Filomat 31:19 (2017), 6219-6231 https://doi.org/10.2298/FIL1719219F

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The αAB -, βAB -, γAB - and NAB-duals for Sequence Spaces

D. Foroutannia^a, H. Roopaei^a

^a Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

Abstract. Let $A = (a_{n,k})$ and $B = (b_{n,k})$ be two infinite matrices with real entries. The main purpose of this paper is to generalize the multiplier space for introducing the concepts of αAB -, βAB -, γAB -duals and *NAB*-duals. Moreover, these duals are investigated for the sequence spaces X and X(A), where $X \in \{c_0, c, l_p\}$ for $1 \le p \le \infty$. The other purpose of the present study is to introduce the sequence spaces

$$X(A, \Delta) = \left\{ x = (x_k) : \left(\sum_{k=1}^{\infty} a_{n,k} x_k - \sum_{k=1}^{\infty} a_{n-1,k} x_k \right)_{n=1}^{\infty} \in X \right\},\$$

where $X \in \{l_{\infty}, c, c_0\}$, and computing the *NAB*-(or Null) duals and βAB -duals for these spaces.

1. Introduction

Let ω denote the space of all real-valued sequences. Any vector subspace of ω is called a sequence space. For $1 \le p < \infty$, denote by l_p the space of all real sequences $x = (x_n) \in \omega$ such that

$$||x||_p = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p} < \infty.$$

For $p = \infty$, $(\sum_{n=1}^{\infty} |x_n|^p)^{1/p}$ is interpreted as $\sup_{n \ge 1} |x_n|$. We write *c* and c_0 for the spaces of all convergent and null sequences, respectively. Also, *bs* and *cs* are used for the spaces of all bounded and convergent series, respectively. Kizmaz [8] defined the backward difference sequence space

$$X(\Delta) = \{ x = (x_k) : \Delta x \in X \},\$$

for $X \in \{l_{\infty}, c, c_0\}$, where $\Delta x = (x_k - x_{k-1})_{k=1}^{\infty}$, $x_0 = 0$. Observe that $X(\Delta)$ is a Banach space with the norm

$$||x||_{\Delta} = \sup_{k \ge 1} |x_k - x_{k-1}|.$$

In the summability theory, the β -dual of a sequence space is very important in connection with inclusion theorems. The idea of dual sequence space was introduced by Köthe and Toeplitz [9], and it is generalized

²⁰¹⁰ Mathematics Subject Classification. 40A05, 40C05, 46A45.

Keywords. Semi-normed sequence spaces, difference sequence spaces, Matrix domains, α -, β -, γ - and N-duals.

Received: 11 January 2017; Accepted: 05 April 2017 Communicated by Eberhard Malkowsky

Email addresses: foroutan@vru.ac.ir (D. Foroutannia), h.roopaei@gmail.com (H. Roopaei)

to the vector-valued sequence spaces by Maddox [10]. For the sequence spaces X and Y, the set M(X, Y) defined by

$$M(X, Y) = \{ z = (z_k) \in \omega : (z_k x_k)_{n=1}^{\infty} \in Y \quad \forall x = (x_k) \in X \},\$$

is called the multiplier space of *X* and *Y*. With the above notation, the α -, β - γ and *N*-duals of a sequence space *X*, which are respectively denoted by X^{α} , X^{β} , X^{γ} and X^{N} , are defined by

$$X^{\alpha} = M(X, l_1), X^{\beta} = M(X, cs), X^{\gamma} = M(X, bs), X^{N} = M(X, c_0).$$

For a sequence space X, the matrix domain X(A) of an infinite matrix A is defined by

$$X(A) = \{x = (x_n) \in \omega : Ax \in X\},\tag{1}$$

which is a sequence space. The new sequence space X(A) generated by the limitation matrix A from a sequence space X can be the expansion or the contraction and or the overlap of the original space X.

In the past, several authors studied Köthe-Toeplitz duals of sequence spaces that are the matrix domains in classical spaces l_p , l_{∞} , c and c_0 . For instance, some matrix domains of the difference operator was studied in [4]. Domain of backward difference matrix in the space l_p was investigated for $1 \le p \le \infty$ by Başar and Altay in [3] and was studied for 0 by Altay and Başar in [1]. Recently the Köthe-Toeplitz dualswere computed for some new sequence spaces by Erfanmanesh and Foroutannia [5], [6] and Foroutannia[7]. For more details on the domain of triangle matrices in some sequence spaces, the reader may refer toChapter 4 of [2].

In this study, the concept of the multiplier space is generalized and the αAB -, βAB -, γAB - and NABduals are determined for the classical sequence spaces l_{∞} , c and c_0 . Also the normed sequence space $X(\Delta)$ is extended to semi-normed space $X(A, \Delta)$, where $X \in \{l_{\infty}, c, c_0\}$. We consider some topological properties of this space and derive inclusion relations concerning with its. Moreover, we compute the *NAB*-(or Null) duals for the space $X(A, \Delta)$. The results are generalizations of some results of Malkowsky and Rakocevic [11], Kizmaz [8] and Erfanmanesh and Foroutannia [5].

2. The Generalized Multiplier Space and its Köthe-Toeplitz Duals and Null Duals

In this section, we introduce the generalization of multiplier space and present the new generalizations of Köthe-Toeplitz duals and Null duals of sequence spaces. Furthermore, we obtain these duals for the sequence spaces l_{∞} , c and c_0 . Throughout this paper, let I be the identity matix.

Definition 2.1. Suppose that $A = (a_{n,k})$ and $B = (b_{n,k})$ are two infinite matrices with real entries such that $\sum_{k=1}^{\infty} a_{n,k} x_k < \infty$ for all $x = (x_k) \in X$ and $n = 1, 2, \cdots$. For the sequence spaces X and Y, the set $M_{A,B}(X, Y)$ defined by

$$M_{A,B}(X,Y) = \left\{ z \in \omega : \sum_{k=1}^{\infty} b_{n,k} z_k < \infty, \ \forall n \ and \left(\sum_{k=1}^{\infty} b_{n,k} z_k \sum_{k=1}^{\infty} a_{n,k} x_k \right)_{n=1}^{\infty} \in Y, \ \forall x \in X \right\},$$

is called the generalized multiplier space of X and Y.

