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Abstract. In this paper, we present some results on the complete convergence for arrays of rowwise
negatively superadditive dependent (NSD, in short) random variables by using the Rosenthal-type maximal
inequality, Kolmogorov exponential inequality and the truncation method. The results obtained in the paper
extend the corresponding ones for weighted sums of negatively associated random variables with identical
distribution to the case of arrays of rowwise NSD random variables without identical distribution.

1. Introduction

Let {Xni, 1 ≤ i ≤ n,n ≥ 1} be an array of random variables defined on a fixed probability space (Ω,F ,P)
and {bni, 1 ≤ i ≤ n,n ≥ 1} be an array of real numbers. It is well known that the limiting behavior for
the maximum of weighted sums max1≤m≤n

∑m
i=1 bniXni is very useful in many probabilistic derivations and

stochastic models. There exist several versions of the limiting behavior available in the literature for
independent random variables with assumption of control on their moments. If the independent case is
classical in the literature, the treatment of dependent variables is more recent.

One of the dependence structure that has attracted the interest of those who are specialized for probability
and statisticians is negative association. The concept of negatively associated random variables, which was
introduced by Alam and Saxena [1] and carefully studied by Joag-Dev and Proschan [10] is as follows.

A finite family of random variables {Xi, 1 ≤ i ≤ n} is said to be negatively associated (NA, in short) if for
every pair of disjoint subsets A,B ⊂ {1, 2, · · · ,n},

Cov( f (Xi, i ∈ A), 1(X j, j ∈ B)) ≤ 0,

whenever f and 1 are coordinatewise nondecreasing such that this covariance exists. An infinite family of
random variables is NA if every finite subfamily is NA.

The next dependence notion is negatively superadditive dependence, which is weaker than negative
association. To introduce the concept of negatively superadditive dependence, we first recall the class of
superadditive functions as follows.
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Definition 1.1. (cf. Kemperman [11]). A function φ : Rn
→ R is called superadditive if φ(x ∨ y) + φ(x ∧ y) ≥

φ(x)+φ(y) for all x,y ∈ Rn, where∨ stands for componentwise maximum and∧ stands for componentwise minimum.

Based on the class of superadditive functions, Hu [9] introduced the concept of negatively superadditive
dependence as follows.

Definition 1.2. (cf. Hu [9]). A random vector X = (X1,X2, · · · ,Xn) is said to be negatively superadditive dependent
(NSD, in short) if

Eφ(X1,X2, · · · ,Xn) ≤ Eφ(X∗1,X
∗

2, · · · ,X
∗

n), (1.1)

where X∗1,X
∗

2, · · · ,X
∗
n are independent such that X∗i and Xi have the same distribution for each i andφ is a superadditive

function such that the expectations in (1.1) exist.

A sequence {Xn,n ≥ 1} of random variables is said to be NSD if for all n ≥ 1, (X1,X2, · · · ,Xn) is NSD.
An array {Xni, i ≥ 1,n ≥ 1} of random variables is said to be rowwise NSD if for all n ≥ 1, {Xni, i ≥ 1} is

NSD.
Since the concept of NSD random variables was introduced by Hu [9], many authors devoted to studying

the probability limit theory for NSD random variables. See for example, Hu [9] pointed out that NSD does
not imply NA, and posed an open problem whether NA implies NSD. Christofides and Vaggelatou [6]
gave the answer to the question posed by Hu [9] and indicated that NA implies NSD. Hence, NSD is a
class of random variables that includes independent sequence and NA sequence as special cases. Studying
the limiting behavior of NSD random variables and its applications are of great interest. Eghbal et al.
[8] established the Kolmogorov inequality for quadratic forms Tn =

∑
1≤i< j≤n XiX j and weighted quadratic

forms Qn =
∑

1≤i< j≤n ai jXiX j, where {Xi, i ≥ 1} is a sequence of nonnegative NSD uniformly bounded random
variables. Shen et al. [16] studied the almost sure convergence theorem and strong stability for weighted
sums of NSD random variables. Wang et al. [17] established some results on complete convergence for
arrays of rowwise NSD random variables and gave applications to nonparametric regression model. Shen
[12] studied the asymptotic approximation of inverse moments for nonnegative NSD random variables.
Shen et al. [15] gave some applications of the Rosenthal-type inequality for NSD random variables. Wang
et al. [18] established the complete consistency for the estimators in the EV regression model. Xue et al.
[20] obtained the complete moment convergence for weighted sums of NSD random variables. Amini
et al. [2] studied the complete convergence of moving average processes based on NSD sequences. The
main purpose of this work is to further study the complete convergence for weighted sums of arrays of
rowwise NSD random variables without identical distribution, while the condition of stochastic domination
is needed.

