The $\alpha A B-, \beta A B-, \gamma A B$ - and $N A B$-duals for Sequence Spaces

D. Foroutannia ${ }^{\text {a }}$, H. Roopaei ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

Abstract

Let $A=\left(a_{n, k}\right)$ and $B=\left(b_{n, k}\right)$ be two infinite matrices with real entries. The main purpose of this paper is to generalize the multiplier space for introducing the concepts of $\alpha A B-, \beta A B-, \gamma A B$-duals and $N A B$-duals. Moreover, these duals are investigated for the sequence spaces X and $X(A)$, where $X \in\left\{c_{0}, c, l_{p}\right\}$ for $1 \leq p \leq \infty$. The other purpose of the present study is to introduce the sequence spaces

$$
X(A, \Delta)=\left\{x=\left(x_{k}\right):\left(\sum_{k=1}^{\infty} a_{n, k} x_{k}-\sum_{k=1}^{\infty} a_{n-1, k} x_{k}\right)_{n=1}^{\infty} \in X\right\}
$$

where $X \in\left\{l_{\infty}, c, c_{0}\right\}$, and computing the $N A B$-(or Null) duals and $\beta A B$-duals for these spaces.

1. Introduction

Let ω denote the space of all real-valued sequences. Any vector subspace of ω is called a sequence space. For $1 \leq p<\infty$, denote by l_{p} the space of all real sequences $x=\left(x_{n}\right) \in \omega$ such that

$$
\|x\|_{p}=\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}\right)^{1 / p}<\infty
$$

For $p=\infty,\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}\right)^{1 / p}$ is interpreted as $\sup _{n \geq 1}\left|x_{n}\right|$. We write c and c_{0} for the spaces of all convergent and null sequences, respectively. Also, $b s$ and $c s$ are used for the spaces of all bounded and convergent series, respectively. Kizmaz [8] defined the backward difference sequence space

$$
X(\Delta)=\left\{x=\left(x_{k}\right): \Delta x \in X\right\}
$$

for $X \in\left\{l_{\infty}, c, c_{0}\right\}$, where $\Delta x=\left(x_{k}-x_{k-1}\right)_{k=1}^{\infty}, x_{0}=0$. Observe that $X(\Delta)$ is a Banach space with the norm

$$
\|x\|_{\Delta}=\sup _{k \geq 1}\left|x_{k}-x_{k-1}\right| .
$$

In the summability theory, the β-dual of a sequence space is very important in connection with inclusion theorems. The idea of dual sequence space was introduced by Köthe and Toeplitz [9], and it is generalized

[^0]to the vector-valued sequence spaces by Maddox [10]. For the sequence spaces X and Y, the set $M(X, Y)$ defined by
$$
M(X, Y)=\left\{z=\left(z_{k}\right) \in \omega: \quad\left(z_{k} x_{k}\right)_{n=1}^{\infty} \in Y \quad \forall x=\left(x_{k}\right) \in X\right\}
$$
is called the multiplier space of X and Y. With the above notation, the $\alpha-, \beta-\gamma$ and N-duals of a sequence space X, which are respectively denoted by $X^{\alpha}, X^{\beta}, X^{\gamma}$ and X^{N}, are defined by
$$
X^{\alpha}=M\left(X, l_{1}\right), \quad X^{\beta}=M(X, c s), \quad X^{\gamma}=M(X, b s), \quad X^{N}=M\left(X, c_{0}\right) .
$$

For a sequence space X, the matrix domain $X(A)$ of an infinite matrix A is defined by

$$
\begin{equation*}
X(A)=\left\{x=\left(x_{n}\right) \in \omega: A x \in X\right\} \tag{1}
\end{equation*}
$$

which is a sequence space. The new sequence space $X(A)$ generated by the limitation matrix A from a sequence space X can be the expansion or the contraction and or the overlap of the original space X.

In the past, several authors studied Köthe-Toeplitz duals of sequence spaces that are the matrix domains in classical spaces l_{p}, l_{∞}, c and c_{0}. For instance, some matrix domains of the difference operator was studied in [4]. Domain of backward difference matrix in the space l_{p} was investigated for $1 \leq p \leq \infty$ by Başar and Altay in [3] and was studied for $0<p<1$ by Altay and Başar in [1]. Recently the Köthe-Toeplitz duals were computed for some new sequence spaces by Erfanmanesh and Foroutannia [5], [6] and Foroutannia [7]. For more details on the domain of triangle matrices in some sequence spaces, the reader may refer to Chapter 4 of [2].

In this study, the concept of the multiplier space is generalized and the $\alpha A B-, \beta A B-, \gamma A B-$ and $N A B-$ duals are determined for the classical sequence spaces l_{∞}, c and c_{0}. Also the normed sequence space $X(\Delta)$ is extended to semi-normed space $X(A, \Delta)$, where $X \in\left\{l_{\infty}, c, c_{0}\right\}$. We consider some topological properties of this space and derive inclusion relations concerning with its. Moreover, we compute the $N A B$-(or Null) duals for the space $X(A, \Delta)$. The results are generalizations of some results of Malkowsky and Rakocevic [11], Kizmaz [8] and Erfanmanesh and Foroutannia [5].

2. The Generalized Multiplier Space and its Köthe-Toeplitz Duals and Null Duals

In this section, we introduce the generalization of multiplier space and present the new generalizations of Köthe-Toeplitz duals and Null duals of sequence spaces. Furthermore, we obtain these duals for the sequence spaces l_{∞}, c and c_{0}. Throughout this paper, let I be the identity matix.

Definition 2.1. Suppose that $A=\left(a_{n, k}\right)$ and $B=\left(b_{n, k}\right)$ are two infinite matrices with real entries such that $\sum_{k=1}^{\infty} a_{n, k} x_{k}<\infty$ for all $x=\left(x_{k}\right) \in X$ and $n=1,2, \cdots$. For the sequence spaces X and Y, the set $M_{A, B}(X, Y)$ defined by

$$
M_{A, B}(X, Y)=\left\{z \in \omega: \sum_{k=1}^{\infty} b_{n, k} z_{k}<\infty, \forall n \text { and }\left(\sum_{k=1}^{\infty} b_{n, k} z_{k} \sum_{k=1}^{\infty} a_{n, k} x_{k}\right)_{n=1}^{\infty} \in Y, \forall x \in X\right\},
$$

is called the generalized multiplier space of X and Y.
The $\alpha A B-, \beta A B-, \gamma A B$ - and $N A B$-duals of a sequence space X, which are respectively denoted by $X^{\alpha A B}, X^{\beta A B}$, $X^{\gamma A B}$ and $X^{N A B}$, are defined by

$$
X^{\alpha A B}=M_{A, B}\left(X, l_{1}\right), \quad X^{\beta A B}=M_{A, B}(X, c s), \quad X^{\gamma A B}=M_{A, B}(X, b s), \quad X^{N A B}=M_{A, B}\left(X, c_{0}\right) .
$$

It should be noted that in the special case $A=B=I$, we have $M_{A, B}(X, Y)=M(X, Y)$. So

$$
X^{\alpha A B}=X^{\alpha}, \quad X^{\beta A B}=X^{\beta}, \quad X^{\gamma A B}=X^{\gamma}, \quad X^{N A B}=X^{N}
$$

Let $E=\left(E_{n}\right)$ and $F=\left(F_{n}\right)$ be two partitions of finite subsets of the positive integers such that

$$
\max E_{n}<\min E_{n+1}, \quad \max F_{n}<\min F_{n+1},
$$

for $n=1,2, \cdots$. If the infinite matrices $A=\left(a_{n, k}\right)$ and $B=\left(b_{n, k}\right)$ are defined by

$$
a_{n, k}= \begin{cases}1 & \text { if } k \in E_{n} \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

and

$$
b_{n, k}= \begin{cases}1 & \text { if } k \in F_{n} \tag{3}\\ 0 & \text { otherwise }\end{cases}
$$

then $M_{A, B}(X, Y)=M_{E, F}(X, Y)$ and the new multiplier space $M_{A, B}(X, Y)$ is a generalization of the multiplier space $M_{E, F}(X, Y)$ introduced in [5].