The αAB -, βAB -, γAB - and NAB-duals of a sequence space X, which are respectively denoted by $X^{\alpha AB}$, $X^{\beta AB}$, $X^{\gamma AB}$ and X^{NAB} , are defined by

$$X^{\alpha AB} = M_{A,B}(X, l_1), \ X^{\beta AB} = M_{A,B}(X, cs), \ X^{\gamma AB} = M_{A,B}(X, bs), \ X^{NAB} = M_{A,B}(X, c_0).$$

It should be noted that in the special case A = B = I, we have $M_{A,B}(X, Y) = M(X, Y)$. So

$$X^{\alpha AB} = X^{\alpha}, \qquad X^{\beta AB} = X^{\beta}, \qquad X^{\gamma AB} = X^{\gamma}, \qquad X^{NAB} = X^{N}.$$

Let $E = (E_n)$ and $F = (F_n)$ be two partitions of finite subsets of the positive integers such that

$$\max E_n < \min E_{n+1}, \qquad \max F_n < \min F_{n+1},$$

for $n = 1, 2, \dots$. If the infinite matrices $A = (a_{n,k})$ and $B = (b_{n,k})$ are defined by

$$a_{n,k} = \begin{cases} 1 & if \ k \in E_n \\ 0 & otherwise, \end{cases}$$
(2)

and

$$b_{n,k} = \begin{cases} 1 & if \ k \in F_n \\ 0 & otherwise, \end{cases}$$
(3)

then $M_{A,B}(X, Y) = M_{E,F}(X, Y)$ and the new multiplier space $M_{A,B}(X, Y)$ is a generalization of the multiplier space $M_{E,F}(X, Y)$ introduced in [5].

Lemma 2.2. Let X, Y, $Z \subset \omega$ and $\{X_{\delta} : \delta \in I\}$ be any collection of subsets of ω , then

(i) $X \subset Z$ implies $M_{A,B}(Z, Y) \subset M_{A,B}(X, Y)$, (ii) $Y \subset Z$ implies $M_{A,B}(X, Y) \subset M_{A,B}(X, Z)$, (iii) $X \subset M_{A,B}(M_{B,A}(X, Y), Y)$, (iv) $M_{A,B}(X, Y) = M_{A,B}(M_{B,A}(M_{A,B}(X, Y), Y), Y)$, (v) $M_{A,B}(\bigcup_{\delta \in I} X_{\delta}, Y) = \bigcap_{\delta \in I} M_{A,B}(X_{\delta}, Y)$.

Proof. Parts (*i*) and (*ii*) are obvious, by using the definition of generalized multiplier space.

(iii) Let $x \in X$. We have $(\sum_{k=1}^{\infty} a_{n,k} z_k \sum_{k=1}^{\infty} b_{n,k} x_k)_{n=1}^{\infty} \in Y$ for all $z \in M_{B,A}(X, Y)$, and consequently $x \in M_{A,B}(M_{B,A}(X, Y), Y)$.

(*iv*) By applying (*iii*) with X replaced by $M_{B,A}(X, Y)$, we deduce that

$$M_{A,B}(X,Y) \subset M_{A,B}(M_{B,A}(M_{A,B}(X,Y),Y),Y).$$

Conversely, due to (*iii*), we have $X \subset M_{B,A}(M_{A,B}(X, Y), Y)$. So

$$M_{A,B}(M_{B,A}(M_{A,B}(X,Y),Y),Y) \subset M_{A,B}(X,Y),$$

by part (i).

(*v*) First, $X_{\delta} \subset \bigcup_{\delta \in I} X_{\delta}$ for all $\delta \in I$ implies

$$M_{A,B}(\bigcup_{\delta\in I}X_{\delta},Y)\subset \bigcap_{\delta\in I}M_{A,B}(X_{\delta},Y),$$

by part (*i*). Conversely, if $a \in \bigcap_{\delta \in I} M_{A,B}(X_{\delta}, Y)$, then $z \in M_{A,B}(X_{\delta}, Y)$ for all $\delta \in I$. So

$$\left(\sum_{k=1}^{\infty} b_{n,k} z_k \sum_{k=1}^{\infty} a_{n,k} x_k\right)_{n=1}^{\infty} \in Y,$$

for all $\delta \in I$ and for all $x \in X_{\delta}$. This implies $(\sum_{k=1}^{\infty} b_{n,k} z_k \sum_{k=1}^{\infty} a_{n,k} x_k)_{n=1}^{\infty} \in Y$ for all $x \in \bigcup_{\delta \in I} X_{\delta}$, hence $z \in M_{A,B}(\bigcup_{\delta \in I} X_{\delta}, Y)$. Thus $\bigcap_{\delta \in I} M_{A,B}(X_{\delta}, Y) \subset M_{A,B}(\bigcup_{\delta \in I} X_{\delta}, Y)$. \Box

Remark 2.3. *If A* = *B* = *I*, *we have Lemma* 1.25 *from* [11].

Remark 2.4. If two matrices A and B are defined by (2) and (3), then we obtain Lemma 2.1 from [5].

If \dagger denotes either of the symbols α , β , γ or N, from now on we will use the following notation

$$(X^{\dagger AB})^{\dagger AB} = X^{\dagger \dagger AB}.$$

Corollary 2.5. Let $X, Y \subset \omega$ and $\{X_{\delta} : \delta \in I\}$ be any collection of subsets of ω , also \dagger denotes either of the symbols α, β, γ or N, then

(i) $X^{\alpha AB} \subset X^{\beta AB} \subset X^{\gamma AB} \subset \omega$; in particular, $X^{\dagger AB}$ is a sequence space. (ii) $X \subset Z$ implies $Z^{\dagger AB} \subset X^{\dagger AB}$. (iii) $X \subset X^{\dagger \dagger AA}$. (iv) $X^{\dagger AA} = X^{\dagger \dagger \dagger AA}$. (v) $(\bigcup_{\delta \in I} X_{\delta})^{\dagger AB} = \bigcap_{\delta \in I} X_{\delta}^{\dagger AB}$.

Remark 2.6. *If A* = *B* = *I*, *we have Corollary* 1.26 *from* [11].

Remark 2.7. If two matrices A and B are defined by (2) and (3), then we obtain Corollary 2.1 from [5].

Below, we determine the generalized multiplier space for some sequence spaces. For this purpose, we recall the following theorem from [11]. Let *X* and *Y* be two sequence spaces and $A = (a_{n,k})$ be an infinite matrix of real numbers $a_{n,k}$, where $n, k \in \mathbb{N} = \{1, 2, \dots\}$. We say that *A* defines a matrix mapping from *X* into *Y*, and we denote it by $A : X \to Y$, if for every sequence $x \in X$ the sequence $Ax = \{(Ax)_n\}_{n=1}^{\infty}$ exists and is in *Y*, where $(Ax)_n = \sum_{k=1}^{\infty} a_{n,k}x_k$ for $n = 1, 2, \dots$. By (X, Y), we denote the class of all infinite matrices *A* such that $A : X \to Y$. We consider the conditions

$$\sup_{n} \left(\sum_{k=1}^{\infty} |a_{n,k}| \right) < \infty, \tag{4}$$

$$\lim_{k \to \infty} a_{n,k} = 0 \quad (k = 1, 2, \cdots),$$
(5)

 $\lim a_{n,k} = l_k \text{ for some } l_i \in \mathbb{R} \ (i = 1, 2, \cdots), \tag{6}$

$$\lim_{n \to \infty} \left(\sum_{k=1}^{\infty} a_{n,k} \right) = l \text{ for some } l \in \mathbb{R}.$$
(7)

With the notation of (1), the spaces $l_{\infty}(A)$, c(A) and $c_0(A)$ contain all of the sequences $x = (x_n)$ that $Ax = \{(Ax)_n\}$ are the bounded, convergent and null sequences, respectively.

