = lim

m→∞
J(x, xm) = 0.

Remark 2.14. If we take J = d, then the definitions of J-completeness and completeness are identical.
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Lemma 2.15 ([14]). Let J : X ×X→ [0,∞) be a b-generalized pseudodistance on b-metric space X (with s ≥ 1) and
let {xn} be the sequence in X. If

lim
n→∞

sup
m>n

J(xn, xm) = 0,

then {xn} is a Cauchy sequence on X.

2.3. Some History of Various Types of Weak Contraction
In 1984, Khan et al. [12] introduced the concept of an altering distance function as follows.

Definition 2.16 ([12]). A function ψ : [0,∞) → [0,∞) is called an altering distance function if the following
properties are satisfied:

1. ψ is continuous and monotone nondecreasing;
2. ψ(t) = 0 if and only if t = 0.

Here, we recall some examples of an altering distance function given in [18] as follow.

Example 2.17. Let ϕi : [0,∞)→ [0,∞), i ∈ {1, 2, ..., 5} be defined by

(ϕ1) ϕ1(t) = kt, where k > 0,

(ϕ2) ϕ2(t) = tk, where k > 0,

(ϕ3) ϕ3(t) =

{
t2, t ∈ [0, 1]
1 +
√

t − 1, t ∈ (1,∞).

(ϕ4) ϕ4(t) = at
− 1, where a > 0 and a , 1,

(ϕ5) ϕ5(t) = log(kt + 1), where k > 0.

Then ϕi is an altering distance function for each i ∈ {1, 2, ..., 5}.

In 1997 Alber and Guerre-Delabriere [3]( see also [16]) using the concept of altering distance function
established the notion weak contraction as follow.

Definition 2.18 ([3, 16]). A mapping T : X→ X is said to be weak contraction, if for each x, y ∈ X,

d(Tx,Ty) ≤ d(x, y) − ψ(d(x, y)), (4)

where ψ : [0,∞) → [0,∞) is a altering distance functions and limt→∞ ψ(t) = ∞. If X is bounded, then the infinity
condition can be omitted (see [3, 16]).

If we take ψ(t) = (1 − k)t, then the inequality (4), reduce to Banach contraction mapping.

In 2008, Dutta and Choudhury [10] extended the concept of weak contraction by using the concept of
two altering distance functions and proved the fixed point results for such contractions as follow.

Theorem 2.19. Let (X, d) be a complete metric space and T : X→ X be a mapping satisfying the inequality

ψ(d(Tx,Ty)) ≤ ψ(d(x, y)) − ϕ(d(x, y)) (5)

for all x, y ∈ X, where ψ,ϕ : [0,∞)→ [0,∞) are two altering distance functions. Then T has a unique fixed point.

Clearly, if we take ψ is identity mapping, then the inequality (5), reduce to (4).

Afterward, Dorić [9] (see also [1]) replaced the continuity of ϕ by ”lower semi-continuous” which is
include the classes in (4) and (5). Also, they are proved the following theorem.
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Theorem 2.20 ([9]). Let (X, d) be a complete metric space and T : X→ X be a mapping satisfying the inequality

ψ(d(Tx,Ty)) ≤ ψ(N(x, y)) − ϕ(N(x, y)) (6)

for all x, y ∈ X, where N is given by

N(x, y) := max
{

d(x, y), d(x,Tx), d(y,Ty),
d(x,Ty) + d(y,Tx)

2

}
,

ψ : [0,∞) → [0,∞) is an altering distance function and ϕ : [0,∞) → [0,∞) is a lower semi-continuous function
with ϕ(t) = 0 if and only if t = 0. Then T has a unique fixed point.

3. Main Results

In this section, we establish the existence theorems of coincidence points for generalized weak contrac-
tion mapping in b−metric spaces via b-generalized pseudodistance function. First, we give some useful
lemmas for consideration of our main result as follow.

Lemma 3.1. Let X be b-metric space (with s ≥ 1) and let the map J : X×X→ [0,∞) be a b-generalized pseudodistance
on X. Let f , 1,T,S : X→ X is a four mappings such that f (X) ⊆ T(X), 1(X) ⊆ S(X) with f (X) ⊆ X0

j and 1(X) ⊆ X0
j .