Lemma 2.2. Let $X, Y, Z \subset \omega$ and $\left\{X_{\delta}: \delta \in I\right\}$ be any collection of subsets of ω, then
(i) $X \subset Z$ implies $M_{A, B}(Z, Y) \subset M_{A, B}(X, Y)$,
(ii) $Y \subset Z$ implies $M_{A, B}(X, Y) \subset M_{A, B}(X, Z)$,
(iii) $X \subset M_{A, B}\left(M_{B, A}(X, Y), Y\right)$,
(iv) $M_{A, B}(X, Y)=M_{A, B}\left(M_{B, A}\left(M_{A, B}(X, Y), Y\right), Y\right)$,
(v) $M_{A, B}\left(\bigcup_{\delta \in I} X_{\delta}, Y\right)=\bigcap_{\delta \in I} M_{A, B}\left(X_{\delta}, Y\right)$.

Proof. Parts (i) and (ii) are obvious, by using the definition of generalized multiplier space.
(iii) Let $x \in X$. We have $\left(\sum_{k=1}^{\infty} a_{n, k} z_{k} \sum_{k=1}^{\infty} b_{n, k} x_{k}\right)_{n=1}^{\infty} \in Y$ for all $z \in M_{B, A}(X, Y)$, and consequently $x \in$ $M_{A, B}\left(M_{B, A}(X, Y), Y\right)$.
(iv) By applying (iii) with X replaced by $M_{B, A}(X, Y)$, we deduce that

$$
M_{A, B}(X, Y) \subset M_{A, B}\left(M_{B, A}\left(M_{A, B}(X, Y), Y\right), Y\right)
$$

Conversely, due to (iii), we have $X \subset M_{B, A}\left(M_{A, B}(X, Y), Y\right)$. So

$$
M_{A, B}\left(M_{B, A}\left(M_{A, B}(X, Y), Y\right), Y\right) \subset M_{A, B}(X, Y)
$$

by part (i).
(v) First, $X_{\delta} \subset \bigcup_{\delta \in I} X_{\delta}$ for all $\delta \in I$ implies

$$
M_{A, B}\left(\bigcup_{\delta \in I} X_{\delta}, Y\right) \subset \bigcap_{\delta \in I} M_{A, B}\left(X_{\delta}, Y\right)
$$

by part (i). Conversely, if $a \in \bigcap_{\delta \in I} M_{A, B}\left(X_{\delta}, Y\right)$, then $z \in M_{A, B}\left(X_{\delta}, Y\right)$ for all $\delta \in I$. So

$$
\left(\sum_{k=1}^{\infty} b_{n, k} z_{k} \sum_{k=1}^{\infty} a_{n, k} x_{k}\right)_{n=1}^{\infty} \in Y
$$

for all $\delta \in I$ and for all $x \in X_{\delta}$. This implies $\left(\sum_{k=1}^{\infty} b_{n, k} z_{k} \sum_{k=1}^{\infty} a_{n, k} x_{k}\right)_{n=1}^{\infty} \in Y$ for all $x \in \bigcup_{\delta \in I} X_{\delta}$, hence $z \in M_{A, B}\left(\bigcup_{\delta \in I} X_{\delta}, Y\right)$. Thus $\bigcap_{\delta \in I} M_{A, B}\left(X_{\delta}, Y\right) \subset M_{A, B}\left(\bigcup_{\delta \in I} X_{\delta}, Y\right)$.

Remark 2.3. If $A=B=I$, we have Lemma 1.25 from [11].
Remark 2.4. If two matrices A and B are defined by (2) and (3), then we obtain Lemma 2.1 from [5].
If + denotes either of the symbols α, β, γ or N, from now on we will use the following notation

$$
\left(X^{\dagger A B}\right)^{\dagger A B}=X^{\dagger A B}
$$

Corollary 2.5. Let $X, Y \subset \omega$ and $\left\{X_{\delta}: \delta \in I\right\}$ be any collection of subsets of ω, also \dagger denotes either of the symbols α, β, γ or N, then
(i) $X^{\alpha A B} \subset X^{\beta A B} \subset X^{\gamma A B} \subset \omega$; in particular, $X^{+A B}$ is a sequence space.
(ii) $X \subset Z$ implies $Z^{\dagger A B} \subset X^{\dagger A B}$.
(iii) $X \subset X^{\dagger+A A}$.
(iv) $X^{\dagger A A}=X^{+++A A}$.
(v) $\left(\bigcup_{\delta \in I} X_{\delta}\right)^{\dagger A B}=\bigcap_{\delta \in I} X_{\delta}^{\dagger A B}$.

Remark 2.6. If $A=B=I$, we have Corollary 1.26 from [11].
Remark 2.7. If two matrices A and B are defined by (2) and (3), then we obtain Corollary 2.1 from [5].
Below, we determine the generalized multiplier space for some sequence spaces. For this purpose, we recall the following theorem from [11]. Let X and Y be two sequence spaces and $A=\left(a_{n, k}\right)$ be an infinite matrix of real numbers $a_{n, k}$, where $n, k \in \mathbb{N}=\{1,2, \cdots\}$. We say that A defines a matrix mapping from X into Y, and we denote it by $A: X \rightarrow Y$, if for every sequence $x \in X$ the sequence $A x=\left\{(A x)_{n}\right\}_{n=1}^{\infty}$ exists and is in Y, where $(A x)_{n}=\sum_{k=1}^{\infty} a_{n, k} x_{k}$ for $n=1,2, \cdots$. By (X, Y), we denote the class of all infinite matrices A such that $A: X \rightarrow Y$. We consider the conditions

$$
\begin{align*}
& \sup _{n}\left(\sum_{k=1}^{\infty}\left|a_{n, k}\right|\right)<\infty, \tag{4}\\
& \lim _{n \rightarrow \infty} a_{n, k}=0 \quad(k=1,2, \cdots), \tag{5}\\
& \lim _{n \rightarrow \infty} a_{n, k}=l_{k} \text { for some } l_{i} \in \mathbb{R}(i=1,2, \cdots), \tag{6}\\
& \lim _{n \rightarrow \infty}\left(\sum_{k=1}^{\infty} a_{n, k}\right)=l \text { for some } l \in \mathbb{R} . \tag{7}
\end{align*}
$$

With the notation of (1), the spaces $l_{\infty}(A), c(A)$ and $c_{0}(A)$ contain all of the sequences $x=\left(x_{n}\right)$ that $A x=\left\{(A x)_{n}\right\}$ are the bounded, convergent and null sequences, respectively.