Theorem 2.8. ([11], *Theorem 1.36*) We have

(i) $A \in (l_{\infty}, l_{\infty})$ if and only if the condition (4) holds, in this case $l_{\infty} \subset l_{\infty}(A)$; (ii) $A \in (c_0, c_0)$ if and only if the conditions (4) and (5) hold, in this case $c_0 \subset c_0(A)$; (iii) $A \in (c, c)$ if and only if the conditions (4), (6) and (7) hold, in this case $c \subset c(A)$; (iv) $A \in (c_0, c)$ if and only if the conditions (4) and (6) hold, in this case $c_0 \subset c(A)$.

Theorem 2.9. *Let A be an invertible matrix. We have the following statements.*

(i) $M_{A,B}(c_0, X) = l_{\infty}(B)$, where $X \in \{l_{\infty}, c, c_0\}$ and A satisfies the conditions (4) and (5);

- (*ii*) $M_{A,B}(l_{\infty}, X) = c_0(B)$, where $X \in \{c, c_0\}$ and A satisfies the condition (4);
- (iii) If in addition $\sum_{k=1}^{\infty} a_{n,k} = R$ for all n, then $M_{A,B}(c,c) = c(B)$ and A satisfies the conditions (4), (6) and (7).

Proof. (*i*) Since $c_0 \subset c \subset l_{\infty}$, by applying Lemma 2.2(*ii*), we have

$$M_{A,B}(c_0, c_0) \subset M_{A,B}(c_0, c) \subset M_{A,B}(c_0, l_\infty).$$

So it is sufficient to verify $l_{\infty}(B) \subset M_{A,B}(c_0, c_0)$ and $M_{A,B}(c_0, l_{\infty}) \subset l_{\infty}(B)$. Suppose that $z \in l_{\infty}(B)$ and $x \in c_0$. Due to Theorem 2.8(*ii*) we have $x \in c_0(A)$, so

$$\lim_{n \to \infty} \left(\sum_{k=1}^{\infty} b_{n,k} z_k \sum_{k=1}^{\infty} a_{n,k} x_k \right) = 0, \tag{8}$$

this means that $z \in M_{A,B}(c_0, c_0)$. Thus $l_{\infty}(B) \subset M_{A,B}(c_0, c_0)$.

Now we assume $z \notin l_{\infty}(B)$. Then there is a subsequence $\left(\sum_{k=1}^{\infty} b_{n_j,k} z_k\right)_{j=1}^{\infty}$ of the sequence $\left(\sum_{k=1}^{\infty} b_{n,k} z_k\right)_{k=1}^{\infty}$ such that $\left|\sum_{k=1}^{\infty} b_{n_j,k} z_k\right| > j^2$ for $j = 1, 2, \cdots$. Since A is an invertible matrix, there exists a sequence $x = (x_k)$ such that

$$\sum_{k=1}^{\infty} a_{n_{j,k}} x_{k} = \frac{(-1)^{j} j}{\sum_{k=1}^{\infty} b_{n_{j,k}} z_{k}},$$

for all *j*. Hence

$$\left(\sum_{k=1}^{\infty} b_{n,k} z_k \sum_{k=1}^{\infty} a_{n,k} x_k\right)_{n=1}^{\infty} \notin l_{\infty},$$

this shows that $M_{A,B}(c_0, l_\infty) \subset l_\infty(B)$.

(ii) We have

$$M_{A,B}(l_{\infty},c_0) \subset M_{A,B}(l_{\infty},c),$$

by applying Lemma 2.2(*ii*). It is sufficient to prove $c_0(B) \subset M_{A,B}(l_{\infty}, c_0)$ and $M_{A,B}(l_{\infty}, c) \subset c_0(B)$. Suppose that $z \in c_0(B)$. By Theorem 2.8, we have $\lim_{n\to\infty} (\sum_{k=1}^{\infty} b_{n,k}z_k \sum_{k=1}^{\infty} a_{n,k}x_k) = 0$ for all $x \in l_{\infty}$, that is $z \in M_{A,B}(l_{\infty}, c_0)$. Thus $c_0(B) \subset M_{A,B}(l_{\infty}, c_0)$.

Now we assume $z \notin c_0(B)$. Then there is a real number as b > 0 and a subsequence $\left(\sum_{k=1}^{\infty} b_{n_j,k} z_k\right)_{j=1}^{\infty}$ of the sequence $\left(\sum_{k=1}^{\infty} b_{n_k,k} z_k\right)_{n=1}^{\infty}$ such that $\left|\sum_{k=1}^{\infty} b_{n_j,k} z_k\right| > b$ for all for $j = 1, 2, \cdots$. We define the sequence x as in part (*ii*). We have $x \in l_{\infty}$ and

$$\left(\sum_{k=1}^{\infty} b_{n,k} z_k \sum_{k=1}^{\infty} a_{n,k} x_k\right)_{n=1}^{\infty} \notin c,$$

which implies $z \notin M_{A,B}(l_{\infty}, c)$. This shows that $M_{A,B}(l_{\infty}, c) \subset c_0(B)$.

(*iii*) Suppose that $z \in c(B)$. By applying Theorem 2.8(*iii*), we deduce that $\lim_{n\to\infty} (\sum_{k=1}^{\infty} b_{n,k} z_k \sum_{k=1}^{\infty} a_{n,k} x_k)$ exists for all $x \in c$. So $z \in M_{A,B}(c, c)$ and $c(B) \subset M_{A,B}(c, c)$.

Conversely we assume $z \notin c(B)$. We define the sequence x by $x = (\frac{1}{R}, \frac{1}{R}, \cdots)$. It is obvious that $x \in c$ and $(\sum_{k=1}^{\infty} b_{n,k} z_k \sum_{k=1}^{\infty} a_{n,k} x_k)_{k=1}^{\infty} = (\sum_{k=1}^{\infty} b_{n,k} z_k)_{k=1}^{\infty} \notin c$. So $z \notin M_{A,B}(c, c)$, this shows $M_{A,B}(c, c) \subset c(B)$. \Box

Remark 2.10. *If A* = *B* = *I*, *we have Example 1.28 from* [11].

Remark 2.11. If two matrices A and B are defined by (2) and (3), then we obtain Theorem 2.2 from [5].

Corollary 2.12. Suppose that $\sup_n \sum_{k=1}^{\infty} |a_{n,k}| < \infty$, we have $c_0^{NAB} = l_{\infty}(B)$ and $l_{\infty}^{NAB} = c_0(B)$.