Assume that there exist altering distance function ψ and ϕ such that for all x, y ∈ X satisfies

ψ(s4M( f x, 1y)) ≤ ψ(MJ
s(x, y)) − ϕ(MJ

s(x, y)), (7)

where
M( f x, 1y) = max{J( f x, 1y), J(1y, f x)}

and

MJ
s(x, y) = max{min{J(Sx,Ty), J(Ty,Sx)}, J(Sx, f x), J(Ty, 1y),

J(Sx, 1y) + J(Ty, f x)
2s

}.

Then

lim
n→∞

J(yn, yn+1) = 0 (8)

and

lim
n→∞

J(yn+1, yn) = 0 (9)

when, the sequence {yn} generated by x0 ∈ X such that

y2n+1 := f x2n = Tx2n+1 and y2n+2 := 1x2n+1 = Sx2n+2 for all n ≥ 0.

Proof. Let x0 ∈ X be an arbitrary and fixed. Since f (X) ⊆ T(X) and 1(X) ⊆ S(X). We can define inductively
the sequences {xn} and {yn} by

y2n+1 := f x2n = Tx2n+1 and y2n+2 := 1x2n+1 = Sx2n+2 for all n ≥ 0.

From (7) and property of ψ implies that

J( f x, 1y) ≤ ψ(s4 J( f x, 1y)) ≤ ψ(MJ
s(x, y)) − ϕ(MJ

s(x, y)), (10)

and

J(1y, f x) ≤ ψ(s4 J(1y, f x)) ≤ ψ(MJ
s(x, y)) − ϕ(MJ

s(x, y)). (11)
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First, let us to show (8) hold, by prove that

lim
n→∞

J(y2n+1, y2n+2) = 0 and lim
n→∞

J(y2n, y2n+1) = 0. (12)

Putting x := x2n and y := x2n+1 in (10), we have

ψ(J(y2n+1, y2n+2)) ≤ ψ(s4 J(y2n+1, y2n+2))
= ψ(s4 J( f x2n, 1x2n+1))
≤ ψ(MJ

s(x2n, x2n+1)) − ϕ(MJ
s(x2n, x2n+1)),

(13)

where

MJ
s(x2n, x2n+1) = max

{
min{J(Sx2n,Tx2n+1), J(Tx2n+1,Sx2n)},

J(Sx2n, f x2n), J(Tx2n+1, 1x2n+1),
J(Sx2n, 1x2n+1) + J(Tx2n+1, f x2n)

2s
}

= max{min{J(y2n, y2n+1), J(y2n+1, y2n)},

J(y2n, y2n+1), J(y2n+1, y2n+2),
J(y2n, y2n+2) + J(y2n+1, y2n+1)

2s

}
.

(14)

Let us consider the following three cases.

case I . If

MJ
s(x2n, x2n+1) = max{min{J(y2n, y2n+1), J(y2n+1, y2n)}, J(y2n, y2n+1)}

= J(y2n, y2n+1).

By (13), we get

ψ(J(y2n+1, y2n+2)) ≤ ψ(J(y2n, y2n+1)) − ψ(J(y2n, y2n+1)) ≤ ψ(J(y2n, y2n+1)).

From fact that ψ is non-decreasing, we have J(y2n+1, y2n+2) ≤ J(y2n, y2n+1). This mean that the sequence
{J(y2n+1, y2n+2)} is non-increasing and converges to some j ≥ 0. Again, by (13) which give

ψ( j) ≤ ψ( j) − ψ( j) ≤ ψ( j)

and hence j = 0.

case II. If MJ
s(x2n, x2n+1) = J(y2n+1, y2n+2), then by (13), we get

ψ(J(y2n+1, y2n+2)) ≤ ψ(J(y2n+1, y2n+2)) − ψ(J(y2n+1, y2n+2)) ≤ ψ(J(y2n+1, y2n+2)).

for all n ≥ 0. Then, we must have J(y2n+1, y2n+2) = 0 for all n ≥ 0.

case III. If

MJ
s(x2n, x2n+1) =

J(y2n, y2n+2) + J(y2n+1, y2n+1)
2s

.