The definition of stochastic domination below will play an important role throughout the paper.

Definition 1.3. A sequence {Xn,n ≥ 1} of random variables is said to be stochastically dominated by a random
variable X if there exists a positive constant C such that

P(|Xn| > x) ≤ CP(|X| > x)

for all x ≥ 0 and n ≥ 1. An array {Xni, i ≥ 1,n ≥ 1} of random variables is said to be stochastically dominated by a
random variable X if there exists a positive constant C such that

P(|Xni| > x) ≤ CP(|X| > x)

for all x ≥ 0, i ≥ 1 and n ≥ 1.

Throughout the paper, C denotes a positive constant not depending on n, which may be different in
various places. an = O(bn) represents an ≤ Cbn for all n ≥ 1 and I(A) is the indicator function of the set A.
Set log x = ln max(x, e).
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2. Preliminary Lemmas

In this section, we will provide some preliminary facts needed for the proofs of our main results. The
first one comes from Hu [9], or Wang et al. [18].

Lemma 2.1. If (X1,X2, · · · ,Xn) is NSD and 11, 12, · · · , 1n are all nondecreasing (or all nonincreasing), then
(11(X1), 12(X2), · · · , 1n(Xn)) is NSD.

The following two lemmas come from Wang et al. [17]. One is the moment inequality for NSD random
variables, including Marcinkiewicz-Zygmund type inequality and Rosenthal type inequality, the other is
the Kolmogorov type exponential inequality for NSD random variables.

Lemma 2.2. Let p > 1, and {Xn,n ≥ 1} be a sequence of NSD random variables with E|Xi|
p < ∞ for each i ≥ 1.

Then for all n ≥ 1,

E

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣∣∣
p ≤ 23−p

n∑
i=1

E |Xi|
p , for 1 < p ≤ 2, (2.2)

and

E

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣∣∣
p ≤ 2

(
15p
ln p

)p
 n∑

i=1

E |Xi|
p +

 n∑
i=1

EX2
i


p/2 , for p > 2. (2.3)

Lemma 2.3. Let {Xn,n ≥ 1} be a sequence of NSD random variables with zero means and finite second moments.
Denote Sn =

∑n
i=1 Xi and Bn =

∑n
i=1 EX2

i for each n ≥ 1. Then for all x > 0, y > 0, and n ≥ 1,

P
(
max
1≤k≤n
|Sk| ≥ x

)
≤ 2P

(
max
1≤k≤n
|Xk| ≥ y

)
+ 8

(
2Bn

3xy

)x/12y

.

The next one is a basic property for NSD random variables, which plays an important role to prove the
main results of the paper.

Lemma 2.4. Let {Xn,n ≥ 1} be a sequence of NSD random variables. Then there exists a positive constant C
independent of n such that for any ε ≥ 0 and all n ≥ 1,[

1 − P
(
max
1≤i≤n
|Xi| > ε

)]2 n∑
i=1

P(|Xi| > ε) ≤ CP
(
max
1≤i≤n
|Xi| > ε

)
. (2.4)

Proof. Let Ai = (|Xi| > ε) and

an = 1 − P

 n⋃
i=1

Ai

 = 1 − P
(
max
1≤i≤n
|Xi| > ε

)
.