Proof. The desired result follows from Theorem 2.9. \Box

Theorem 2.13. If matrix A satisfies the conditions in Theorem 2.9, then we have the following statements. (i) $M_{A,B}(c_0(A), X) = l_{\infty}(B)$, where $X \in \{l_{\infty}, c, c_0\}$. In particular $(c_0(A))^{NAB} = l_{\infty}(B)$. (ii) $M_{A,B}(l_{\infty}(A), X) = c_0(B)$, where $X \in \{c, c_0\}$. In particular $(l_{\infty}(A))^{NAB} = c_0(B)$. (iii) If in addition $\sum_{k=1}^{\infty} a_{n,k} = R$ for all n, then $M_{A,B}(c(A), c) = c(B)$.

Proof. We only prove the part (*i*), the other parts are proved similarly. Since $c_0 \subset c_0(A)$, according to Corollary 2.5(*ii*) and Theorem 2.9 we obtain

$$M_{A,B}(c_0(A), X) \subset M_{A,B}(c_0, X) = l_{\infty}(B).$$

The inclusion $l_{\infty}(B) \subset M_{A,B}(c_0(A), X)$ is gained by the relation (8). \Box

In the following, we obtain the αAB -, βAB - and γAB -duals for the sequence spaces l_{∞} , *c* and c_0 .

Theorem 2.14. Suppose that A is an invertible matrix that satisfies the condition (4), and \dagger denote either of the symbols α , β or γ . We have

$$c_0^{\dagger AB} = c^{\dagger AB} = l_{\infty}^{\dagger AB} = l_1(B).$$

In particular for B = I,

$$c_0^{\dagger AI} = c^{\dagger AI} = l_{\infty}^{\dagger AI} = l_1.$$

Proof. We only prove the statement for the case $\dagger = \beta$, the other cases prove similarly. Obviously $l_{\infty}^{\beta AB} \subset$ $c_{0}^{\beta AB} \subset c_{0}^{\beta AB}$ by Corollary 2.5(*ii*). So it is sufficient to show that $l_{1}(B) \subset l_{\infty}^{\beta AB}$ and $c_{0}^{\beta AB} \subset l_{1}(B)$. Now, let $z \in l_{1}(B)$ and $x \in l_{\infty}$ be given. Due to Theorem 2.8(*i*), we deduce that $x \in l_{\infty}(A)$. Hence

$$\sum_{n=1}^{\infty} \left| \sum_{k=1}^{\infty} b_{n,k} z_k \sum_{k=1}^{\infty} a_{n,k} x_k \right| \le \sup_n \left| \sum_{k=1}^{\infty} a_{n,k} x_k \right| \sum_{n=1}^{\infty} \left| \sum_{k=1}^{\infty} b_{n,k} z_k \right| < \infty,$$
(9)

which shows $(\sum_{k=1}^{\infty} b_{n,k} z_k \sum_{k=1}^{\infty} a_{n,k} x_k)_{n=1}^{\infty} \in cs$. Thus $z \in l_{\infty}^{\beta AB}$ and $l_1(B) \subset l_{\infty}^{\beta AB}$. On the other hand, for a given $z \notin l_1(B)$ we prove the existence of a sequence $x \in c_0$ with $(\sum_{k=1}^{\infty} b_{n,k} z_k \sum_{k=1}^{\infty} a_{n,k} x_k)_{n=1}^{\infty} \notin cs$, which implies $z \notin c_0^{\beta AB}$; thus altogether $c_0^{\beta AB} \subset l_1(B)$. Because $z \notin l_1(B)$, we may choose an index subsequence (n_j) in **N** with n = 0 and $n_0 = 0$ and

$$\sum_{n=n_{j-1}}^{n_j-1} \left| \sum_{k=1}^{\infty} b_{n,k} z_k \right| > j \qquad (j = 1, 2, \cdots)$$

Since *A* is an invertible matrix, there exists a sequence $x = (x_k)$ such that

$$\sum_{k=1}^{\infty} a_{n_j,k} x_k = \frac{1}{j} sgn \sum_{k=1}^{\infty} b_{n_j,k} z_k,$$

for all *j*. Hence $x \in c_0$ and

$$\sum_{n=n_{j-1}}^{n_j-1} \left(\sum_{k=1}^{\infty} b_{n,k} z_k \sum_{k=1}^{\infty} a_{n,k} x_k \right) = \frac{1}{j} \sum_{n=n_{j-1}}^{n_j-1} \left| \sum_{k=1}^{\infty} b_{n,k} z_k \right| > 1,$$

for $j = 1, 2, \cdots$. Therefore $(\sum_{k=1}^{\infty} a_{n,k} x_k \sum_{k=1}^{\infty} b_{n,k} z_k)_{k=1}^{\infty} \notin cs$, and $z \notin c_0^{\beta AB}$. This completes the proof. \Box **Remark 2.15.** If A = B = I and \dagger denote either of the symbols α , β or γ . we have

$$c_0^{\dagger} = c^{\dagger} = l_{\infty}^{\dagger} = l_1,$$

hence Theorem 1.29 from [11] is resulted.

Remark 2.16. If two matrices A and B are defined by (2) and (3), then we obtain Theorem 2.3 from [5].

In the next theorem, we examine the αAB -, βAB - and γAB -duals for the sequence spaces $l_{\infty}(A)$, c(A) and $c_0(A)$.

Theorem 2.17. Let A be a matrix which satisfies the conditions in Theorem 2.8. If \dagger denote either of the symbols α , β or γ , then

$$(c_0(A))^{\dagger AB} = (c(A))^{\dagger AB} = (l_\infty(A))^{\dagger AB} = l_1(B).$$

Proof. We only prove the statement for the case $\dagger = \beta$, the other case prove similarly. Obviously

$$(l_{\infty}(A))^{\beta AB} \subset (c(A))^{\beta AB} \subset (c_0(A))^{\beta AB},$$

by Corollary 2.5(*ii*). So it is sufficient to verify $(c_0(A))^{\beta AB} \subset l_1(B)$ and $l_1(B) \subset (l_{\infty}(A))^{\beta AB}$. By applying Corollary 2.5(*ii*) and Theorem 2.14, we deduce that $(c_0(A))^{\beta AB} \subset c_0^{\beta AB} = l_1(B)$. The other inclusion will gain by the relation (9). \Box

Theorem 2.18. Suppose that A is an invertible matrix. If 1 and <math>q = p/(p-1), then $(l_p(A))^{\beta AB} = l_q(B)$. Moreover for p = 1, we have $(l_1(A))^{\beta AB} = l_{\infty}(B)$.