In fact that f (X) ⊆ X0
j , we have

MJ
s(x2n, x2n+1) =

J(y2n, y2n+2)
2s

. (15)
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Hence, by (13) we get

ψ(J(y2n+1, y2n+2)) ≤ ψ(
J(y2n, y2n+2)

2s
) − ϕ(

J(y2n, y2n+2)
2s

)

≤ ψ(
J(y2n, y2n+2)

2s
).

(16)

It follow from the property of ψ and (J1), we have

J(y2n+1, y2n+2) ≤
J(y2n, y2n+2)

2s

≤
sJ(y2n, y2n+1) + sJ(y2n+1, y2n+2)

2s

=
J(y2n, y2n+1) + J(y2n+1, y2n+2)

2
.

(17)

Consequently, we obtain that J(y2n+1, y2n+2) ≤ J(y2n, y2n+1). That is the sequence {J(y2n, y2n+1)} is non-
increasing and converges to some nonnegative real number j′. By (10), (15), (17) andϕ,ψ are non-decreasing
function, we have

ψ(J(y2n+1, y2n+2)) ≤ ψ(
J(y2n, y2n+2)

2s
) − ϕ(

J(y2n, y2n+2)
2s

)

≤ ψ(
J(y2n, y2n+1) + J(y2n+1, y2n+2)

2
) − ϕ(J(y2n+1, y2n+2)).

(18)

Letting n→∞ in (18) we obtain that

ψ( j′) ≤ ψ(
j′ + j′

2
) − ϕ( j′) ≤ ψ( j′)

and hence j′ = 0. Now, letting x := x2n and y := x2n−1 in (11), then we have

ψ(J(y2n, y2n+1)) ≤ ψ(s4 J(y2n, y2n+1))
= ψ(s4 J(1x2n−1, f x2n))
≤ ψ(MJ

s(x2n, x2n−1)) − ϕ(MJ
s(x2n, x2n−1)),

(19)

where

MJ
s(x2n, x2n−1) = max

{
min{J(Sx2n,Tx2n−1), J(Tx2n−1,Sx2n)},

J(Sx2n, f x2n), J(Tx2n−1, 1x2n−1),
J(Sx2n, 1x2n−1) + J(Tx2n−1, f x2n)

2s
}

= max{min{J(y2n, y2n−1), J(y2n−1, y2n)},

J(y2n, y2n+1), J(y2n−1, y2n),
J(y2n, y2n) + J(y2n−1, y2n+1)

2s

}
.

(20)

We distinguish three cases.
case I . If

MJ
s(x2n, x2n−1) = max{min{J(y2n, y2n−1), J(y2n−1, y2n)}, J(y2n−1, y2n)}

= J(y2n−1, y2n).

By (19), we get

ψ(J(y2n, y2n+1)) ≤ ψ(J(y2n−1, y2n)) − ϕ(J(y2n−1, y2n)) ≤ ψ(J(y2n−1, y2n)).
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It follow from the property of ψ, we have J(y2n, y2n+1) ≤ J(y2n−1, y2n). This mean that the sequence
{J(y2n, y2n+1)} is non-increasing and converges to some j1 ≥ 0. Letting n→∞ in (19), which give

ψ( j1) ≤ ψ( j1) − ψ( j1) ≤ ψ( j1).

So, we have must j1 = 0.

case II. If MJ
s(x2n, x2n−1) = J(y2n, y2n+1), then by (19), we get

ψ(J(y2n, y2n+1)) ≤ ψ(J(y2n, y2n+1)) − ϕ(J(y2n, y2n+1)) ≤ ψ(J(y2n, y2n+1))

which implies that J(y2n, y2n+1) = 0 for all n ≥ 0.

case III. If

MJ
s(x2n, x2n−1) =

J(y2n, y2n) + J(y2n−1, y2n+1)
2s

.

In fact that 1(X) ⊆ X0
j , we have

MJ
s(x2n, x2n+1) =

J(y2n−1, y2n+1)
2s

. (21)

Hence, by (19) we get

ψ(J(y2n, y2n+1)) ≤ ψ(
J(y2n−1, y2n+1)

2s
) − ϕ(

J(y2n−1, y2n+1)
2s

)

≤ ψ(
J(y2n−1, y2n+2)

2s
)

(22)

it follow that

J(y2n, y2n+1) ≤
J(y2n−1, y2n+1)

2s

≤
sJ(y2n−1, y2n) + sJ(y2n, y2n+1)

2s

=
J(y2n−1, y2n) + J(y2n, y2n+1)

2
.

