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Abstract. This paper presents a common fixed point theorem for two compatible self-mappings satisfying
nonlinear contractive type condition defined using a Φ-function. This result extends previous results due to
B. S. Choudhury, K. Das, A new contraction principle in Menger spaces, Acta Mathematica Sinica 24 (2008)
1379–1386, and the result due to D. Miheţ, Altering distances in probabilistic Menger spaces, Nonlinear
Analysis 71 (2009) 2734–2738.

1. Introduction and Preliminaries

The definition of statistical metric spaces was introduced by K. Menger [12], Schweizer and Sklar [15]
and they gave some basic results on these spaces. Following A. N. Šerstnev [20], H. Sherwood gave a
notion of probabilistic metric spaces in [17]. Also, in the same paper Sherwood proved a theorem on a
characterization of a nested, closed sequence of nonempty sets in a complete probabilistic metric space.

In the standard notation, let D+ be the set of all distribution functions F : R → [0, 1], such that F is a
nondecreasing, left-continuous mapping, satisfying F(0) = 0 and supx∈R F(x) = 1. The space D+ is partially
ordered by the usual point-wise ordering of functions, i.e., F ≤ G if and only if F(t) ≤ G(t) for all t ∈ R. The
maximal element for D+ in this order is the distribution function ε0 given by

ε0(t) =

{
0, t ≤ 0,
1, t > 0.

Definition 1.1. [15] A binary operation T : [0, 1]× [0, 1]→ [0, 1] is a continuous t-norm if T satisfies the following
conditions:

(a) T is commutative and associative;
(b) T is continuous;
(c) T(a, 1) = a for all a ∈ [0, 1];
(d) T(a, b) ≤ T(c, d) whenever a ≤ c and b ≤ d, and a, b, c, d ∈ [0, 1].
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Examples of t-norm are TM(a, b) = min{a, b} and Tp(a, b) = ab.
The t-norms are defined recursively by T1 = T and

Tn(x1, . . . , xn+1) = T(Tn−1(x1, . . . , xn), xn+1).

for n ≥ 2 and xi ∈ [0, 1] for all i ∈ {1, . . . ,n + 1}.

Definition 1.2. A Menger probabilistic metric space (briefly, Menger PM-space) is a triple (X,F ,T) where X is
a nonempty set, T is a continuous t-norm, and F is a mapping from X×X into D+ such that, if Fx,y denotes the value
of F at the pair (x, y), the following conditions hold:

(PM1) Fx,y(t) = ε0(t) if and only if x = y;
(PM2) Fx,y(t) = Fy,x(t);
(PM3) Fx,z(t + s) ≥ T(Fx,y(t),Fy,z(s)) for all x, y, z ∈ X and s, t ≥ 0.

Remark 1.3. [16] Every metric space is a PM-space. Let (X, d) be a metric space and TM(a, b) = min{a, b} is a
continuous t-norm. Define Fx,y(t) = ε0(t − d(x, y)) for all x, y ∈ X and t > 0. The triple (X,F ,T) is a PM-space
induced by the metric d.

Definition 1.4. Let (X,F ,T) be a Menger PM-space.
(1) A sequence {xn}n∈N in X is said to be convergent to x in X if, for every ε > 0 and λ > 0 there exists positive

integer N such that Fxn,x(ε) > 1 − λ whenever n ≥ N.
(2) A sequence {xn}n∈N in X is called Cauchy sequence if, for every ε > 0 and λ > 0 there exists positive integer

N such that Fxn,xm (ε) > 1 − λ whenever n,m ≥ N.
(3) A Menger PM-space is said to be complete if every Cauchy sequence in X is convergent to a point in X.

The (ε, λ)-topology ([15]) in a Menger PM-space (X,F ,T) is introduced by the family of neighborhoods
Nx of a point x ∈ X given by

Nx = {Nx(ε, λ) : ε > 0, λ ∈ (0, 1)}

where

Nx(ε, λ) = {y ∈ X : Fx,y(ε) > 1 − λ}.