Theorem 2.8. ([11], Theorem 1.36) We have
(i) $A \in\left(l_{\infty}, l_{\infty}\right)$ if and only if the condition (4) holds, in this case $l_{\infty} \subset l_{\infty}(A)$;
(ii) $A \in\left(c_{0}, c_{0}\right)$ if and only if the conditions (4) and (5) hold, in this case $c_{0} \subset c_{0}(A)$;
(iii) $A \in(c, c)$ if and only if the conditions (4), (6) and (7) hold, in this case $c \subset c(A)$;
(iv) $A \in\left(c_{0}, c\right)$ if and only if the conditions (4) and (6) hold, in this case $c_{0} \subset c(A)$.

Theorem 2.9. Let A be an invertible matrix. We have the following statements.
(i) $M_{A, B}\left(c_{0}, X\right)=l_{\infty}(B)$, where $X \in\left\{l_{\infty}, c, c_{0}\right\}$ and A satisfies the conditions (4) and (5);
(ii) $M_{A, B}\left(l_{\infty}, X\right)=c_{0}(B)$, where $X \in\left\{c, c_{0}\right\}$ and A satisfies the condition (4);
(iii) If in addition $\sum_{k=1}^{\infty} a_{n, k}=R$ for all n, then $M_{A, B}(c, c)=c(B)$ and A satisfies the conditions (4), (6) and (7).

Proof. (i) Since $c_{0} \subset c \subset l_{\infty}$, by applying Lemma 2.2(ii), we have

$$
M_{A, B}\left(c_{0}, c_{0}\right) \subset M_{A, B}\left(c_{0}, c\right) \subset M_{A, B}\left(c_{0}, l_{\infty}\right)
$$

So it is sufficient to verify $l_{\infty}(B) \subset M_{A, B}\left(c_{0}, c_{0}\right)$ and $M_{A, B}\left(c_{0}, l_{\infty}\right) \subset l_{\infty}(B)$. Suppose that $z \in l_{\infty}(B)$ and $x \in c_{0}$. Due to Theorem 2.8(ii) we have $x \in c_{0}(A)$, so

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{\infty} b_{n, k} z_{k} \sum_{k=1}^{\infty} a_{n, k} x_{k}\right)=0 \tag{8}
\end{equation*}
$$

this means that $z \in M_{A, B}\left(c_{0}, c_{0}\right)$. Thus $l_{\infty}(B) \subset M_{A, B}\left(c_{0}, c_{0}\right)$.

Now we assume $z \notin l_{\infty}(B)$. Then there is a subsequence $\left(\sum_{k=1}^{\infty} b_{n_{j}, k} z_{k}\right)_{j=1}^{\infty}$ of the sequence $\left(\sum_{k=1}^{\infty} b_{n, k} z_{k}\right)_{k=1}^{\infty}$ such that $\left|\sum_{k=1}^{\infty} b_{n_{j}, k} z_{k}\right|>j^{2}$ for $j=1,2, \cdots$. Since A is an invertible matrix, there exists a sequence $x=\left(x_{k}\right)$ such that

$$
\sum_{k=1}^{\infty} a_{n_{j}, k} x_{k}=\frac{(-1)^{j} j}{\sum_{k=1}^{\infty} b_{n_{j}, k} z_{k}}
$$

for all j. Hence

$$
\left(\sum_{k=1}^{\infty} b_{n, k} z_{k} \sum_{k=1}^{\infty} a_{n, k} x_{k}\right)_{n=1}^{\infty} \notin l_{\infty}
$$

this shows that $M_{A, B}\left(c_{0}, l_{\infty}\right) \subset l_{\infty}(B)$.
(ii) We have

$$
M_{A, B}\left(l_{\infty}, c_{0}\right) \subset M_{A, B}\left(l_{\infty}, c\right)
$$

by applying Lemma 2.2(ii). It is sufficient to prove $c_{0}(B) \subset M_{A, B}\left(l_{\infty}, c_{0}\right)$ and $M_{A, B}\left(l_{\infty}, c\right) \subset c_{0}(B)$. Suppose that $z \in c_{0}(B)$. By Theorem 2.8, we have $\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{\infty} b_{n, k} z_{k} \sum_{k=1}^{\infty} a_{n, k} x_{k}\right)=0$ for all $x \in l_{\infty}$, that is $z \in M_{A, B}\left(l_{\infty}, c_{0}\right)$. Thus $c_{0}(B) \subset M_{A, B}\left(l_{\infty}, c_{0}\right)$.

Now we assume $z \notin c_{0}(B)$. Then there is a real number as $b>0$ and a subsequence $\left(\sum_{k=1}^{\infty} b_{n_{j}, k} z_{k}\right)_{j=1}^{\infty}$ of the sequence $\left(\sum_{k=1}^{\infty} b_{n, k} z_{k}\right)_{n=1}^{\infty}$ such that $\left|\sum_{k=1}^{\infty} b_{n j, k} z_{k}\right|>b$ for all for $j=1,2, \cdots$. We define the sequence x as in part (ii). We have $x \in l_{\infty}$ and

$$
\left(\sum_{k=1}^{\infty} b_{n, k} z_{k} \sum_{k=1}^{\infty} a_{n, k} x_{k}\right)_{n=1}^{\infty} \notin c
$$

which implies $z \notin M_{A, B}\left(l_{\infty}, c\right)$. This shows that $M_{A, B}\left(l_{\infty}, c\right) \subset c_{0}(B)$.
(iii) Suppose that $z \in c(B)$. By applying Theorem 2.8(iii), we deduce that $\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{\infty} b_{n, k} z_{k} \sum_{k=1}^{\infty} a_{n, k} x_{k}\right)$ exists for all $x \in c$. So $z \in M_{A, B}(c, c)$ and $c(B) \subset M_{A, B}(c, c)$.

Conversely we assume $z \notin c(B)$. We define the sequence x by $x=\left(\frac{1}{R}, \frac{1}{R}, \cdots\right)$. It is obvious that $x \in c$ and $\left(\sum_{k=1}^{\infty} b_{n, k} z_{k} \sum_{k=1}^{\infty} a_{n, k} x_{k}\right)_{k=1}^{\infty}=\left(\sum_{k=1}^{\infty} b_{n, k} z_{k}\right)_{k=1}^{\infty} \notin c$. So $z \notin M_{A, B}(c, c)$, this shows $M_{A, B}(c, c) \subset c(B)$.

Remark 2.10. If $A=B=I$, we have Example 1.28 from [11].
Remark 2.11. If two matrices A and B are defined by (2) and (3), then we obtain Theorem 2.2 from [5].
Corollary 2.12. Suppose that $\sup _{n} \sum_{k=1}^{\infty}\left|a_{n, k}\right|<\infty$, we have $c_{0}^{N A B}=l_{\infty}(B)$ and $l_{\infty}^{N A B}=c_{0}(B)$.
Proof. The desired result follows from Theorem 2.9.
Theorem 2.13. If matrix A satisfies the conditions in Theorem 2.9, then we have the following statements.
(i) $M_{A, B}\left(c_{0}(A), X\right)=l_{\infty}(B)$, where $X \in\left\{l_{\infty}, c, c_{0}\right\}$. In particular $\left(c_{0}(A)\right)^{N A B}=l_{\infty}(B)$.
(ii) $M_{A, B}\left(l_{\infty}(A), X\right)=c_{0}(B)$, where $X \in\left\{c, c_{0}\right\}$. In particular $\left(l_{\infty}(A)\right)^{N A B}=c_{0}(B)$.
(iii) If in addition $\sum_{k=1}^{\infty} a_{n, k}=R$ for all n, then $M_{A, B}(c(A), c)=c(B)$.