(23)

Consequently, we obtain that J(y2n, y2n+1) ≤ J(y2n−1, y2n). That is the sequence {J(y2n, y2n+1)} is non-increasing
and converges to some nonnegative real number j′1. By (11), (21) and (23) with ϕ and ψ are non-decreasing
function, we have

ψ(J(y2n, y2n+1)) ≤ ψ(
J(y2n−1, y2n+1)

2s
) − ϕ(

J(y2n−1, y2n+1)
2s

)

≤ ψ(
J(y2n−1, y2n) + J(y2n, y2n+1)

2
) − ϕ(J(y2n, y2n+1)).

(24)

Letting n→∞ in (24) we obtain that

ψ( j′1) ≤ ψ(
j′1 + j′1

2
) − ϕ( j′1) < ψ( j′1)

and hence j′1 = 0. Therefore (12) hold and consequently (8) hold
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Next, we will show that (9) hold, by prove that

lim
n→∞

J(y2n+1, y2n) = 0 and lim
n→∞

J(y2n+2, y2n+1) = 0. (25)

Given x := x2n and y := x2n−1 in (10), we have

ψ(J(y2n+1, y2n)) ≤ ψ(s4 J(y2n+1, y2n))
= ψ(s4 J( f x2n, 1x2n−1))
≤ ψ(MJ

s(x2n, x2n−1)) − ϕ(MJ
s(x2n, x2n−1)),

(26)

where MJ
s(x2n, x2n−1) satisfies (20). We distinguish three cases.

case I . If

MJ
s(x2n, x2n−1) = max{min{J(y2n, y2n−1), J(y2n−1, y2n)}, J(y2n−1, y2n)}

= J(y2n−1, y2n).

By (11) and property of ψ, we have

J(y2n+1, y2n) ≤ J(y2n−1, y2n). (27)

case II. If MJ
s(x2n, x2n−1) = J(y2n, y2n+1), then by (13), we get

ψ(J(y2n+1, y2n)) ≤ ψ(J(y2n, y2n+1)) − ψ(J(y2n, y2n+1)) ≤ ψ(J(y2n, y2n+1)),

then

J(y2n+1, y2n) ≤ J(y2n, y2n+1) (28)

case III. If

MJ
s(x2n, x2n−1) =

J(y2n, y2n) + J(y2n−1, y2n+1)
2s

=
J(y2n−1, y2n+1)

2s
.

By the same argument as case III of step I, we get

J(y2n+1, y2n) ≤ J(y2n−1, y2n). (29)

Letting n→∞ in (27), (28) and (29), by using (8), we have

lim
n→∞

J(y2n+1, y2n) = 0.

Similarly, by given x := x2n and y := x2n+1 in (10), we can see that

lim
n→∞

J(y2n+2, y2n+1) = 0.

This complete the proof.

Lemma 3.2. Let X be b-metric space (with s > 1) and let the map J : X×X→ [0,∞) be a b-generalized pseudodistance
on X. Assume that f , 1,T,S : X → X is a four mappings such that f (X) ⊆ T(X), 1(X) ⊆ S(X) with f (X) ⊆ X0

j and
1(X) ⊆ X0

j . Assume that, the mappings f , 1,T and S satisfies (7) and for x0 ∈ X defined the sequence {yn} by

y2n+1 := f x2n = Tx2n+1 and y2n+2 := 1x2n+1 = Sx2n+2 for all n ≥ 0.

Then

lim
m→∞

sup
n>m

J(ym, yn) = 0. (30)

That is, the sequence {yn} is Cauchy.
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Proof. Suppose the contrary, then there exist subsequences {y2m(k)} and {y2n(k)} of {yn} such that 2n(k) >
2m(k) ≥ k and

J(y2m(k), y2n(k)) > 1 (31)

and n(k) is the smallest in such that (31) holds. From (31), we have

J(y2m(k), y2n(k)−2) ≤ 1. (32)

By property (J1), (31) and (32), we get

1 < J(y2m(k), y2n(k))
≤ s[J(y2m(k), y2n(k)−2) + J(y2n(k)−2, y2n(k))]

≤ s + s2sJ(y2n(k)−2, y2n(k)−1) + s2 J(y2n(k)−1, y2n(k)). (33)