Without loss of generality, assume that an > 0. Note that {I(Xi > ε) − EI(Xi > ε), i ≥ 1} and {I(Xi < −ε) −
EI(Xi < −ε), i ≥ 1} are both NSD by Lemma 2.1. We have by (2.1) that

E

 n∑
i=1

(I(Ai) − EI(Ai))


2

≤ 2E

 n∑
i=1

(I(Xi > ε) − EI(Xi > ε))


2

+2E

 n∑
i=1

I(Xi < −ε) − EI(Xi < −ε)


2

≤ C
n∑

i=1

P(Ai),
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which together with Canchy-Schwarz inequality yields that

n∑
i=1

P(Ai) = E

 n∑
i=1

(I(Ai) − EI(Ai))

 I(∪n
j=1A j) +

n∑
i=1

P(Ai)P
(
∪

n
j=1A j

)

≤

E

 n∑
i=1

(I(Ai) − EI(Ai))


2

EI(∪n
j=1A j)


1/2

+ (1 − an)
n∑

i=1

P(Ai)

≤

C(1 − an)
an

an

n∑
i=1

P(Ai)


1/2

+ (1 − an)
n∑

i=1

P(Ai)

≤
1
2

C(1 − an)
an

+ an

n∑
i=1

P(Ai)

 + (1 − an)
n∑

i=1

P(Ai).

Then

a2
n

n∑
i=1

P(Ai) ≤ C(1 − an),

which implies (2.4).

The following one is a basic property for stochastic domination. For the proof, one can refer to Wu [19],
or Shen and Wu [14].

Lemma 2.5. Let {Xni, i ≥ 1,n ≥ 1} be an array of random variables which is stochastically dominated by a random
variable X. For any α > 0 and b > 0, the following two statements hold:

E|Xni|
αI (|Xni| ≤ b) ≤ C1 [E|X|αI (|X| ≤ b) + bαP (|X| > b)] ,

E|Xni|
αI (|Xni| > b) ≤ C2E|X|αI (|X| > b) ,

where C1 and C2 are positive constants.

Similarly to the proof of Lemma 3.1 of Shen [13] and applying Lemma 2.3, we can get the following
result on complete convergence for arrays of rowwise NSD random variables.

Lemma 2.6. Let {Xni, 1 ≤ i ≤ kn,n ≥ 1} be an array of rowwise NSD random variables, where {kn,n ≥ 1} is a
sequence of positive integers such that kn ↑ ∞ as n → ∞. Assume that {ani, 1 ≤ i ≤ kn,n ≥ 1} is an array of
nonnegative constants and {an,n ≥ 1} is a sequence of positive constants. Assume that the following conditions are
satisfied:

(i) for any ε > 0,
∑
∞

n=1 an
∑kn

i=1 P (|aniXni| > ε) < ∞;
(ii) for some δ > 0, there exists q ≥ 1 such that

∞∑
n=1

an

 kn∑
i=1

Var (aniXniI(|aniXni| ≤ δ))


q

< ∞.

Then

∞∑
n=1

anP

 max
1≤m≤kn

∣∣∣∣∣∣∣
m∑

i=1

ani (Xni − EXniI(|aniXni| ≤ δ))

∣∣∣∣∣∣∣ > ε
 < ∞, ∀ ε > 0. (2.5)
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Proof. Note that for any fixed ε > 0 and n ≥ 1,

P

 max
1≤m≤kn

∣∣∣∣∣∣∣
m∑

i=1

ani (Xni − EXniI(|aniXni| ≤ δ))

∣∣∣∣∣∣∣ > ε


≤

kn∑
i=1

P(|aniXni| > δ) + P

 max
1≤m≤kn

∣∣∣∣∣∣∣
m∑

i=1

ani (XniI(|aniXni| ≤ δ) − EXniI(|aniXni| ≤ δ))

∣∣∣∣∣∣∣ > ε
 .

By condition (i), it suffices to show that

∞∑
n=1

anP

 max
1≤m≤kn

∣∣∣∣∣∣∣
m∑

i=1

ani(XniI(|aniXni| ≤ δ) − EXniI(|aniXni| ≤ δ))

∣∣∣∣∣∣∣ > ε
 < ∞.

Denote for 1 ≤ i ≤ kn and n ≥ 1 that,

Yni = δI(aniXni > δ) + aniXniI(|aniXni| ≤ δ) − δI(aniXni < −δ),
Y
′

ni = δI(aniXni > δ) − δI(aniXni < −δ).