Proof. We only prove the part (i), the other parts are proved similarly. Since $c_{0} \subset c_{0}(A)$, according to Corollary 2.5(ii) and Theorem 2.9 we obtain

$$
M_{A, B}\left(c_{0}(A), X\right) \subset M_{A, B}\left(c_{0}, X\right)=l_{\infty}(B)
$$

The inclusion $l_{\infty}(B) \subset M_{A, B}\left(c_{0}(A), X\right)$ is gained by the relation (8).
In the following, we obtain the $\alpha A B-, \beta A B$ - and $\gamma A B$-duals for the sequence spaces l_{∞}, c and c_{0}.

Theorem 2.14. Suppose that A is an invertible matrix that satisfies the condition (4), and + denote either of the symbols α, β or γ. We have

$$
c_{0}^{\dagger A B}=c^{\dagger A B}=l_{\infty}^{\dagger A B}=l_{1}(B) .
$$

In particular for $B=I$,

$$
c_{0}^{\dagger A I}=c^{\dagger A I}=l_{\infty}^{\dagger A I}=l_{1} .
$$

Proof. We only prove the statement for the case $\dagger=\beta$, the other cases prove similarly. Obviously $l_{\infty}^{\beta A B} \subset$ $c^{\beta A B} \subset c_{0}^{\beta A B}$ by Corollary 2.5(ii). So it is sufficient to show that $l_{1}(B) \subset l_{\infty}^{\beta A B}$ and $c_{0}^{\beta A B} \subset l_{1}(B)$.

Now, let $z \in l_{1}(B)$ and $x \in l_{\infty}$ be given. Due to Theorem 2.8(i), we deduce that $x \in l_{\infty}(A)$. Hence

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|\sum_{k=1}^{\infty} b_{n, k} z_{k} \sum_{k=1}^{\infty} a_{n, k} x_{k}\right| \leq \sup _{n}\left|\sum_{k=1}^{\infty} a_{n, k} x_{k}\right| \sum_{n=1}^{\infty}\left|\sum_{k=1}^{\infty} b_{n, k} z_{k}\right|<\infty, \tag{9}
\end{equation*}
$$

which shows $\left(\sum_{k=1}^{\infty} b_{n, k} z_{k} \sum_{k=1}^{\infty} a_{n, k} x_{k}\right)_{n=1}^{\infty} \in c s$. Thus $z \in l_{\infty}^{\beta A B}$ and $l_{1}(B) \subset l_{\infty}^{\beta A B}$. On the other hand, for a given $z \notin l_{1}(B)$ we prove the existence of a sequence $x \in c_{0}$ with $\left(\sum_{k=1}^{\infty} b_{n, k} z_{k} \sum_{k=1}^{\infty} a_{n, k} x_{k}\right)_{n=1}^{\infty} \notin c s$, which implies $z \notin c_{0}^{\beta A B}$; thus altogether $c_{0}^{\beta A B} \subset l_{1}(B)$. Because $z \notin l_{1}(B)$, we may choose an index subsequence (n_{j}) in \mathbf{N} with $n_{0}=0$ and

$$
\sum_{n=n_{j-1}}^{n_{j}-1}\left|\sum_{k=1}^{\infty} b_{n, k} z_{k}\right|>j \quad(j=1,2, \cdots)
$$

Since A is an invertible matrix, there exists a sequence $x=\left(x_{k}\right)$ such that

$$
\sum_{k=1}^{\infty} a_{n_{j}, k} x_{k}=\frac{1}{j} s g n \sum_{k=1}^{\infty} b_{n_{j}, k} z_{k},
$$

for all j. Hence $x \in c_{0}$ and

$$
\sum_{n=n_{j-1}}^{n_{j}-1}\left(\sum_{k=1}^{\infty} b_{n, k} z_{k} \sum_{k=1}^{\infty} a_{n, k} x_{k}\right)=\frac{1}{j} \sum_{n=n_{j-1}}^{n_{j}-1}\left|\sum_{k=1}^{\infty} b_{n, k} z_{k}\right|>1
$$

for $j=1,2, \cdots$. Therefore $\left(\sum_{k=1}^{\infty} a_{n, k} x_{k} \sum_{k=1}^{\infty} b_{n, k} z_{k}\right)_{k=1}^{\infty} \notin c s$, and $z \notin c_{0}^{\beta A B}$. This completes the proof.
Remark 2.15. If $A=B=I$ and + denote either of the symbols α, β or γ. we have

$$
c_{0}^{\dagger}=c^{\dagger}=l_{\infty}^{\dagger}=l_{1},
$$

hence Theorem 1.29 from [11] is resulted.
Remark 2.16. If two matrices A and B are defined by (2) and (3), then we obtain Theorem 2.3 from [5].
In the next theorem, we examine the $\alpha A B-, \beta A B$ - and $\gamma A B$-duals for the sequence spaces $l_{\infty}(A), c(A)$ and $c_{0}(A)$.
Theorem 2.17. Let A be a matrix which satisfies the conditions in Theorem 2.8. If + denote either of the symbols α, β or γ, then

$$
\left(c_{0}(A)\right)^{\dagger A B}=(c(A))^{\dagger A B}=\left(l_{\infty}(A)\right)^{\dagger A B}=l_{1}(B) .
$$

Proof. We only prove the statement for the case $\dagger=\beta$, the other case prove similarly. Obviously

$$
\left(l_{\infty}(A)\right)^{\beta A B} \subset(c(A))^{\beta A B} \subset\left(c_{0}(A)\right)^{\beta A B}
$$

by Corollary $2.5(i i)$. So it is sufficient to verify $\left(c_{0}(A)\right)^{\beta A B} \subset l_{1}(B)$ and $l_{1}(B) \subset\left(l_{\infty}(A)\right)^{\beta A B}$. By applying Corollary 2.5(ii) and Theorem 2.14, we deduce that $\left(c_{0}(A)\right)^{\beta A B} \subset c_{0}^{\beta A B}=l_{1}(B)$. The other inclusion will gain by the relation (9).

Theorem 2.18. Suppose that A is an invertible matrix. If $1<p<\infty$ and $q=p /(p-1)$, then $\left(l_{p}(A)\right)^{\beta A B}=l_{q}(B)$. Moreover for $p=1$, we have $\left(l_{1}(A)\right)^{\beta A B}=l_{\infty}(B)$.

Proof. We only prove the statement for the case $1<p<\infty$, the case $p=1$ will prove similarly. Let $z \in l_{q}(B)$ be given. By Hölder's inequality, we have

$$
\begin{equation*}
\left|\sum_{k=1}^{\infty}\left(\sum_{j=1}^{\infty} b_{k, j} z_{j}\right)\left(\sum_{j=1}^{\infty} a_{k, j} x_{j}\right)\right| \leq\left(\sum_{k=1}^{\infty}\left|\sum_{j=1}^{\infty} b_{k, j} z_{j}\right|^{q}\right)^{1 / q}\left(\sum_{k=1}^{\infty}\left|\sum_{j=1}^{\infty} a_{k, j} x_{j}\right|^{p}\right)^{1 / p}<\infty \tag{10}
\end{equation*}
$$

for all $x \in l_{p}(A)$. This shows $z \in\left(l_{p}(A)\right)^{\beta A B}$ and hence $l_{q}(B) \subset\left(l_{p}(A)\right)^{\beta A B}$.
Now, let $z \in\left(l_{p}(A)\right)^{\beta A B}$ be given. We consider the linear functional $f_{n}: l_{p}(A) \rightarrow \mathbb{R}$ defined by