The (ε, λ)-topology is a Hausdorff topology. In this topology the function f is continuous in x0 ∈ X if and
only if for every sequence xn → x0 we have that f (xn)→ f (x0).

The following lemma was proved by B. Schweizer and A. Sklar.

Lemma 1.5. [15] Let (X,F ,T) be a Menger PM-space. Then the function F is lower semi-continuous for every
fixed t > 0, i.e. for every fixed t > 0 and every two convergent sequences {xn}, {yn} ⊆ X such that xn → x, yn → y it
follows that

lim inf
n→∞

Fxn,yn (t) = Fx,y(t).

Definition 1.6. Let (X,F ,T) be a Menger PM-space and A ⊆ X. The closure of the set A is the smallest closed set
containing A, and is denoted by A.

Obviously, having in mind the Hausdorff topology, and the definition of converging sequences we have
the next remark.

Remark 1.7. x ∈ A if and only if there exists a sequence {xn} in A such that xn → x.

The concept of probabilistic boundness was introduced by H. Sherwood in [17]. We give a definition of
probabilistic bounded sets.
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Definition 1.8. [5] Let (X,F ,T) be a Menger PM-space and A ⊆ X. The probabilistic diameter of set A is given by

δA(t) = inf
x,y∈A

sup
ε< t

Fx,y(ε).

The diameter of the set A is defined by

δA = sup
t>0

inf
x,y∈A

sup
ε< t

Fx,y(ε).

If there exists λ ∈ (0, 1) such that δA = 1 − λ the set A will be called probabilistic semi-bounded. If δA = 1 the set A
will be called probabilistic bounded.

Lemma 1.9. Let (X,F ,T) be a Menger PM-space. A set A ⊆ X is probabilistic bounded if and only if for each
λ ∈ (0, 1) there exists t > 0 such that Fx,y(t) > 1 − λ for all x, y ∈ A.

Proof: The proof follows from the definitions of sup A and inf A of non-empty sets.
It is not difficult to see that every metrically bounded set is also probabilistic bounded if it is considered

in the induced PM-space.
H. Sherwood proved the following theorem.

Theorem 1.10. [17] Let (X,F ,T) be a Menger PM-space and {Fn} a nested sequence of nonempty, closed subsets of
X such that δFn → ε0 as n→∞. Then there is exactly one point x0 ∈ Fn, for every n ∈N.

It is easy to show that the following lemma is satisfied.

Lemma 1.11. Let (X,F ,T) be a Menger PM-space. A collection {Fn}n∈N is said to have probabilistic diameter zero
i.e. for each r ∈ (0, 1) and each t > 0 there exists n∗ ∈ N such that Fx,y(t) > 1 − r for all x, y ∈ Fn∗ if and only if
δFn → ε0 as n→∞.

Fixed point results for mappings defined on PM-spaces were obtained by several authors ([2], [6], [8],
[16], [19]). Many of results in fixed point theory on probabilistic metric spaces are proved for spaces with
t-norm T satisfying T(a, a) ≥ a (see [19]). In this paper we will prove a common fixed point theorem without
a restriction on the t-norm that defines the PM-space. Also in proving common fixed point results one
needs to consider some notion of commutativity. The concept of compatible mappings was introduced
by G. Jungck [11] and S.N. Mishra [14]. Compatible mappings defined on spaces with non-deterministic
distances were considered by B. Singh and M.S. Chauhan [18], S.N. Ješić et al. [7] and N.A. Babačev [1].

Khan et al. in [9] introduced the concept of altering distance functions that alter the distance between
two points in metric spaces.

Definition 1.12. [9] A function h : [0,∞)→ [0,∞) is an altering distance function if
(i) h is monotone increasing and continuous and
(ii) h(t) = 0 if and only if t = 0.