We have
∞∑

n=1

anP

 max
1≤m≤kn

∣∣∣∣∣∣∣
m∑

i=1

ani(XniI(|aniXni| ≤ δ) − EXniI(|aniXni| ≤ δ))

∣∣∣∣∣∣∣ > ε


≤

∞∑
n=1

anP

 max
1≤m≤kn

∣∣∣∣∣∣∣
m∑

i=1

(Y′ni − EY′ni)

∣∣∣∣∣∣∣ > ε/2
 +

∞∑
n=1

anP

 max
1≤m≤kn

∣∣∣∣∣∣∣
m∑

i=1

(Yni − EYni)

∣∣∣∣∣∣∣ > ε/2


=̇ I + J .

For I, by Markov’s inequality and condition (i), it is easy to obtain that

I ≤ C
∞∑

n=1

an

kn∑
i=1

P (|aniXni| > δ) < ∞.

For J, let M2,n =
∑kn

i=1 Var(Yni). It is easy to check that

M2,n ≤

kn∑
i=1

Var (aniXniI(|aniXni| ≤ δ)) + 8δ2
kn∑

i=1

P (|aniXni| > δ) .

For any y > 0, let d = min{1, y/6δ},

N1 =

n :
kn∑

i=1

P
(
|aniXni| > min{δ, y/6}

)
> d

 ,
N2 = N\N1 =

n :
kn∑

i=1

P
(
|aniXni| > min{δ, y/6}

)
≤ d

 .
Note that∑

n∈N1

anP


∣∣∣∣∣∣∣

kn∑
i=1

(Yni − EYni)

∣∣∣∣∣∣∣ > ε/2
 ≤

1
d

∑
n∈N1

an

kn∑
i=1

P
(
|aniXni| > min{δ, y/6}

)
< ∞.

In the following, we prove that

∑
n∈N2

anP


∣∣∣∣∣∣∣

kn∑
i=1

(Yni − EYni)

∣∣∣∣∣∣∣ > ε/2
 < ∞.
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By Lemma 2.1, we know that {Yni − EYni, 1 ≤ i ≤ kn,n ≥ 1} is an array of rowwise NSD random variables.
By Lemma 2.3 we have that

∑
n∈N2

anP

 max
1≤m≤kn

∣∣∣∣∣∣∣
m∑

i=1

(Yni − EYni)

∣∣∣∣∣∣∣ > ε/2


≤ C
∑
n∈N2

an

kn∑
i=1

P
(
|Yni − EYni| ≥ y

)
+ C

∑
n∈N2

an(M2,n)ε/24y

=̇ CJ1 + CJ2.

Note that

P
(
|Yni − EYni| ≥ y

)
≤ P

(
|aniXniI(|aniXni| ≤ δ) − EaniXniI(|aniXni| ≤ δ)| >

y
2

)
+P

(
|Y′ni − EY′ni| >

y
2

)
.

It is easy to check that for n ∈ N2,

|EaniXniI(|aniXni| ≤ δ)| ≤ E|aniXni|I(|aniXni| ≤ y/6) + E|aniXni|I(y/6 ≤ |aniXni| ≤ δ)

≤ y/6 + δ
kn∑

i=1

P
(
|aniXni| > min{y/6, δ}

)
≤ y/6 + δd ≤ y/3,

which implies that for n ∈ N2,

P
(
|Yni − EYni| ≥ y

)
≤ P

(
|aniXni|I(|aniXni| ≤ δ) >

y
6

)
+ P

(∣∣∣Y′ni − EY′ni

∣∣∣ > y
2

)
.

Therefore, by Markov’s inequality and condition (i) we obtain

J1 ≤

∑
n∈N2

an

kn∑
i=1

P
(
|aniXni|I(|aniXni| ≤ δ) >

y
6

)
+

∑
n∈N2

an

kn∑
i=1

P
(
|Y′ni − EY′ni| >

y
2

)

≤

∞∑
n=1

an

kn∑
i=1

P
(
|aniXni| >

y
6

)
+

∞∑
n=1

an

kn∑
i=1

P (|aniXni| > δ)

< ∞.