$$
f_{n}(x)=\sum_{k=1}^{n}\left(\sum_{j=1}^{n} b_{k, j} z_{j}\right)\left(\sum_{j=1}^{n} a_{k, j} x_{j}\right) \quad\left(x \in l_{p}(A)\right)
$$

for $n=1,2, \cdots$. Similar to (10), we obtain

$$
\left|f_{n}(x)\right| \leq\left(\sum_{k=1}^{n}\left|\sum_{j=1}^{n} b_{k, j} z_{j}\right|^{q}\right)^{1 / q}\left(\sum_{k=1}^{n}\left|\sum_{j=1}^{n} a_{k, j} x_{j}\right|^{p}\right)^{1 / p}
$$

for every $x \in l_{p}(A)$. So the linear functional f_{n} is bounded and

$$
\left\|f_{n}\right\| \leq\left(\sum_{k=1}^{n}\left|\sum_{j=1}^{n} b_{k, j} z_{j}\right|^{q}\right)^{1 / q}
$$

for all n. We now prove reverse of the above inequality. Since A is invertible, we define the sequence $x=\left(x_{k}\right)$ such that

$$
\sum_{j=1}^{n} a_{k, j} x_{j}=\left(\operatorname{sgn} \sum_{j=1}^{n} b_{k, j} z_{j}\right)\left|\sum_{j=1}^{n} b_{k, j} z_{j}\right|^{q-1}
$$

for $1 \leq k \leq n$, and put the remaining elements zero. Obviously $x \in l_{p}(A)$, so

$$
\left\|f_{n}\right\| \geq \frac{\left|f_{n}(x)\right|}{\|x\|_{p}}=\frac{\sum_{k=1}^{n}\left|\sum_{j=1}^{n} b_{k, j} z_{j}\right|^{q}}{\left(\sum_{k=1}^{n}\left|\sum_{j=1}^{n} b_{k, j} z_{j}\right|^{q}\right)^{1 / p}}=\left(\sum_{k=1}^{n}\left|\sum_{j=1}^{n} b_{k, j} z_{j}\right|^{q}\right)^{1 / q},
$$

for $n=1,2, \cdots$. Since $z \in l_{p}(A)^{\beta A B}$, the map $f_{z}: l_{p}(A) \rightarrow \mathbb{R}$ defined by

$$
f_{z}(x)=\sum_{k=1}^{\infty}\left(\sum_{j=1}^{\infty} b_{k, j} z_{j}\right) x_{k} \quad\left(x \in l_{p}(A)\right)
$$

is well-defined and linear, and also the sequence $\left(f_{n}\right)$ is pointwise convergent to f_{z}. By using the BanachSteinhaus theorem, it can be shown that $\left\|f_{z}\right\| \leq \sup _{n}\left\|f_{n}\right\|<\infty$, so $\left(\sum_{k=1}^{\infty}\left|\sum_{j=1}^{\infty} b_{k, j} z_{j}\right|^{q}\right)^{1 / q}<\infty$ and $z \in l_{q}(B)$. This establishes the proof of theorem.

Remark 2.19. If $A=B=I$ and $1<p<\infty$ and $q=p /(p-1)$. Then we have $l_{p}^{\beta}=l_{q}$. Moreover for $p=1, l_{1}^{\beta}=l_{\infty}$.
Definition 2.20. A subset X of ω is said to be A-normal if $y \in X$ and $\left|\sum_{k=1}^{\infty} a_{n, k} x_{k}\right| \leq\left|\sum_{k=1}^{\infty} a_{n, k} y_{k}\right|$ for $n=1,2, \cdots$, together imply $x \in X$. In the special case that $A=I$, the set X is called normal.

Example 2.21. The sequence spaces c_{0} and l_{∞} are normal, but they are not A-normal. Since if $x=(1,-1,2,-2, \cdots)$, $y=\left(1, \frac{1}{2}, \cdots\right)$ and the matrix $A=\left(a_{n, k}\right)$ is defined by

$$
a_{n, k}=\left\{\begin{array}{cc}
1 & \text { if } k \in\{2 n-1,2 n\} \\
0 & \text { otherwise }
\end{array}\right.
$$

We have $\left|\sum_{k=1}^{\infty} a_{n, k} x_{k}\right| \leq\left|\sum_{k=1}^{\infty} a_{n, k} y_{k}\right|$ and $y \in c_{0}, l_{\infty}$, while $x \notin c_{0}, l_{\infty}$.
Example 2.22. The sequence spaces $c_{0}(A)$ and $l_{\infty}(A)$ are A-normal, but they are not normal. Because, if $x=$ $(1,1,2,2, \cdots)$ and $y=(1,-1,2,-2, \cdots)$ and A is the matrix as in Example 2.21, then it is obvious that $\left|x_{i}\right| \leq\left|y_{i}\right|$, $y \in c_{0}(A)$ and $y \in l_{\infty}(A)$, while $x \notin c_{0}(A)$ and $x \notin l_{\infty}(A)$.

Example 2.23. The sequence spaces c and $c(A)$ are neither A-normal nor normal.
Theorem 2.24. Suppose that A is an invertible matrix and X is a A-normal subset of ω. We have

$$
X^{\alpha A B}=X^{\beta A B}=X^{\gamma A B}
$$

Proof. Obviously $X^{\alpha A B} \subset X^{\beta A B} \subset X^{\gamma A B}$, by Corollary $2.5(i)$. To prove the statement, it is sufficient to verify $X^{\gamma A B} \subset X^{\alpha A B}$. Let $z \in X^{\gamma A B}$ and $x \in X$ be given. Since A is invertible, we define the sequence y such that

$$
\sum_{k=1}^{\infty} a_{n, k} y_{k}=\left(\operatorname{sgn} \sum_{k=1}^{\infty} b_{n, k} z_{k}\right)\left|\sum_{k=1}^{\infty} a_{n, k} x_{k}\right|
$$

for $n=1,2, \cdots$. It is clear $\left|\sum_{k=1}^{\infty} a_{n, k} y_{k}\right| \leq\left|\sum_{k=1}^{\infty} a_{n, k} x_{k}\right|$, for all n. Consequently $y \in X$, since X is A-normal. So

$$
\sup _{n}\left|\sum_{k=1}^{n}\left(\sum_{k=1}^{\infty} b_{n, k} z_{k} \sum_{k=1}^{\infty} a_{n, k} y_{k}\right)\right|<\infty .
$$

Furthermore, by the definition of the sequence $y, \sum_{n=1}^{\infty}\left|\sum_{k=1}^{\infty} b_{n, k} z_{k} \sum_{k=1}^{\infty} a_{n, k} x_{k}\right|<\infty$. Since $x \in X$ was arbitrary, $z \in X^{\alpha A B}$. This finishes the proof of the theorem.

Remark 2.25. If $A=B=I$ and X be a normal subset of ω, we have

$$
X^{\alpha}=X^{\beta}=X^{\gamma}
$$

hence Remark 1.27 from [11] is gained.
Remark 2.26. If two matrices A and B are defined by (2) and (3), then we obtain Theorem 2.4 from [5].