Proof. We only prove the statement for the case 1 , the case <math>p = 1 will prove similarly. Let $z \in l_q(B)$ be given. By Hölder's inequality, we have

$$\left|\sum_{k=1}^{\infty} \left(\sum_{j=1}^{\infty} b_{k,j} z_j\right) \left(\sum_{j=1}^{\infty} a_{k,j} x_j\right)\right| \le \left(\sum_{k=1}^{\infty} \left|\sum_{j=1}^{\infty} b_{k,j} z_j\right|^q\right)^{1/q} \left(\sum_{k=1}^{\infty} \left|\sum_{j=1}^{\infty} a_{k,j} x_j\right|^p\right)^{1/p} < \infty,\tag{10}$$

for all $x \in l_p(A)$. This shows $z \in (l_p(A))^{\beta AB}$ and hence $l_q(B) \subset (l_p(A))^{\beta AB}$. Now, let $z \in (l_p(A))^{\beta AB}$ be given. We consider the linear functional $f_n : l_p(A) \to \mathbb{R}$ defined by

$$f_n(x) = \sum_{k=1}^n \left(\sum_{j=1}^n b_{k,j} z_j \right) \left(\sum_{j=1}^n a_{k,j} x_j \right) \qquad \left(x \in l_p(A) \right),$$

for $n = 1, 2, \cdots$. Similar to (10), we obtain

$$|f_n(x)| \le \left(\sum_{k=1}^n \left|\sum_{j=1}^n b_{k,j} z_j\right|^q\right)^{1/q} \left(\sum_{k=1}^n \left|\sum_{j=1}^n a_{k,j} x_j\right|^p\right)^{1/p},$$

for every $x \in l_p(A)$. So the linear functional f_n is bounded and

$$||f_n|| \le \left(\sum_{k=1}^n \left|\sum_{j=1}^n b_{k,j} z_j\right|^q\right)^{1/q},$$

for all *n*. We now prove reverse of the above inequality. Since *A* is invertible, we define the sequence $x = (x_k)$ such that

$$\sum_{j=1}^{n} a_{k,j} x_j = \left(sgn \sum_{j=1}^{n} b_{k,j} z_j \right) \left| \sum_{j=1}^{n} b_{k,j} z_j \right|^{q-1},$$

for $1 \le k \le n$, and put the remaining elements zero. Obviously $x \in l_p(A)$, so

$$||f_n|| \ge \frac{|f_n(x)|}{||x||_p} = \frac{\sum_{k=1}^n \left|\sum_{j=1}^n b_{k,j} z_j\right|^q}{\left(\sum_{k=1}^n \left|\sum_{j=1}^n b_{k,j} z_j\right|^q\right)^{1/p}} = \left(\sum_{k=1}^n \left|\sum_{j=1}^n b_{k,j} z_j\right|^q\right)^{1/q},$$

for $n = 1, 2, \dots$. Since $z \in l_p(A)^{\beta AB}$, the map $f_z : l_p(A) \to \mathbb{R}$ defined by

$$f_z(x) = \sum_{k=1}^{\infty} \left(\sum_{j=1}^{\infty} b_{k,j} z_j \right) x_k \qquad \left(x \in l_p(A) \right),$$

is well-defined and linear, and also the sequence (f_n) is pointwise convergent to f_z . By using the Banach-Steinhaus theorem, it can be shown that $||f_z|| \le \sup_n ||f_n|| < \infty$, so $\left(\sum_{k=1}^{\infty} \left|\sum_{j=1}^{\infty} b_{k,j} z_j\right|^q\right)^{1/q} < \infty$ and $z \in l_q(B)$. This establishes the proof of theorem. \Box

Remark 2.19. If A = B = I and 1 and <math>q = p/(p-1). Then we have $l_p^\beta = l_q$. Moreover for p = 1, $l_1^\beta = l_\infty$.

Definition 2.20. A subset X of ω is said to be A-normal if $y \in X$ and $|\sum_{k=1}^{\infty} a_{n,k}x_k| \le |\sum_{k=1}^{\infty} a_{n,k}y_k|$ for $n = 1, 2, \dots$, together imply $x \in X$. In the special case that A = I, the set X is called normal.

Example 2.21. The sequence spaces c_0 and l_{∞} are normal, but they are not A-normal. Since if $x = (1, -1, 2, -2, \cdots)$, $y = (1, \frac{1}{2}, \cdots)$ and the matrix $A = (a_{n,k})$ is defined by

$$a_{n,k} = \begin{cases} 1 & if \ k \in \{2n-1, 2n\} \\ 0 & otherwise. \end{cases}$$

We have $|\sum_{k=1}^{\infty} a_{n,k} x_k| \le |\sum_{k=1}^{\infty} a_{n,k} y_k|$ and $y \in c_0, l_\infty$, while $x \notin c_0, l_\infty$.

Example 2.22. The sequence spaces $c_0(A)$ and $l_{\infty}(A)$ are A-normal, but they are not normal. Because, if $x = (1, 1, 2, 2, \cdots)$ and $y = (1, -1, 2, -2, \cdots)$ and A is the matrix as in Example 2.21, then it is obvious that $|x_i| \le |y_i|$, $y \in c_0(A)$ and $y \in l_{\infty}(A)$, while $x \notin c_0(A)$ and $x \notin l_{\infty}(A)$.

Example 2.23. *The sequence spaces c and c(A) are neither A-normal nor normal.*

Theorem 2.24. Suppose that A is an invertible matrix and X is a A-normal subset of ω . We have

$$X^{\alpha AB} = X^{\beta AB} = X^{\gamma AB}.$$

Proof. Obviously $X^{\alpha AB} \subset X^{\beta AB} \subset X^{\gamma AB}$, by Corollary 2.5(*i*). To prove the statement, it is sufficient to verify $X^{\gamma AB} \subset X^{\alpha AB}$. Let $z \in X^{\gamma AB}$ and $x \in X$ be given. Since *A* is invertible, we define the sequence *y* such that

$$\sum_{k=1}^{\infty} a_{n,k} y_k = \left(sgn \sum_{k=1}^{\infty} b_{n,k} z_k \right) \left| \sum_{k=1}^{\infty} a_{n,k} x_k \right|,$$

for $n = 1, 2, \dots$. It is clear $\left|\sum_{k=1}^{\infty} a_{n,k} y_k\right| \le \left|\sum_{k=1}^{\infty} a_{n,k} x_k\right|$, for all *n*. Consequently $y \in X$, since X is A-normal. So

$$\sup_{n}\left|\sum_{k=1}^{n}\left(\sum_{k=1}^{\infty}b_{n,k}z_{k}\sum_{k=1}^{\infty}a_{n,k}y_{k}\right)\right|<\infty.$$

Furthermore, by the definition of the sequence y, $\sum_{n=1}^{\infty} |\sum_{k=1}^{\infty} b_{n,k} z_k \sum_{k=1}^{\infty} a_{n,k} x_k| < \infty$. Since $x \in X$ was arbitrary, $z \in X^{\alpha AB}$. This finishes the proof of the theorem. \Box

Remark 2.25. If A = B = I and X be a normal subset of ω , we have

$$X^{\alpha} = X^{\beta} = X^{\gamma},$$

hence Remark 1.27 from [11] is gained.

Remark 2.26. If two matrices A and B are defined by (2) and (3), then we obtain Theorem 2.4 from [5].