B.S. Choudhury and K. Das [4] extended the concept of altering distance functions to Menger PM-spaces.

Definition 1.13. [4] A function φ : [0,∞)→ [0,∞) is said to be a Φ-function if the following conditions hold:
(i) φ(t) = 0 if and only if t = 0 ;
(ii) φ is strictly increasing and φ(t)→∞ as t→∞ ;
(iii) φ is left-continuous in (0,∞);
(iv) φ is continuous at 0.

The class of all Φ-functions will be denoted by Φ.

B.S. Choudhury and K. Das [4] proved the following result.
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Theorem 1.14. [4] Let (X,F ,TM) be a complete Menger PM-space, with continuous t-norm TM given by TM(a, b) =
min{a, b} and let f be a continuous self-mapping on X such that for every x, y ∈ X, and all t > 0

F f x, f y(φ(t)) ≥ Fx,y(φ(t/c)) (1)

where φ is a Φ-function and 0 < c < 1. Then f has a unique fixed point.

The previous result was generalized and improved by D. Miheţ in [13].

Theorem 1.15. [13] Let (X,F ,T) be a complete Menger PM-space with continuous t-norm T and let f be a self-
mapping on X such that for every x, y ∈ X, and all t > 0

F f x, f y(φ(t)) ≥ Fx,y(φ(t/c)) (2)

where φ is a Φ-function and 0 < c < 1. If there exists x ∈ X such that the orbit of f in x, O( f , x) = { f mx,m ∈N\{0}}
is probabilistic bounded, then f has a unique fixed point.

The concept of compatible mappings was introduced by G. Jungck in [11]. Following Jungck, the
definition of compatible mappings defined on Menger PM-spacesx is as follows.

Definition 1.16. [14] Let (X,F ,T) be a Menger PM-space and f and 1 self-mappings on X.We say that the mappings
f and 1 are compatible if

lim inf
n→∞

F f (1(xn)),1( f (xn))(t) = 1 for every t > 0, (3)

holds whenever (xn)n∈N is a sequence in X such that lim
n→∞

f (xn) = lim
n→∞
1(xn) = z ∈ X holds.

It is easy to see that the class of compatible mappings is broader than the class of commuting mappings.
Indeed, every pair of commuting mappings is also compatible, while the converse is not true ([19]).

2. Main Results

Theorem 2.1. Let (X,F ,T) be a complete Menger probabilistic metric space. Let f and 1 be compatible self-mappings
on X and f continuous such that 1(X) ⊆ f (X). Assume that for all x, y ∈ X and every t > 0

F1(x),1(y)(φ(t)) ≥ F f (x), f (y)(φ(t/c)) (4)

holds, where φ is a Φ-function and 0 < c < 1. If there exists a point u0 ∈ X and n0 ∈N such that the set

S = {1(un0−1), 1(un0 ), . . .}, (5)

where f (ui) = 1(ui−1)(i ∈ N), is a probabilistic bounded set, then the mappings 1 and f have a unique common fixed
point in X.

Proof. First, we will prove that the mapping 1 is continuous. We will prove that for the sequence yn → y
we have that 1(yn) → 1(y) as n → ∞. Let t > 0 be arbitrary. There exists s > 0 such that t > φ(s). Since
f is continuous we have that f (yn) → f (y) i.e. for all t > 0 it holds that F f (yn), f (y)(t) → 1 as n → ∞.
Since distribution functions are nondecreasing, applying (4) we have that F1(yn),1(y)(t) ≥ F1(yn),1(y)(φ(s)) ≥
F f (yn), f (y)(φ(s/c))→ 1 as n→∞, i.e. F1(yn),1(y)(t)→ 1 as n→∞ for all t > 0, i.e. 1(yn)→ 1(y) as n→∞.