3. The Difference Sequence Space $X(A, \Delta)$

Suppose that $A=\left(a_{n, k}\right)$ is an infinite matrix with real entries. For every sequence space X, we define the generalized difference sequence space $X(A, \Delta)$ as follows:

$$
X(A, \Delta)=\left\{x=\left(x_{k}\right):\left(\sum_{k=1}^{\infty}\left(a_{n, k}-a_{n-1, k}\right) x_{k}\right)_{n=1}^{\infty} \in X\right\}
$$

where $X \in\left\{l_{\infty}, c, c_{0}\right\}$. The seminorm $\|\cdot\|_{A, \Delta}$ on $X(A, \Delta)$ is defined by

$$
\begin{equation*}
\|x\|_{A, \Delta}=\sup _{n}\left|\sum_{k=1}^{\infty}\left(a_{n, k}-a_{n-1, k}\right) x_{k}\right| . \tag{11}
\end{equation*}
$$

It should be noted that the function $\left\|\|_{A, \Delta}\right.$ cannot be the norm. Since if $x=(1,-1,0,0, \cdots)$ and $A=\left(a_{n, k}\right)$ is defined by,

$$
a_{n, k}=\left\{\begin{array}{cc}
1 & \text { if } k \in\{2 n-1,2 n\} \\
0 & \text { otherwise }
\end{array}\right.
$$

then $\|x\|_{A, \Delta}=0$ while $x \neq 0$. It is also significant that in the special case $A=I$, we have $X(A, \Delta)=X(\Delta)$ and $\|x\|_{A, \Delta}=\|x\|_{\Delta}$.

If the infinite matrix $\Delta=\left(\delta_{n, k}\right)$ is defined by

$$
\delta_{n, k}=\left\{\begin{array}{cc}
1 & \text { if } k=n \\
-1 \quad \text { if } k=n-1 \\
0 & \text { otherwise }
\end{array}\right.
$$

with the notation of (1), we can redefine the spaces $l_{\infty}(A, \Delta), c(A, \Delta)$ and $c_{0}(A, \Delta)$ as follows:

$$
l_{\infty}(A, \Delta)=\left(l_{\infty}\right)_{\Delta A}, \quad c(A, \Delta)=(c)_{\Delta A}, \quad c_{0}(A, \Delta)=\left(c_{0}\right)_{\Delta A}
$$

The purpose of this section is to consider some properties of the sequence spaces $X(A, \Delta)$ and is to derive some inclusion relations related to them. We also characterize $N A B$-duals and $\beta A B$-duals of $X(A, \Delta)$ where $X \in\left\{l_{\infty}, c, c_{0}\right\}$.

Now, we may begin with the following theorem which is essential in the study.
Theorem 3.1. The sequence spaces $X(A, \Delta)$ for $X \in\left\{l_{\infty}, c, c_{0}\right\}$ are complete semi-normed linear spaces with respect to the semi-norm defined by (11).

Proof. This is a routine verification and so we omit the details.
It can easily be checked that the absolute property does not hold on the space $X(A, \Delta)$, that is $\|x\|_{A, \Delta} \neq\|\mid x\|_{A, \Delta}$ for at least one sequence in this space which says that $X(A, \Delta)$ is the sequence space of non-absolute type, where $|x|=\left(\left|x_{k}\right|\right)$.

Theorem 3.2. Let $A=\left(a_{n, k}\right)$ be an invertible matrix. The space $X(A, \Delta)$ is linearly isomorphic to the space $X(\Delta)$, for $X \in\left\{l_{\infty}, c, c_{0}\right\}$.

Proof. Consider the map

$$
\begin{aligned}
& T: X(A, \Delta) \longrightarrow X(\Delta) \\
& x \longrightarrow\left(\sum_{k=1}^{\infty} a_{n, k} x_{k}\right)_{n=1}^{\infty},
\end{aligned}
$$

obviously the map T is linear, surjective and injective.
In the following, we derive some inclusion relations concerning with the spaces $X, X(A), X(\Delta)$ and $X(A, \Delta)$ where $X \in\left\{l_{\infty}, c, c_{0}\right\}$.

Theorem 3.3. We have the following inclusions.
(i) If the condition (4) holds, then $l_{\infty} \subset l_{\infty}(A, \Delta)$.
(ii) If the conditions (4) and (5) hold, then $c_{0} \subset c_{0}(A, \Delta)$.
(iii) If the conditions (4), (6) and (7) hold, then $c \subset c(A, \Delta)$.
(iv) We have $X(A) \subset X(A, \Delta)$ where $X \in\left\{l_{\infty}, c, c_{0}\right\}$.

Proof. The parts (i), (ii) and (iii) obtain by applying Theorem 2.8.
(iv) Put $A=I$ in parts (i), (ii) and (iii), it can conclude that $X \subset X(\Delta)$. Let $x \in X(A)$ be given. We deduce that $\left(\sum_{k=1}^{\infty} a_{n, k} x_{k}\right)_{n=1}^{\infty} \in X$ so $\left(\sum_{k=1}^{\infty} a_{n, k} x_{k}\right)_{n=1}^{\infty} \in X(\Delta)$. Hence $x \in X(A, \Delta)$ and $X(A) \subset X(A, \Delta)$.

Below, we compute $N A B$-dual of the difference sequence spaces $X(A, \Delta)$ where $X \in\left\{l_{\infty}, c, c_{0}\right\}$. In order to do this, we first give a preliminary lemma.

Lemma 3.4. (i) If $x \in l_{\infty}$ (Δ) then $\sup _{k}\left|\frac{x_{k}}{k}\right|<\infty$.
(ii) If $x \in c(\Delta)$ then $\frac{x_{k}}{k} \rightarrow \xi(k \rightarrow \infty)$ where $\Delta x_{k} \rightarrow \xi(k \rightarrow \infty)$.
(iii) If $x \in c_{0}(\Delta)$ then $\frac{x_{k}}{k} \rightarrow 0(k \rightarrow \infty)$.

Proof. The proof is trivial and so is omitted.
Theorem 3.5. Define the set d_{1} as follows:

$$
d_{1}=\left\{z=\left(z_{k}\right):\left(n \sum_{k=1}^{\infty} b_{n, k} z_{k}\right)_{n=1}^{\infty} \in c_{0}\right\}
$$

then

$$
c^{N A B}(A, \Delta)=l_{\infty}^{N A B}(A, \Delta)=d_{1}
$$

Proof. We first show that $c^{N A B}(A, \Delta)=d_{1}$. Suppose that $z \in c^{N A B}(A, \Delta)$, we have

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} b_{n, k} z_{k} \sum_{k=1}^{\infty} a_{n, k} x_{k}=0,
$$

for all $x \in c(A, \Delta)$. Since A is invertible, we can choose the sequence x such that $\sum_{k=1}^{\infty} a_{n, k} x_{k}=n$ for all n, so $x \in c(A, \Delta)$ and hence $\lim _{n \rightarrow \infty} n \sum_{k=1}^{\infty} b_{n, k} z_{k}=0$. Thus $c^{N A B}(A, \Delta) \subset d_{1}$. Now let $z \in d_{1}$. Since $\left(\sum_{k=1}^{\infty} a_{n, k} x_{k}\right)_{n=1}^{\infty} \in$ $c(\Delta)$ for every $x \in c(A, \Delta)$, by previous lemma $\lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{\infty} a_{n, k} x_{k}}{n}=\xi$, where $\xi=\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty}\left(a_{n, k}-a_{n-1, k}\right) x_{k}$. Hence