3. The Difference Sequence Space $X(A, \Delta)$

Suppose that $A = (a_{n,k})$ is an infinite matrix with real entries. For every sequence space *X*, we define the generalized difference sequence space *X*(*A*, Δ) as follows:

$$X(A, \Delta) = \left\{ x = (x_k) : \left(\sum_{k=1}^{\infty} (a_{n,k} - a_{n-1,k}) x_k \right)_{n=1}^{\infty} \in X \right\},\$$

where $X \in \{l_{\infty}, c, c_0\}$. The seminorm $\|.\|_{A,\Delta}$ on $X(A, \Delta)$ is defined by

$$\|x\|_{A,\Delta} = \sup_{n} \left| \sum_{k=1}^{\infty} (a_{n,k} - a_{n-1,k}) x_k \right|.$$
(11)

It should be noted that the function $\|.\|_{A,\Delta}$ cannot be the norm. Since if $x = (1, -1, 0, 0, \cdots)$ and $A = (a_{n,k})$ is defined by,

$$a_{n,k} = \begin{cases} 1 & if \ k \in \{2n-1, 2n\} \\ 0 & otherwise, \end{cases}$$

then $\|x\|_{A,\Delta} = 0$ while $x \neq 0$. It is also significant that in the special case A = I, we have $X(A, \Delta) = X(\Delta)$ and $\|x\|_{A,\Delta} = \|x\|_{\Delta}$.

If the infinite matrix $\Delta = (\delta_{n,k})$ is defined by

$$\delta_{n,k} = \begin{cases} 1 & if \ k = n \\ -1 & if \ k = n-1 \\ 0 & otherwise, \end{cases}$$

with the notation of (1), we can redefine the spaces $l_{\infty}(A, \Delta)$, $c(A, \Delta)$ and $c_0(A, \Delta)$ as follows:

 $l_{\infty}(A, \Delta) = (l_{\infty})_{\Delta A}, \qquad c(A, \Delta) = (c)_{\Delta A}, \qquad c_0(A, \Delta) = (c_0)_{\Delta A}.$

The purpose of this section is to consider some properties of the sequence spaces $X(A, \Delta)$ and is to derive some inclusion relations related to them. We also characterize *NAB*-duals and βAB -duals of $X(A, \Delta)$ where $X \in \{l_{\infty}, c, c_0\}$.

Now, we may begin with the following theorem which is essential in the study.

Theorem 3.1. The sequence spaces $X(A, \Delta)$ for $X \in \{l_{\infty}, c, c_0\}$ are complete semi-normed linear spaces with respect to the semi-norm defined by (11).

Proof. This is a routine verification and so we omit the details. \Box

It can easily be checked that the absolute property does not hold on the space $X(A, \Delta)$, that is $\|x\|_{A,\Delta} \neq \|x\|_{A,\Delta}$ for at least one sequence in this space which says that $X(A, \Delta)$ is the sequence space of non-absolute type, where $|x| = (|x_k|)$.

Theorem 3.2. Let $A = (a_{n,k})$ be an invertible matrix. The space $X(A, \Delta)$ is linearly isomorphic to the space $X(\Delta)$, for $X \in \{l_{\infty}, c, c_0\}$.

Proof. Consider the map

$$T: X(A, \Delta) \longrightarrow X(\Delta)$$
$$x \longrightarrow \left(\sum_{k=1}^{\infty} a_{n,k} x_k\right)_{n=1}^{\infty}$$

obviously the map *T* is linear, surjective and injective. \Box

In the following, we derive some inclusion relations concerning with the spaces *X*, *X*(*A*), *X*(Δ) and *X*(*A*, Δ) where *X* \in {*l*_{∞}, *c*, *c*₀}.

Theorem 3.3. *We have the following inclusions.*

- (*i*) If the condition (4) holds, then $l_{\infty} \subset l_{\infty}(A, \Delta)$.
- (*ii*) If the conditions (4) and (5) hold, then $c_0 \subset c_0(A, \Delta)$.
- (iii) If the conditions (4), (6) and (7) hold, then $c \subset c(A, \Delta)$.
- (iv) We have $X(A) \subset X(A, \Delta)$ where $X \in \{l_{\infty}, c, c_0\}$.

Proof. The parts (*i*), (*ii*) and (*iii*) obtain by applying Theorem 2.8.

(*iv*) Put A = I in parts (*i*), (*ii*) and (*iii*), it can conclude that $X \subset X(\Delta)$. Let $x \in X(A)$ be given. We deduce that $(\sum_{k=1}^{\infty} a_{n,k} x_k)_{n=1}^{\infty} \in X$ so $(\sum_{k=1}^{\infty} a_{n,k} x_k)_{n=1}^{\infty} \in X(\Delta)$. Hence $x \in X(A, \Delta)$ and $X(A) \subset X(A, \Delta)$. \Box

Below, we compute *NAB*-dual of the difference sequence spaces $X(A, \Delta)$ where $X \in \{l_{\infty}, c, c_0\}$. In order to do this, we first give a preliminary lemma.

Lemma 3.4. (i) If $x \in l_{\infty}(\Delta)$ then $\sup_{k} \left| \frac{x_{k}}{k} \right| < \infty$. (ii) If $x \in c(\Delta)$ then $\frac{x_{k}}{k} \to \xi$ $(k \to \infty)$ where $\Delta x_{k} \to \xi$ $(k \to \infty)$. (iii) If $x \in c_{0}(\Delta)$ then $\frac{x_{k}}{k} \to 0$ $(k \to \infty)$.

Proof. The proof is trivial and so is omitted. \Box

Theorem 3.5. Define the set d_1 as follows:

$$d_1 = \left\{ z = (z_k) : \left(n \sum_{k=1}^{\infty} b_{n,k} z_k \right)_{n=1}^{\infty} \in c_0 \right\},$$

then

$$c^{NAB}(A,\Delta) = l_{\infty}^{NAB}(A,\Delta) = d_1$$

Proof. We first show that $c^{NAB}(A, \Delta) = d_1$. Suppose that $z \in c^{NAB}(A, \Delta)$, we have

$$\lim_{n\to\infty}\sum_{k=1}^{\infty}b_{n,k}z_k\sum_{k=1}^{\infty}a_{n,k}x_k=0,$$

for all $x \in c(A, \Delta)$. Since *A* is invertible, we can choose the sequence *x* such that $\sum_{k=1}^{\infty} a_{n,k}x_k = n$ for all *n*, so $x \in c(A, \Delta)$ and hence $\lim_{n\to\infty} n \sum_{k=1}^{\infty} b_{n,k}z_k = 0$. Thus $c^{NAB}(A, \Delta) \subset d_1$. Now let $z \in d_1$. Since $(\sum_{k=1}^{\infty} a_{n,k}x_k)_{n=1}^{\infty} \in c(\Delta)$ for every $x \in c(A, \Delta)$, by previous lemma $\lim_{n\to\infty} \frac{\sum_{k=1}^{\infty} a_{n,k}x_k}{n} = \xi$, where $\xi = \lim_{n\to\infty} \sum_{k=1}^{\infty} (a_{n,k} - a_{n-1,k})x_k$. Hence

$$\lim_{n \to \infty} \sum_{k=1}^{\infty} b_{n,k} z_k \sum_{k=1}^{\infty} a_{n,k} x_k = \lim_{n \to \infty} n \sum_{k=1}^{\infty} b_{n,k} z_k \frac{\sum_{k=1}^{\infty} a_{n,k} x_k}{n} = 0$$

therefore $z \in c^{NAB}(A, \Delta)$ and $d_1 \subset c^{NAB}(A, \Delta)$.