Letting limit supremum as k→∞ in (33), by Lemma 3.1 we get

1 ≤ lim sup
k→∞

J(y2m(k), y2n(k)) ≤ s. (34)

Again, by (J1), we obtain that

J(y2m(k), y2n(k)) ≤ s[J(y2m(k), y2n(k)+1) + J(y2n(k)+1, y2n(k))] (35)

and

J(y2m(k), y2n(k)+1) ≤ sJ(y2m(k), y2n(k)) + sJ(y2n(k), y2n(k)+1). (36)

Taking limit supremum as k→∞ in (35) and (36), by using Lemma 3.1 and (34), we get

1 ≤ s
(
lim sup

k→∞
J(y2m(k), y2n(k)+1)

)
and

lim sup
k→∞

sJ(y2m(k), y2n(k)+1) ≤ s2.

Thus

1
s
≤ lim sup

k→∞
J(y2m(k), y2n(k)+1) ≤ s2. (37)

By (31) and (J1), we have

1 < J(y2m(k), y2n(k)) ≤ s[J(y2m(k), y2n(k)+2) + J(y2n(k)+2, y2n(k))]
≤ sJ(y2m(k), y2n(k)+2) +

s2 J(y2n(k)+2, y2n(k)+1) + s2 J(y2n(k)+1, y2n(k))
(38)

and

J(y2m(k), y2n(k)+2) ≤ sJ(y2m(k), y2n(k)+1) + s[J(y2n(k)+1, y2n(k)+2)].
(39)

Taking limit supremum as k → ∞ in (38) and (39), by using Lemma 3.1 and right hand side of (37), we
have

1 ≤ s
(
lim sup

k→∞
J(y2m(k), y2n(k)+2)

)
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and (
lim sup

k→∞
J(y2m(k), y2n(k)+2)

)
≤ s3.

Equivalently,

1
s
≤ lim sup

k→∞
J(y2m(k), y2n(k)+2) ≤ s3. (40)

Again, by (31) and (J1), we have

1 < J(y2m(k), y2n(k)) ≤ s[J(y2m(k), y2n(k)+1) + J(y2n(k)+1, y2n(k))]
≤ sJ(y2m(k), y2n(k)+1)

+s2 J(y2n(k)+1, y2m(k)) + s2 J(y2m(k), y2n(k))

it follow that

1 − 2s3

s2 ≤ lim sup
k→∞

J(y2n(k)+1, y2m(k)). (41)

Since

J(y2n(k)+1, y2m(k)) ≤ sJ(y2n(k)+1, y2n(k)) + sJ(y2n(k), y2m(k)). (42)

and

J(y2n(k), y2m(k)) ≤ sJ(y2n(k), y2n(k)+1) + sJ(y2n(k)+1, y2m(k))

≤ sJ(y2n(k), y2n(k)+1) + s2 J(y2n(k)+1, y2n(k)) + s2 J(y2n(k), y2m(k)),

then
(1 − s2)J(y2n(k), y2m(k)) ≤ sJ(y2n(k), y2n(k)+1) + s2 J(y2n(k)+1, y2n(k)).

which implies, by Lemma 3.1 and s > 1 that

lim
k→∞

J(y2n(k), y2m(k)) = 0. (43)

Hence, by (41), (42), (43) and Lemma 3.1 , we have

1 − 2s3

s2 ≤ lim sup
k→∞

J(y2n(k)+1, y2m(k)) ≤ 0.

Thus, by definition of J we can conclude that

lim
k→∞

J(y2n(k)+1, y2m(k)) = 0. (44)

Further,

J(y2n(k)+1, y2m(k)+1) ≤ sJ(y2n(k)+1, y2m(k)) + sJ(y2m(k), y2m(k)+1). (45)

Also, we have

lim
k→∞

J(y2n(k)+1, y2m(k)+1) = 0. (46)
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Since

ψ(s4 J(y2m(k)+1, y2n(k)+2)) ≤ ψ(s4 J( f x2m(k), 1x2n(k)+1))

≤ ψ
(
s4M(x2m(k), x2n(k)+1)