For u0 ∈ X from 1(X) ⊆ f (X) it follows that there exists a point u1 ∈ X such that 1(u0) = f (u1). By
induction, a sequence {un} can be chosen such that 1(un−1) = f (un) and the set S = {1(un0−1), 1(un0 ), . . .} is
probabilistic bounded.
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Let us consider the nested sequence of nonempty closed sets defined by

Fn = {1(un−1), 1(un), . . .}
(
= { f (un), f (un+1), . . .}

)
, n ≥ n0.

We shall prove that the family {Fn}n≥n0 has probabilistic diameter zero.
Let r ∈ (0, 1) and let t > 0 be arbitrary. We will prove that there exists n∗ ∈N such that Fx,y(t) > 1 − r for

all x, y ∈ Fn∗ . For arbitrary k ≥ n0, k ∈ N, from Fk ⊆ S it follows that Fk is a probabilistic bounded set i.e.
there exists t0 > 0 such that

Fx,y(t0) > 1 − r for all x, y ∈ Fk. (6)

There exists s > 0 such that t > φ(s). Since φ is a Φ-function it follows that there exists l ∈ N such
that φ(s/cl) > t0. Let n∗ = l + k and x, y ∈ Fn∗ be arbitrary. There exist sequences

{
1(un(i)−1)

}
,
{
1(un( j)−1)

}
in

Fn∗ (n(i),n( j) ≥ n∗, i, j ∈N) such that lim
i→∞
1(un(i)−1) = x and lim

j→∞
1(un( j)−1) = y.

Since t > φ(s) from (4) we have

F1(un(i)−1),1(un( j)−1)(t) ≥ F1(un(i)−1),1(un( j)−1)(φ(s))

≥ F f (un(i)−1), f (un( j)−1)(φ(s/c))

= F1(un(i)−2),1(un( j)−2)(φ(s/c)).

Thus, by induction we get

F1(un(i)−1),1(un( j)−1)(t) ≥ F1(un(i)−l−1),1(un( j)−l−1)(φ(s/cl)).

Sinceφ(s/cl) > t0 and because Fx,y(·) is a nondecreasing function, from the previous inequalities it follows
that

F1(un(i)−1),1(un( j)−1)(t) ≥ F1(un(i)−l−1),1(un( j)−l−1)(φ(s/cl)) ≥ F1(un(i)−l−1),1(un( j)−l−1)(t0). (7)

As {1(un(i)−l−1)}, {1(un( j)−l−1)} are sequences in Fk, from (6) and (7) it follows that, for all i, j ∈Nwe have

F1(un(i)−1),1(un( j)−1)(t) > 1 − r.

Taking the lim inf as i, j → ∞, and applying Lemma 1.5 we get that Fx,y(t) > 1 − r for all x, y ∈ Fn∗ i.e. the
family {Fn}n≥n0 has probabilistic diameter zero.

Applying Lemma 1.11 and Theorem 1.10 we conclude that this family has nonempty intersection, which
consists of exactly one point z. Since the family {Fn}n≥n0 has probabilistic diameter zero and z ∈ Fn for all
n ≥ n0, we get that for each r ∈ (0, 1) and each t > 0 there exists k0 ≥ n0 such that for all n ≥ k0

F1(un−1),z(t) > 1 − r.

From the last inequality it follows that for each r ∈ (0, 1) and each t > 0 we have that

lim inf
n→∞

F1(un−1),z(t) > 1 − r.

Taking r→ 0 we get that for each t > 0

lim inf
n→∞

F1(un−1),z(t) = 1

holds, i.e. lim
n→∞
1(un−1) = z. Since f (un) = 1(un−1) we have that lim

n→∞
f (un) = z.

Since f and 1 are compatible, from lim
n→∞
1(un) = lim

n→∞
f (un) = z we have that

lim inf
n→∞

F f (1(un)),1( f (un))(t) = 1
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holds for every t > 0. It follows that for each t > 0 F f (z),1(z)(t) = 1 holds, i.e.