Below, we prove that $l_{\infty}^{NAB}(A, \Delta) = d_1$. It is clear that $c(A, \Delta) \subset l_{\infty}(A, \Delta)$, so $l_{\infty}^{NAB}(A, \Delta) \subset c^{NAB}(A, \Delta) = d_1$. Now let $z \in d_1$ and $x \in l_{\infty}(A, \Delta)$. We have $(\sum_{k=1}^{\infty} a_{n,k} x_k)_{n=1}^{\infty} \in l_{\infty}(\Delta)$ and $\sup_n \left| \frac{\sum_{k=1}^{\infty} a_{n,k} x_k}{n} \right| < \infty$ by Lemma 3.4. So

$$\lim_{n \to \infty} \sum_{k=1}^{\infty} b_{n,k} z_k \sum_{k=1}^{\infty} a_{n,k} x_k = \lim_{n \to \infty} n \sum_{k=1}^{\infty} b_{n,k} z_k \frac{\sum_{k=1}^{\infty} a_{n,k} x_k}{n} = 0,$$

This implies that $z \in l_{\infty}^{NAB}(A, \Delta)$. \Box

Remark 3.6. If A = B = I, we have $c^{N}(\Delta) = l_{\infty}^{N}(\Delta) = \{z = (z_{k}) : (ka_{k}) \in c_{0}\}, [8]$.

Remark 3.7. If two matrices A and B are defined by (2) and (3), then we obtain Theorem 3.4 from [5].

Theorem 3.8. Let $A = (a_{n,k})$ be an invertible matrix. We define the set d_2 as follows:

$$d_2 = \left\{ z = (z_k) : \left(n \sum_{k=1}^{\infty} b_{n,k} z_k \right)_{n=1}^{\infty} \in I_{\infty} \right\},$$

then $c_0^{NAB}(A, \Delta) = d_2$.

Proof. Suppose that $z \in d_2$. Since $\left(\sum_{k=1}^{\infty} a_{n,k} x_k\right)_{n=1}^{\infty} \in c_0(\Delta)$ for all $x \in c_0(A, \Delta)$, we have $\lim_{n \to \infty} \frac{\sum_{k=1}^{\infty} a_{n,k} x_k}{n} = 0$, by Lemma 3.4. So

$$\lim_{n \to \infty} \sum_{k=1}^{\infty} b_{n,k} z_k \sum_{k=1}^{\infty} a_{n,k} x_k = \lim_{n \to \infty} n \sum_{k=1}^{\infty} b_{n,k} z_k \frac{\sum_{k=1}^{\infty} a_{n,k} x_k}{n} = 0,$$

this implies that $z \in c_0^{NAB}(A, \Delta)$. Now let $z \in c_0^{NAB}(A, \Delta)$ and $x \in c_0(A, \Delta)$ be given. By Theorem 3.2, there exists one and only one $y = (y_k) \in c_0$ such that $\sum_{k=1}^{\infty} a_{n,k} x_k = \sum_{j=1}^{n} y_j$. So

$$\lim_{n \to \infty} \sum_{j=1}^{n} \sum_{k=1}^{\infty} b_{n,k} z_k y_j = \lim_{n \to \infty} \sum_{k=1}^{\infty} b_{n,k} z_k \sum_{k=1}^{\infty} a_{n,k} x_k = 0,$$

for all $y = (y_k) \in c_0$. If we define the matrix $D = (d_{nj})_{n=1}^{\infty}$ by

$$d_{nj} = \begin{cases} \sum_{k=1}^{\infty} b_{n,k} z_k & \text{for } 1 \le j \le n \\ 0 & \text{for } j > n, \end{cases}$$

then $\lim_{n\to\infty} \sum_{j=1}^{\infty} d_{nj}y_j = 0$ for all $y \in c_0$. So $D = (d_{kj}) \in (c_0, c_0)$ and

$$\sup_{n}\left|n\sum_{k=1}^{\infty}b_{n,k}z_{k}\right|=\sup_{n}\left|\sum_{j=1}^{n}\sum_{k=1}^{\infty}b_{n,k}z_{k}\right|=\sup_{n}\left|\sum_{j=1}^{\infty}d_{nj}\right|<\infty,$$

by Theorem 2.8(*ii*). This completes the proof of the theorem. \Box

Remark 3.9. If A = B = I, we have $c_0^N(\Delta) = \{z = (z_k) : (ka_k) \in l_\infty\}$, hence Lemma 2 from [8] is resulted.

Remark 3.10. If two matrices A and B are defined by (2) and (3), then we obtain Theorem 3.6 from [5].

In order to investigate the βAB -dual of the difference sequence space $c_0^N(\Delta)$, we need the following lemma.

Lemma 3.11. ([8], Lemma 1) Let $(z_k) \in l_1$ and if $\lim_{k\to\infty} |z_k x_k| = L$ exists for an $x \in c_0(\Delta)$, then L = 0.

For the next result, we introduce the sequence (R_k) given by

$$R_k = \sum_{t=k}^{\infty} \sum_{j=1}^{\infty} b_{t,j} z_j$$

Theorem 3.12. Let $A = (a_{n,k})$ be an invertible matrix. If

$$d_3 = \{ z = (z_k) \in l_1(B) : (R_k) \in l_1 \cap c_0^N(\Delta) \},\$$

then we have $c_0^{\beta AB}(A, \Delta) = d_3$

Proof. Suppose that $z \in d_3$ and $x \in c_0(A, \Delta)$, by using Abel's summation formula we have

$$\sum_{n=1}^{m} \left(\sum_{k=1}^{\infty} b_{n,k} z_{k} \sum_{k=1}^{\infty} a_{n,k} x_{k} \right)$$

$$= \sum_{n=1}^{m} \left(\sum_{t=1}^{n} \sum_{j=1}^{\infty} b_{t,j} z_{j} \right) \left(\sum_{k=1}^{\infty} a_{n,k} x_{k} - \sum_{k=1}^{\infty} a_{n+1,k} x_{k} \right) + \left(\sum_{n=1}^{m} \sum_{k=1}^{\infty} b_{n,k} z_{k} \right) \sum_{k=1}^{\infty} a_{m+1,k} x_{k}$$

$$= \sum_{n=1}^{m} (R_{1} - R_{n+1}) \left(\sum_{k=1}^{\infty} a_{n,k} x_{k} - \sum_{k=1}^{\infty} a_{n+1,k} x_{k} \right) + (R_{1} - R_{m+1}) \sum_{k=1}^{\infty} a_{m+1,k} x_{k}$$

$$= \sum_{n=1}^{m+1} R_{n} \left(\sum_{k=1}^{\infty} a_{n,k} x_{k} - \sum_{k=1}^{\infty} a_{n-1,k} x_{k} \right) - R_{m+1} \sum_{k=1}^{\infty} a_{m+1,k} x_{k}.$$
(12)

This implies that $\sum_{n=1}^{\infty} (\sum_{k=1}^{\infty} b_{n,k} z_k \sum_{k=1}^{\infty} a_{n,k} x_k)$ is convergent, so $z \in c_0^{\beta AB}(A, \Delta)$.