)
≤ ψ(MJ

s(x2m(k), x2n(k)+1)) − ϕ(MJ
s(x2m(k), x2n(k)+1)),

(47)

where

MJ
s(x2m(k), x2n(k)+1) ≤ max

{
min{J(Sx2m(k),Tx2n(k)+1), J(Tx2n(k)+1,Sx2m(k))},

J(Sx2m(k), f x2m(k)), J(Tx2n(k)+1, 1x2n(k)+1),

J(Sx2m(k), 1x2n(k)+1) + J(Tx2n(k)+1, f x2m(k))
2s

}
= max

{
min{J(y2m(k), y2n(k)+1), J(y2n(k)+1, y2m(k))},

J(y2m(k), y2m(k)+1), J(y2n(k)+1, y2n(k)+2),

J(y2m(k), y2n(k)+2) + J(y2n(k)+1, y2m(k)+1)
2s

}
.

(48)

By taking limit supremum as k→∞ in (48), by (37), (40), (44), (46) and Lemma 3.1 , we have

1

2s2 = max
{

min{
1
s
, 0)}, 0, 0,

1
s + 0
2s

}
≤ lim sup

k→∞
MJ

s(x2m(k), x2n(k)+1)

≤ max
{

min{s2, 0)}, 0, 0,
s3 + 0

2s

}
=

s2

2

and

1

2s2 = max
{

min{
1
s
, 0)}, 0, 0,

1
s + 0
2s

}
≤ lim inf

k→∞
MJ

s(x2m(k), x2n(k)+1)

≤ max
{

min{s2, 0)}, 0, 0,
s3 + 0

2s

}
=

s2

2
.
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Therefore, by taking limit supremum as k→∞ in (47), we have

ψ(
s2

2
) = ψ

(
s4
( 1

2s2

))
≤ ψ

(
s4lim sup

k→∞
J(x2m(k)+1, x2n(k)+2)

)
(49)

≤ ψ
(
lim sup

k→∞
MJ

s(x2m(k), x2n(k)+1)
)
− ϕ

(
lim inf

k→∞
MJ

s(x2m(k), x2n(k)+1)
)

≤ ψ(
s2

2
) − ϕ(

1

2s2)

≤ ψ(
s2

2
). (50)

This implies that ϕ(
1

2s2) = 0 and hence
1

2s2 = 0 which is a contradiction. Therefore

lim
m→∞

sup
n>m

J(ym, yn) = 0.

By Lemma 2.15, the sequence {yn} is Cauchy. This complete the proof.

Theorem 3.3. Let X be a b-metric space (with s > 1) and let the map J : X × X → [0,∞) be a b-generalized
pseudodistance on X. Assume that f , 1,T,S : X → X is a four mappings such that f (X) ⊆ T(X), 1(X) ⊆ S(X) with
f (X) ⊆ X0

J and 1(X) ⊆ X0
J . Assume that the mappings f , 1,T and S satisfies (7) and the images under mapping S or

T is J-complete. Then

(a) f and S have a coincidence point;
(b) 1 and T have a coincidence point.

Moreover, for each x0 ∈ X, the sequence {yn} defined by

y2n+1 := f x2n = Tx2n+1 and y2n+2 := 1x2n+1 = Sx2n+2 for all n ≥ 0,

converges to unique point y? ∈ X with y? = f x? = Sx? = Tz? = 1z? fore some x?, z? ∈ X.

Proof. As the proof of Lemma 3.1 and Lemma 3.2, we have two sequences {xn} and {yn}. Furthermore, {yn} is
a b-Cauchy sequence. Suppose that S(X) is a J-complete, then the sequence {yn} converges to some element
y? ∈ S(X) and

lim
k→∞

f x2n = lim
k→∞

Tx2n+1 = lim
k→∞
1x2n+1 = lim

k→∞
Sx2n+2 = y?. (51)

with

lim
n→∞

J(yn, y?) = lim
n→∞

J(y?, yn) = 0. (52)

Moreover, y? ∈ X0
J , i.e J(y?, y?) = 0. Indeed,

0 ≤ J(y?, y?) ≤ s
(

lim
n→∞

J(y?, yn)
)

+ s
(

lim
n→∞

J(yn, y?)
)

= 0.