Now we prove J2 < ∞. When n ∈ N2, we have that
∑kn

i=1 P (|aniXni| > δ) ≤ 1. Let y = ε/24q, we have by
conditions (i) and (ii) that

J2 ≤ C
∑
n∈N2

an

 kn∑
i=1

Var(aniXniI(|aniXni| ≤ δ))


q

+ C
∑
n∈N2

an

 kn∑
i=1

P(|aniXni| > δ)


q

≤ C
∞∑

n=1

an

 kn∑
i=1

Var(aniXniI(|aniXni| ≤ δ))


q

+ C
∞∑

n=1

an

kn∑
i=1

P (|aniXni| > δ)

< ∞.

This completes the proof of the lemma.
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3. Main Results

Our main results are as follows. The first one is the complete convergence for weighted sums of arrays
of rowwise NSD random variables.

Theorem 3.1. Let β ∈ R, and {Xni, 1 ≤ i ≤ n,n ≥ 1} be an array of rowwise NSD random variables which is
stochastically dominated by a random variable X with EXni = 0 and E|X|p/(log |X|)r < ∞ for some 1 < p ≤ 2 and
r > 0. Assume that {bni, 1 ≤ i ≤ n,n ≥ 1} is an array of constants satisfying the following conditions:

(i)
∑
∞

n=1 nβ
∑n

i=1 P(|bniXni| > ε) < ∞, f or all ε > 0;
(ii)

∑
∞

n=1 nβ(
∑n

i=1 |bni|
p(log n)r) j < ∞, f or some j ≥ 1;

(iii) (log n)r ∑n
i=1 |bni|

p
→ 0 as n→∞.

Then

∞∑
n=1

nβP

max
1≤m≤n

∣∣∣∣∣∣∣
m∑

i=1

bniXni

∣∣∣∣∣∣∣ > ε
 < ∞ f or all ε > 0. (3.0)

Proof. The result is trivial if β < −1. So we assume that β ≥ −1. Noting that bni = b+
ni − b−ni, we have

∞∑
n=1

nβP

max
1≤m≤n

∣∣∣∣∣∣∣
m∑

i=1

bniXni

∣∣∣∣∣∣∣ > ε


≤

∞∑
n=1

nβP

max
1≤m≤n

∣∣∣∣∣∣∣
m∑

i=1

b+
niXni

∣∣∣∣∣∣∣ > ε
2

 +

∞∑
n=1

nβP

max
1≤m≤n

∣∣∣∣∣∣∣
m∑

i=1

b−niXni

∣∣∣∣∣∣∣ > ε
2

 .

So without loss of generality, we assume that bni ≥ 0. Otherwise, we will use b+
ni and b−ni instead of bni

respectively. For n ≥ 1, define for 1 ≤ i ≤ n that

Yni = bni[XniI(|Xni| ≤ f (n)) + f (n)I(Xni > f (n)) − f (n)I(Xni < − f (n))],
Zni = bni[(Xni − f (n))I(Xni > f (n)) + (Xni + f (n))I(Xni < − f (n))],

where f (x) is an increasing function defined on [0,∞) satisfying f (0) = 0 and f (n) = n(β+2)/p(log n)r/p for all
large n. For fixed n ≥ 1, Lemma 2.1 yields that {Yni, 1 ≤ i ≤ n} are NSD random variables. Noting that
Yni + Zni = bniXni, to prove (3.1), we only need to show that

I1 =

∞∑
n=1

nβP

max
1≤m≤n

∣∣∣∣∣∣∣
m∑

i=1

Zni

∣∣∣∣∣∣∣ > ε
 < ∞,

I2 =

∞∑
n=1

nβP

max
1≤m≤n

∣∣∣∣∣∣∣
m∑

i=1

Yni

∣∣∣∣∣∣∣ > ε
 < ∞.



L. Zheng et al. / Filomat 31:2 (2017), 295–308 302

Firstly, we will prove I1 < ∞. Noting that f (n) = n(β+2)/p(log n)r/p for all large n, we can obtain that

I1 ≤

∞∑
n=1

nβ
n∑

i=1

P(|Xni| > f (n))

≤ C
∞∑

n=1

nβ+1P(|X| > f (n))

= C
∞∑

n=1

nβ+1
∞∑

i=n

P( f (i) < |X| ≤ f (i + 1))