Conversely let $z \in c_0^{\beta AB}(A, \Delta)$, we show that $z \in d_3$. Obviously $z \in l_1(B)$. Suppose that $z \notin l_1(B)$, we can choose an index sequence (n_v) in \mathbb{N} with

$$n_0 = 1$$
 and $\sum_{n=n_{v-1}}^{n_v-1} \left| \sum_{k=1}^{\infty} b_{n,k} z_k \right| > v \quad (v \in \mathbb{N}).$

Since *A* is an invertible matrix, we may find $x = (x_k) \in c_0(A) \subset c_0(A, \Delta)$ such that

$$\sum_{k=1}^{\infty} a_{n,k} x_k = \frac{1}{v} sgn \sum_{k=1}^{\infty} b_{n,k} z_k \quad (n_{v-1} \le n < n_v \text{ and } v \in \mathbb{N}),$$

hence

$$\sum_{n=n_{v-1}}^{n_v-1} \left(\sum_{k=1}^{\infty} b_{n,k} z_k \sum_{k=1}^{\infty} a_{n,k} x_k \right) = \frac{1}{v} \sum_{n=n_{v-1}}^{n_v-1} \left| \sum_{k=1}^{\infty} b_{n,k} z_k \right| > 1 \quad (v \in \mathbb{N}),$$

therefore $(\sum_{k=1}^{\infty} b_{n,k} z_k \sum_{k=1}^{\infty} a_{n,k} x_k)_{n=1}^{\infty} \notin cs$ and $z \notin c_0^{\beta A B}(A, \Delta)$. Let $x \in c_0(A, \Delta)$. Since A is invertible, by Theorem 3.2 there exist $y = (y_k) \in c_0$ such that $\sum_{k=1}^{\infty} a_{n,k} x_k = \sum_{j=1}^{n} y_j$, then by Abel's summation formula

$$\sum_{n=1}^{m} R_n y_n = \sum_{n=1}^{m} (R_n - R_{n+1}) \left(\sum_{j=1}^{n} y_j \right) + \sum_{n=1}^{m} R_{m+1} y_n$$
$$= \sum_{n=1}^{m} \left(\sum_{j=1}^{n} y_j \right) \left(\sum_{j=1}^{\infty} b_{n,j} z_j \right) + \sum_{n=1}^{m} R_{m+1} y_n.$$

So

$$\sum_{n=1}^{m} \left(\sum_{k=1}^{\infty} b_{n,k} z_k \sum_{k=1}^{\infty} a_{n,k} x_k \right) = \sum_{n=1}^{m} (R_n - R_{m+1}) y_n = \sum_{n=1}^{m} \left(\sum_{i=n}^{m} \sum_{j=1}^{\infty} b_{i,j} z_j \right) y_n.$$
(13)

Now we define the matrix $D = (d_{n,k})$ by

$$d_{n,k} = \begin{cases} \sum_{i=k}^{n} \sum_{j=1}^{\infty} b_{i,j} z_j & \text{for } 1 \le k \le n \\ 0 & \text{for } k > n, \end{cases}$$

Since $\lim_{n\to\infty}\sum_{k=1}^{\infty}d_{n,k}y_k = \lim_{n\to\infty}\sum_{k=1}^{n}d_{n,k}y_k$ exists for all $y \in c_0$ by (13), then $D = (d_{n,k}) \in (c_0, c)$. This implies that 1 1

$$\sup_{n}\sum_{k=1}^{\infty}|d_{n,k}|=\sup_{n}\sum_{k=1}^{n}\left|\sum_{i=k}^{n}\sum_{j=1}^{\infty}b_{i,j}z_{j}\right|<\infty,$$

by Theorem 2.8(*iv*). Thus we conclude $\sum_{k=1}^{\infty} |R_k| < \infty$. Furthermore (12) implies that $\lim_{n\to\infty} R_{n+1} \sum_{k=1}^{\infty} a_{n+1,k} x_k$ exists for each $x \in c_0(A, \Delta)$. So by Lemma 3.11 we have $(R_n) \in c_0^N(\Delta)$, which completes the proof. \Box

Remark 3.13. If A = B = I, we have $c_0^{\beta}(\Delta) = \{z = (z_k) \in l_1 : (R_k) \in l_1 \cap c_0^N(\Delta)\}$ where $R_k = \sum_{i=k}^{\infty} z_i$, hence Lemma 3 from [8] is resulted.

References

- [1] B. Altay, F. Başar, The fine spectrum and the matrix domain of the difference operator Δ on the sequence space l_p , (0 < p < 1), Commun. Math. Anal. 2:2 (2007) 1–11.
- [2] F. Başar, Summability theory and its applications, Bentham Science Publishers, e-books, Monographs, İstanbul, 2012.
- [3] F. Başar, B. Altay, On the space of sequences of *p*-bounded variation and related matrix mappings, Ukrainian Math. J. 55:1 (2003) 136–147.
- [4] V. K. Bhardwaj, S. Gupta, R. Karan, Köthe-Toeplitz duals and matrix transformations of Cesàro difference Sequence Spaces of second order, J. Math. Anal. 5:2 (2014) 1–11.
- [5] S. Erfanmanesh, D. Foroutannia, Generalizations of Köthe-Toeplitz duals and null duals of new difference sequence spaces, J. Contemp. Math. Anal. 3 (2016) 125–133.
- [6] S. Erfanmanesh, D. Foroutannia, Some new semi-normed sequence spaces of non-absolute type and matrix transformations, Proceedings of IAM 4:2 (2015) 96–108.
- [7] D. Foroutannia, On the block sequence space $l_p(E)$ and related matrix transformations, Turkish J. Math. 39 (2015) 830–841.
- [8] H. KIZMAZ, On certain sequence spaces II, Int. J. Math. Math. Sci. 18:2 (1995) 721-724.
- [9] G. Köthe, O. Toeplitz, Lineare Räume mit unendlich vielen Koordinaten und Ringe unendlicher Matrizen, J. Reine Angew. Math. 171 (1934) 193–226.
- [10] I. J. Maddox, Generalized Köthe-Toeplitz duals, Int. J. Math. Math. Sci. 3 (1980) 423-432.
- [11] E. Malkowsky, V. Rakočević, An introductionm into the theory of sequence spaces and measures of noncompactness, Zb. Rad. (Beogr.) 9:17 (2000) 143–243.