1(z) = f (z). (8)

Let us prove that 1(z) = z. Let t > 0 be arbitrary. There exists s > 0 such that t > φ(s). Thus

F1z,1(un−1)(t) ≥ F1z,1(un−1)(φ(s)) ≥ F f z, f (un−1)(φ(s/c)) = F1z,1(un−2)(φ(s/c))

≥ F f z, f (un−2)(φ(s/c2)) = F1z,1(un−3)(φ(s/c2)) ≥ . . . ≥ F f z, f (u0)(φ(s/cn−1)).

Taking the lim inf as n→∞, it follows that F1z,z(t) ≥ 1, i.e. 1(z) = z, and consequently f (z) = 1(z) = z.
Let us prove that z is a unique common fixed point of f and 1. Let y be another common fixed point of

f and 1. Let t > 0 be arbitrary. There exists s > 0 such that t > φ(s). Thus

Fz,y(t) = F1z,1y(t) ≥ F1z,1y(φ(s)) ≥ F f z, f y(φ(s/c)) = F1z,1y(φ(s/c))

≥ F f z, f y(φ(s/c2)) = F1z,1y(φ(s/c2)) ≥ . . . ≥ F f z, f y(φ(s/cn)).

Taking the lim inf as n → ∞, it follows that Fz,y(t) ≥ 1, i.e. z = y, which shows that the common fixed
point of f and 1 is unique.

If we take f to be identity mapping in the statement of Theorem 2.1, then since the identity mapping
commutes with f and commuting mappings are compatible, we get that the following corollary holds.

Corollary 2.2. Theorem 1.15 is a consequence of Theorem 2.1.

Since every metric space is a Menger PM-space, as is shown in previous remarks, we see that Theorem
2.1 is an improvement of the main results of G. Jungck, proved in [10], and D.W. Boyd, J.S.W. Wong proved
in [3].

Example 2.3. Let (X,F ,T) be a complete Menger probabilistic metric space induced by the metric d(x, y) = |x − y|
on X = [0,+∞) ⊂ R given in Remark 1.3. Let

f (x) = 2x, 1(x) =
2x

2 + x
, 1(X) = [0, 2) ⊂ X = f (X), φ(t) = t, c =

1
2
.

We now prove that all the conditions of Theorem 2.1 are satisfied. Since 1( f (x)) = 2x
1+x and f (1(x)) = 4x

2+x we
conclude that f (x) and 1(x) are not commuting mappings, but they are compatible.
Note that

F f (1(x)),1( f (x))(t) = ε0

(
t −

2x2

(1 + x)(2 + x)

)
and F f (x),1(x)(t) = ε0

(
t −

2x2 + 2x
2 + x

)
Since 2x2

(1+x)(2+x) ≤
2x2+2x

2+x holds for all x ≥ 0, we get

F f (1(x)),1( f (x))(t) ≥ F f (x),1(x)(t)

for all x, t ≥ 0. For a sequence {xn} in [0,+∞) such that lim
n→∞

f (xn) = lim
n→∞
1(xn) = z, from the previous inequality it

follows that lim inf
n→∞

F f (1(xn)),1( f (xn))(t) = 1, i.e. mappings f and 1 are compatible.

We shall prove that the condition (4) is satisfied, too. Since 4|x−y|
(2+x)(2+y) ≤ |x − y|, for all x, y ≥ 0, we have

F1(x),1(y)

(
φ(t)

)
= ε0

(
t −

4|x − y|
(2 + x)(2 + y)

)
≥ ε0

(
t − |x − y|

)
= ε0

(
2t − |2x − 2y|

)
= F f (x), f (y)(φ(2t)) = F f (x), f (y)(φ(t/c)).

Since all the conditions of Theorem 2.1 are satisfied, we have that f (x) and 1(x) have a unique common fixed point. It
is easy to see that this point is x = 0.



S. N. Ješić et al. / Filomat 31:2 (2017), 175–181 181

References
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