= C
∞∑

i=1

P( f (i) < |X| ≤ f (i + 1))
i∑

n=1

nβ+1

≤ C
∞∑

i=1

P( f (i) < |X| ≤ f (i + 1))iβ+2

≤ C
∞∑

i=1

P( f (i) < |X| ≤ f (i + 1))( f (i))p/(log f (i))r

≤ CE|X|p/(log |X|)r < ∞. (3.1)

To prove I2 < ∞, we will apply Lemma 2.6 to the array {Yni} with an = nβ, kn = n and ani ≡ 1. By (3.1) and
condition (i), we have

∞∑
n=1

nβ
n∑

i=1

P(|Yni| > ε) ≤

∞∑
n=1

nβ
n∑

i=1

[P(|Xni| > f (n)) + P(|Xni| ≤ f (n), |bniXni| > ε)]

≤ CE|X|p/(log |X|)r +

∞∑
n=1

nβ
n∑

i=1

P(|bniXni| > ε) < ∞,

which implies that the condition (i) in Lemma 2.6 is satisfied.
Noting that 1 < p ≤ 2, we have by Lemma 2.5 and Cr-inequality that

∞∑
n=1

nβ
 n∑

i=1

Var(YniI(|Yni| ≤ 1))


j

≤

∞∑
n=1

nβ
 n∑

i=1

EY2
niI(|Yni| ≤ 1)


j

≤

∞∑
n=1

nβ
 n∑

i=1

E|Yni|
p


j

≤ C
∞∑

n=1

nβ
 n∑

i=1

|bni|
pE|Xni|

pI(|Xni| ≤ f (n))


j

+C
∞∑

n=1

nβ
 n∑

i=1

|bni|
p( f (n))pP(|Xni| > f (n))


j

≤ C
∞∑

n=1

nβ
 n∑

i=1

|bni|
pE|X|pI(|X| ≤ f (n))


j

+C
∞∑

n=1

nβ
 n∑

i=1

|bni|
p( f (n))pP(|X| > f (n))


j

=̇ I3 + I4.
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It follows from E|X|p/(log |X|)r < ∞ and condition (ii) that

I3 ≤ C
∞∑

n=1

nβ
 n∑

i=1

|bni|
p(log f (n))rE|X|p/(log |X|)rI(|X| ≤ f (n))


j

≤ C
∞∑

n=1

nβ
 n∑

i=1

|bni|
p(log f (n))r


j

< ∞. (3.4)

Noting that (log x)r/xp is a decreasing function on [M,∞) for some large M > 0, we have by E|X|p/(log |X|)r <
∞ and condition (ii) again that

I4 ≤ C
∞∑

n=1

nβ
 n∑

i=1

|bni|
p(log f (n))rE|X|p/(log |X|)rI(|X| > f (n))


j

≤ C
∞∑

n=1

nβ
 n∑

i=1

|bni|
p(log f (n))r


j

< ∞. (3.5)

By (3.4) and (3.5) we can see that the condition (ii) in Lemma 2.6 is also satisfied. Hence, we have by Lemma
2.6 that

∞∑
n=1

nβP

max
1≤m≤n

∣∣∣∣∣∣∣
m∑

i=1

(Yni − EYniI(|Yni| ≤ 1))

∣∣∣∣∣∣∣ > ε
 < ∞.

To prove I2 < ∞, it suffices to show that

I5 � max
1≤m≤n

∣∣∣∣∣∣∣
m∑

i=1

EYniI(|Yni| ≤ 1)

∣∣∣∣∣∣∣→ 0, as n→∞. (3.6)

Noting that YniI(|Yni| ≤ 1) + YniI(|Yni| > 1) + Zni = bniXni and EXni = 0, we can get that

I5 ≤

n∑
i=1

E|Yni|I(|Yni| > 1) +

n∑
i=1

E|Zni| � I6 + I7.

It is easily seen that if |bni| f (n) > 1, then

{|Yni| > 1} = {|Xni| > f (n)} ∪ {|Xni| ≤ f (n), |bniXni| > 1}.