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} b_{n, k} z_{k} \sum_{k=1}^{\infty} a_{n, k} x_{k}=\lim _{n \rightarrow \infty} n \sum_{k=1}^{\infty} b_{n, k} z_{k} \frac{\sum_{k=1}^{\infty} a_{n, k} x_{k}}{n}=0
$$

therefore $z \in c^{N A B}(A, \Delta)$ and $d_{1} \subset c^{N A B}(A, \Delta)$.
Below, we prove that $l_{\infty}^{N A B}(A, \Delta)=d_{1}$. It is clear that $c(A, \Delta) \subset l_{\infty}(A, \Delta)$, so $l_{\infty}^{N A B}(A, \Delta) \subset c^{N A B}(A, \Delta)=d_{1}$. Now let $z \in d_{1}$ and $x \in l_{\infty}(A, \Delta)$. We have $\left(\sum_{k=1}^{\infty} a_{n, k} x_{k}\right)_{n=1}^{\infty} \in l_{\infty}(\Delta)$ and $\sup _{n}\left|\frac{\sum_{k=1}^{\infty} a_{n, k} x_{k}}{n}\right|<\infty$ by Lemma 3.4. So

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} b_{n, k} z_{k} \sum_{k=1}^{\infty} a_{n, k} x_{k}=\lim _{n \rightarrow \infty} n \sum_{k=1}^{\infty} b_{n, k} z_{k} \frac{\sum_{k=1}^{\infty} a_{n, k} x_{k}}{n}=0
$$

This implies that $z \in l_{\infty}^{N A B}(A, \Delta)$.
Remark 3.6. If $A=B=I$, we have $c^{N}(\Delta)=l_{\infty}^{N}(\Delta)=\left\{z=\left(z_{k}\right):\left(k a_{k}\right) \in c_{0}\right\},[8]$.
Remark 3.7. If two matrices A and B are defined by (2) and (3), then we obtain Theorem 3.4 from [5].
Theorem 3.8. Let $A=\left(a_{n, k}\right)$ be an invertible matrix. We define the set d_{2} as follows:

$$
d_{2}=\left\{z=\left(z_{k}\right):\left(n \sum_{k=1}^{\infty} b_{n, k} z_{k}\right)_{n=1}^{\infty} \in l_{\infty}\right\}
$$

then $c_{0}^{N A B}(A, \Delta)=d_{2}$.

Proof. Suppose that $z \in d_{2}$. Since $\left(\sum_{k=1}^{\infty} a_{n, k} x_{k}\right)_{n=1}^{\infty} \in c_{0}(\Delta)$ for all $x \in c_{0}(A, \Delta)$, we have $\lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{\infty} a_{n k} x_{k}}{n}=0$, by Lemma 3.4. So

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} b_{n, k} z_{k} \sum_{k=1}^{\infty} a_{n, k} x_{k}=\lim _{n \rightarrow \infty} n \sum_{k=1}^{\infty} b_{n, k} z_{k} \frac{\sum_{k=1}^{\infty} a_{n, k} x_{k}}{n}=0
$$

this implies that $z \in c_{0}^{N A B}(A, \Delta)$.
Now let $z \in c_{0}^{N A B}(A, \Delta)$ and $x \in c_{0}(A, \Delta)$ be given. By Theorem 3.2, there exists one and only one $y=\left(y_{k}\right) \in c_{0}$ such that $\sum_{k=1}^{\infty} a_{n, k} x_{k}=\sum_{j=1}^{n} y_{j}$. So

$$
\lim _{n \rightarrow \infty} \sum_{j=1}^{n} \sum_{k=1}^{\infty} b_{n, k} z_{k} y_{j}=\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} b_{n, k} z_{k} \sum_{k=1}^{\infty} a_{n, k} x_{k}=0
$$

for all $y=\left(y_{k}\right) \in c_{0}$. If we define the matrix $D=\left(d_{n j}\right)_{n=1}^{\infty}$ by

$$
d_{n j}=\left\{\begin{array}{cc}
\sum_{k=1}^{\infty} b_{n, k} z_{k} & \text { for } 1 \leq j \leq n \\
0 & \text { for } j>n
\end{array}\right.
$$

then $\lim _{n \rightarrow \infty} \sum_{j=1}^{\infty} d_{n j} y_{j}=0$ for all $y \in c_{0}$. So $D=\left(d_{k j}\right) \in\left(c_{0}, c_{0}\right)$ and

$$
\sup _{n}\left|n \sum_{k=1}^{\infty} b_{n, k} z_{k}\right|=\sup _{n}\left|\sum_{j=1}^{n} \sum_{k=1}^{\infty} b_{n, k} z_{k}\right|=\sup _{n}\left|\sum_{j=1}^{\infty} d_{n j}\right|<\infty,
$$

by Theorem 2.8(ii). This completes the proof of the theorem.
Remark 3.9. If $A=B=I$, we have $c_{0}^{N}(\Delta)=\left\{z=\left(z_{k}\right):\left(k a_{k}\right) \in l_{\infty}\right\}$, hence Lemma 2 from [8] is resulted.
Remark 3.10. If two matrices A and B are defined by (2) and (3), then we obtain Theorem 3.6 from [5].
In order to investigate the $\beta A B$-dual of the difference sequence space $c_{0}^{N}(\Delta)$, we need the following lemma.
Lemma 3.11. ([8], Lemma 1) Let $\left(z_{k}\right) \in l_{1}$ and if $\lim _{k \rightarrow \infty}\left|z_{k} x_{k}\right|=L$ exists for an $x \in c_{0}(\Delta)$, then $L=0$.
For the next result, we introduce the sequence $\left(R_{k}\right)$ given by

$$
R_{k}=\sum_{t=k}^{\infty} \sum_{j=1}^{\infty} b_{t, j} z_{j}
$$

Theorem 3.12. Let $A=\left(a_{n, k}\right)$ be an invertible matrix. If

$$
d_{3}=\left\{z=\left(z_{k}\right) \in l_{1}(B):\left(R_{k}\right) \in l_{1} \cap c_{0}^{N}(\Delta)\right\}
$$

then we have $c_{0}^{\beta A B}(A, \Delta)=d_{3}$
Proof. Suppose that $z \in d_{3}$ and $x \in c_{0}(A, \Delta)$, by using Abel's summation formula we have

$$
\begin{align*}
& \sum_{n=1}^{m}\left(\sum_{k=1}^{\infty} b_{n, k} z_{k} \sum_{k=1}^{\infty} a_{n, k} x_{k}\right) \\
= & \sum_{n=1}^{m}\left(\sum_{t=1}^{n} \sum_{j=1}^{\infty} b_{t, j} z_{j}\right)\left(\sum_{k=1}^{\infty} a_{n, k} x_{k}-\sum_{k=1}^{\infty} a_{n+1, k} x_{k}\right)+\left(\sum_{n=1}^{m} \sum_{k=1}^{\infty} b_{n, k} z_{k}\right) \sum_{k=1}^{\infty} a_{m+1, k} x_{k} \\
= & \sum_{n=1}^{m}\left(R_{1}-R_{n+1}\right)\left(\sum_{k=1}^{\infty} a_{n, k} x_{k}-\sum_{k=1}^{\infty} a_{n+1, k} x_{k}\right)+\left(R_{1}-R_{m+1}\right) \sum_{k=1}^{\infty} a_{m+1, k} x_{k} \\
= & \sum_{n=1}^{m+1} R_{n}\left(\sum_{k=1}^{\infty} a_{n, k} x_{k}-\sum_{k=1}^{\infty} a_{n-1, k} x_{k}\right)-R_{m+1} \sum_{k=1}^{\infty} a_{m+1, k} x_{k} . \tag{12}
\end{align*}
$$