First, we will show that y? is unique. Suppose that there exist y ∈ X with y , y? such that

lim
n→∞

J(yn, y) = lim
n→∞

J(y, yn) = 0. (53)
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Let vn = y and un = y? for all n ∈N. By (30), (52), (53) and property (J2), we have

lim
n→∞

d(yn, y?) = lim
n→∞

d(yn,un) = 0 (54)

and

lim
n→∞

d(yn, y) = lim
n→∞

d(yn, vn) = 0. (55)

By (54), (55) and Remark 2.12 with y , y?, we get

0 < d(y, y?) ≤ lim
n→∞

(
sd(y, yn) + sd(yn, y?)

)
= 0

which is a contradiction and hence y? is unique. Now, we will prove S and f have coincidence point. Let
x? = S−1y?, then Sx? = y?. Putting x := x? and y := x2n+1 in (11), we have

ψ(J(y2n+2, f x?)) ≤ ψ(s4 J(1x2n+1, f x?))
≤ ψ(MJ

s(x?, x2n+1)) − ϕ(MJ
s(x?, x2n+1)),

(56)

where

MJ
s(x?, x2n+1) ≤ max

{
min{J(Sx?,Tx2n+1), J(Tx2n+1,Sx?)}, J(Sx?, f x?), J(Tx2n+1, 1x2n+1),

J(Sx?, 1x2n+1) + J(Tx2n+1, f x?)
2s

}
= max

{
min{J(y?,Tx2n+1), J(Tx2n+1, y?)}, J(y?, f x?), J(Tx2n+1, 1x2n+1),

J(y?, 1x2n+1) + J(Tx2n+1, f x?)
2s

}
.

(57)

Taking limit supremum as→∞ in (57) and (56) by using (51) and y? ∈ X0
J , we get

lim
n→∞

MJ
s(x?, x2n+1) = J(y?, f x?). (58)

Then by (11), we have

ψ(J(y?, f x?)) ≤ ψ(s4 J(y?, f x?))
≤ ψ(J(y?, f x?)) − ϕ(J(y?, f x?)))
≤ ψ(J(y?, f x?))

(59)

which implies that J(y, f x?) = 0. Further, by (7), (10) and (58) we have

ψ(J( f x?, y?)) ≤ ψ(J(y?, f x?)) − ϕ(J(y?, f x?))) ≤ ψ(0) − ϕ(0) = 0

and hence J( f x?, y?) = 0. Therefore, from Remark 2.12, we obtain that

f x? = Sx?. (60)

Next, we will prove 1 and T have coincidence. Since, y? = Sx? = f x? and f (X) ⊆ T(X), then there exist
z? ∈ X such that y? = Tz?. Putting x := x2n and y := z? in (10), we have

ψ(J(y2n+1, 1z?)) ≤ ψ(s4 J( f x2n, 1z?))
≤ ψ(MJ

s(x2n, z?)) − ϕ(MJ
s(x2n, z?)),

(61)
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where

MJ
s(x2n, z?) ≤ max

{
min{J(Sx2n,Tz?), J(Tz?,Sx2n)}, J(Sx2n, f x2n), J(Tz?, 1z?),

J(Sx2n, 1z?) + J(Tz?, f x2n)
2s

}
= max

{
min{J(y2n, y?), J(y?, y2n)}, J(y2n, y2n+1), J(y?, 1z?),

J(y2n, 1z?) + J(y?, y2n+1)
2s

}
.

(62)

Taking limit supremum as→∞ in (62) and (61), by using Lemma 3.1 and y? ∈ X0
J , we get

lim
n→∞

MJ
s(z?, x2n+1) = J(y?, 1z?) (63)

and hence

ψ(J(y?, 1z?)) ≤ ψ(J(y?, 1z?)) − ϕ(J(y?, 1z?)), (64)

which implies that J(y, 1z?) = 0. Further, by (61) and (63) we have

ψ(J(1z?, y?)) ≤ ψ(J(y?, 1z?)) − ϕ(J(y?, 1z?)) ≤ ψ(0) − ϕ(0) = 0

Therefore J(1z?, y?) = 0. Again, from Remark 2.12(C), we obtain that

y? = Tz? = 1z?. (65)

Furthermore, since Sx? = y? = Tz?, then by (60) and (65), we obtain that

y? = f x? = Sx? = Tz? = 1z?.

This complete the proof.

Next, we give some consequence of our main result.