This implies that $\sum_{n=1}^{\infty}\left(\sum_{k=1}^{\infty} b_{n, k} z_{k} \sum_{k=1}^{\infty} a_{n, k} x_{k}\right)$ is convergent, so $z \in c_{0}^{\beta A B}(A, \Delta)$.
Conversely let $z \in c_{0}^{\beta A B}(A, \Delta)$, we show that $z \in d_{3}$. Obviously $z \in l_{1}(B)$. Suppose that $z \notin l_{1}(B)$, we can choose an index sequence $\left(n_{v}\right)$ in \mathbb{N} with

$$
n_{0}=1 \quad \text { and } \quad \sum_{n=n_{v-1}}^{n_{v}-1}\left|\sum_{k=1}^{\infty} b_{n, k} z_{k}\right|>v \quad(v \in \mathbb{N}) .
$$

Since A is an invertible matrix, we may find $x=\left(x_{k}\right) \in c_{0}(A) \subset c_{0}(A, \Delta)$ such that

$$
\sum_{k=1}^{\infty} a_{n, k} x_{k}=\frac{1}{v} \operatorname{sgn} \sum_{k=1}^{\infty} b_{n, k} z_{k} \quad\left(n_{v-1} \leq n<n_{v} \text { and } v \in \mathbb{N}\right)
$$

hence

$$
\sum_{n=n_{v-1}}^{n_{v}-1}\left(\sum_{k=1}^{\infty} b_{n, k} z_{k} \sum_{k=1}^{\infty} a_{n, k} x_{k}\right)=\frac{1}{v} \sum_{n=n_{v-1}}^{n_{v}-1}\left|\sum_{k=1}^{\infty} b_{n, k} z_{k}\right|>1(v \in \mathbb{N})
$$

therefore $\left(\sum_{k=1}^{\infty} b_{n, k} z_{k} \sum_{k=1}^{\infty} a_{n, k} x_{k}\right)_{n=1}^{\infty} \notin c s$ and $z \notin c_{0}^{\beta A B}(A, \Delta)$.
Let $x \in c_{0}(A, \Delta)$. Since A is invertible, by Theorem 3.2 there exist $y=\left(y_{k}\right) \in c_{0}$ such that $\sum_{k=1}^{\infty} a_{n, k} x_{k}=$ $\sum_{j=1}^{n} y_{j}$, then by Abel's summation formula

$$
\begin{aligned}
\sum_{n=1}^{m} R_{n} y_{n} & =\sum_{n=1}^{m}\left(R_{n}-R_{n+1}\right)\left(\sum_{j=1}^{n} y_{j}\right)+\sum_{n=1}^{m} R_{m+1} y_{n} \\
& =\sum_{n=1}^{m}\left(\sum_{j=1}^{n} y_{j}\right)\left(\sum_{j=1}^{\infty} b_{n, j} z_{j}\right)+\sum_{n=1}^{m} R_{m+1} y_{n}
\end{aligned}
$$

So

$$
\begin{equation*}
\sum_{n=1}^{m}\left(\sum_{k=1}^{\infty} b_{n, k} z_{k} \sum_{k=1}^{\infty} a_{n, k} x_{k}\right)=\sum_{n=1}^{m}\left(R_{n}-R_{m+1}\right) y_{n}=\sum_{n=1}^{m}\left(\sum_{i=n}^{m} \sum_{j=1}^{\infty} b_{i, j} z_{j}\right) y_{n} . \tag{13}
\end{equation*}
$$

Now we define the matrix $D=\left(d_{n, k}\right)$ by

$$
d_{n, k}=\left\{\begin{array}{cc}
\sum_{i=k}^{n} \sum_{j=1}^{\infty} b_{i, j} z_{j} & \text { for } 1 \leq k \leq n \\
0 & \text { for } k>n
\end{array}\right.
$$

Since $\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} d_{n, k} y_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} d_{n, k} y_{k}$ exists for all $y \in c_{0}$ by (13), then $D=\left(d_{n, k}\right) \in\left(c_{0}, c\right)$. This implies that

$$
\sup _{n} \sum_{k=1}^{\infty}\left|d_{n, k}\right|=\sup _{n} \sum_{k=1}^{n}\left|\sum_{i=k}^{n} \sum_{j=1}^{\infty} b_{i, j} z_{j}\right|<\infty,
$$

by Theorem 2.8(iv). Thus we conclude $\sum_{k=1}^{\infty}\left|R_{k}\right|<\infty$. Furthermore (12) implies that $\lim _{n \rightarrow \infty} R_{n+1} \sum_{k=1}^{\infty} a_{n+1, k} x_{k}$ exists for each $x \in c_{0}(A, \Delta)$. So by Lemma 3.11 we have $\left(R_{n}\right) \in c_{0}^{N}(\Delta)$, which completes the proof.

Remark 3.13. If $A=B=I$, we have $c_{0}^{\beta}(\Delta)=\left\{z=\left(z_{k}\right) \in l_{1}:\left(R_{k}\right) \in l_{1} \cap c_{0}^{N}(\Delta)\right\}$ where $R_{k}=\sum_{i=k}^{\infty} z_{i}$, hence Lemma 3 from [8] is resulted.

References

[1] B. Altay, F. Başar, The fine spectrum and the matrix domain of the difference operator Δ on the sequence space $l_{p},(0<p<1)$, Commun. Math. Anal. 2:2 (2007) 1-11.
[2] F. Başar, Summability theory and its applications, Bentham Science Publishers, e-books, Monographs, İstanbul, 2012.
[3] F. Başar, B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J. 55:1 (2003) 136-147.
[4] V. K. Bhardwaj, S. Gupta, R. Karan, Köthe-Toeplitz duals and matrix transformations of Cesàro difference Sequence Spaces of second order, J. Math. Anal. 5:2 (2014) 1-11.
[5] S. Erfanmanesh, D. Foroutannia, Generalizations of Köthe-Toeplitz duals and null duals of new difference sequence spaces, J. Contemp. Math. Anal. 3 (2016) 125-133.
[6] S. Erfanmanesh, D. Foroutannia, Some new semi-normed sequence spaces of non-absolute type and matrix transformations, Proceedings of IAM 4:2 (2015) 96-108.
[7] D. Foroutannia, On the block sequence space $l_{p}(E)$ and related matrix transformations, Turkish J. Math. 39 (2015) 830-841.
[8] H. Kizmaz, On certain sequence spaces II, Int. J. Math. Math. Sci. 18:2 (1995) 721-724.
[9] G. Köthe, O. Toeplitz, Lineare Räume mit unendlich vielen Koordinaten und Ringe unendlicher Matrizen, J. Reine Angew. Math. 171 (1934) 193-226.
[10] I. J. Maddox, Generalized Köthe-Toeplitz duals, Int. J. Math. Math. Sci. 3 (1980) 423-432.
[11] E. Malkowsky, V. Rakočević, An introductionm into the theory of sequence spaces and measures of noncompactness, Zb . Rad. (Beogr.) 9:17 (2000) 143-243.

[^0]: 2010 Mathematics Subject Classification. 40A05, 40C05, 46A45.
 Keywords. Semi-normed sequence spaces, difference sequence spaces, Matrix domains, $\alpha-, \beta-\gamma$ - and N-duals.
 Received: 11 January 2017; Accepted: 05 April 2017
 Communicated by Eberhard Malkowsky
 Email addresses: foroutan@vru.ac.ir (D. Foroutannia), h.roopaei@gmail.com (H. Roopaei)