Corollary 3.4. Let X be a b-metric space (with s > 1). Assume that f , 1,T,S : X→ X is a four mappings such that
f (X) ⊆ T(X), 1(X) ⊆ S(X). Assume that the mappings f , 1,T and S satisfies.

ψ(s4d( f x, 1y)) ≤ ψ(Ms(x, y)) − ϕ(Ms(x, y)), (66)

where

Ms(x, y) = max{J(Sx,Ty), J(Sx, f x), J(Ty, 1y),
J(Sx, 1y) + J(Ty, f x)

2s
}.

Then

(a) f and S have a coincidence point;
(b) 1 and T have a coincidence point.

Moreover, for each x0 ∈ X, the sequence {yn} defined by

x2n+1 := f x2n = Tx2n+1 and y2n+2 := 1x2n+1 = Sx2n+2 for all n ≥ 0,

converges to unique point y ∈ X with y? = f x? = Sx? = Tz? = 1z? fore some x?, z? ∈ X.

The following, we give some illustrative example for support our main result.
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Example 3.5. Let X = [0, 5], E = [0, 3] and d(x, y) = (x − y)2, then (X, d) is b-metric spaces wit s = 2. Define
J : X × X→ [0,∞) by

J(x, y) =

{
d(x, y) E ∩ {x, y} = {x, y}
26 E ∩ {x, y} , {x, y}.

By Example 2.10, J is b-generalized pseudodistance. Let f , 1,T,S : X→ X is a four mappings define by

f (x) =


1

2
√

2
sinh−1( x

4 ), if x ∈ E,

0, otherwise

1(x) =


1

2
√

2
sinh−1( x

8 ), if x ∈ E,

0, otherwise

T(x) =


1

2
√

2
sinh x, if x ∈ E,

0, otherwise

and

S(x) =


1

2
√

2
sinh 2x, if x ∈ E,

0, otherwise .

with altering distance functions ψ,ϕ : [0,∞) → [0,∞) by ψ(t) = λt and ϕ(t) = (λ − 1)t for all t ∈ [0,∞), where
λ ∈ (1, 2). Then we can see that f (X) ⊆ T(X), 1(X) ⊆ S(X). Now we will show that f , 1,T,S : X → X are satisfies
(7). Let x, y ∈ X. In case, x, y < E, easy to see that f , 1,T,S : X→ X are satisfies (7).
If x, y ∈ E, then f x, 1y ∈ E and J(1y, f x) = J( f x, 1y). Furthermore

ψ(24M( f x, 1y)) = 16λ( f x − 1y)2

= 16λ
( 1

2
√

2
sinh−1 x

4
−

1

2
√

2
sinh−1 y

8

)2

≤ 16λ
( 2x

16
√

2
−

y

16
√

2

)2

=
λ
32

(2x − y)2

≤
λ
4

(
1

2
√

2
sinh 2x −

1

2
√

2
sinh y)2

≤ (
1

2
√

2
sinh 2x −

1

2
√

2
sinh y)2

= J(Sx,Ty)

≤ MJ
s(x, y)

≤ ψ(MJ
s(x, y)) − ϕ(MJ

s(x, y)).

If x ∈ E and y < E, then 1(y) = 0 ∈ E and

J( f x, 1y) = J(
1

2
√

2
sinh−1 x

4
, 0) = J(0,

1

2
√

2
sinh−1 x

4
) = J(1y, f x).
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Furthermore

ψ(24M( f x, 1y)) = 16λ( f x − 1y)2

= 16λ
( 1

2
√

2
sinh−1 x

4
− 0

)2

≤ 16λ
( x

16
√

2

)2

=
λ
4

(
1

2
√

2
sinh 2x − 0)2

≤ (
1

2
√

2
sinh 2x − 0)2

= J(Sx,Ty)

≤ MJ
s(x, y)

≤ ψ(MJ
s(x, y)) − ϕ(MJ

s(x, y)).

If x < E and y ∈ E, similarly we see that (7). Then the mapping f , 1,T and S satisfies all conditions of Theorem 3.3.
Furthermore, 0 is coincidence point of f , 1,T and S.

Now, we give the solution path in Example 3.5 as follow.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4
The value of solution

 

 

The solution path 

Fig. 1. The value of the sequences {yn}with x0 = 1,
functions f , 1,S and T at Example 3.5.
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