Noting that (log x)r/xp is a decreasing function on [M,∞) for some large M > 0, (log x)r is an increasing
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function and |Yni| ≤ |bni| f (n), we have by E|X|p/(log |X|)r < ∞, condition (iii) and Lemma 2.5 that

I6 =
∑

i:|bni | f (n)>1

E|Yni|I(|Yni| > 1) +
∑

i:|bni | f (n)≤1

E|Yni|I(|Yni| > 1)

=
∑

i:|bni | f (n)>1

{E|Yni|I(|Xni| > f (n)) + E|Yni|I(|Xni| ≤ f (n)), |bniXni| > 1}

≤

n∑
i=1

|bni f (n)|pP(|Xni| > f (n)) +

n∑
i=1

|bni|E|Xni|I(|Xni| ≤ f (n), |bniXni| > 1)

≤

n∑
i=1

|bni f (n)|pP(|Xni| > f (n)) +

n∑
i=1

|bni|
pE|Xni|

pI(|Xni| ≤ f (n))

≤ C
n∑

i=1

|bni|
p(log f (n))rE|X|p/(log |X|)rI(|X| > f (n))

+C
n∑

i=1

|bni|
p(log f (n))rE|X|p/(log |X|)rI(|X| ≤ f (n))

≤ C
n∑

i=1

|bni|
p(log f (n))r

→ 0, as n→∞. (3.7)

It follows from Hölder’s inequality, condition (iii) and Lemma 2.5 again that

I7 ≤

n∑
i=1

|bni|E|Xni|I(|Xni| > f (n))

≤ C
n∑

i=1

|bni|(log f (n))r( f (n))−(p−1)E|X|p/(log |X|)rI(|X| > f (n))

≤ C

 n∑
i=1

|bni|
p


1/p

n1−1/p(log f (n))r( f (n))−(p−1)E|X|p/(log |X|)rI(|X| > f (n))

≤ C

 n∑
i=1

|bni|
p


1/p

n−(β+1)(p−1)/p(log n)r/pE|X|p/(log |X|)rI(|X| > f (n))

→ 0, as n→∞. (3.8)

Hence, (3.6) follows from (3.7) and (3.8). This completes the proof of the theorem.

Theorem 3.2. Let 1 < α ≤ 2, α > γ > 0, and {Xni, 1 ≤ i ≤ n,n ≥ 1} be an array of rowwise NSD random variables
which is stochastically dominated by a random variable X with EXni = 0 and E|X|α/(log |X|)α/γ−δ < ∞ for some
0 < δ < α/γ. Assume that {ani, 1 ≤ i ≤ n,n ≥ 1} is an array of constants satisfying

∑n
i=1 |ani|

α = O(n). Let
bn = n1/α(log n)1/γ. Then

∞∑
n=1

1
n

n∑
i=1

P (|aniXni| > bnε) < ∞ f or all ε > 0 (3.9)

and
∞∑

n=1

1
n

P

max
1≤m≤n

∣∣∣∣∣∣∣
m∑

i=1

aniXni

∣∣∣∣∣∣∣ > bnε

 < ∞ f or all ε > 0. (3.10)

are equivalent.
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Proof. Firstly, we prove (3.9) implies (3.10) by using Theorem 3.1. Let β = −1, p = α, r = α/γ − δ, and
bni = ani/bn. It is easily seen that the condition (i) of Theorem 3.1 is satisfied by (3.9). Note that

n∑
i=1

|bni|
p(log n)r

≤ C(log n)−δ,

∞∑
n=1

nβ
 n∑

i=1

|bni|
p(log n)r


j

≤ C
∞∑

n=1

n−1(log n)−δ j,

which imply that conditions (ii) and (iii) of Theorem 3.1 are satisfied if we take j > max{1, 1/δ}. Hence (3.10)
follows from Theorem 3.1 immediately.

Next we will prove that (3.10) implies (3.9). Without loss of generality, we assume that bni ≥ 0. Otherwise,
we will use b+

ni and b−ni instead of bni respectively. Noting that

max
1≤i≤n
|bniXni| ≤ 2 max

1≤m≤n

∣∣∣∣∣∣∣
m∑

i=1

bniXni

∣∣∣∣∣∣∣ ,
we have by Lemma 2.4 that

∞∑
n=1

1
n

P

max
1≤m≤n

∣∣∣∣∣∣∣
m∑

i=1

aniXni

∣∣∣∣∣∣∣ > bnε


≥

∞∑
n=1

1
n

P
(
max
1≤i≤n
|bniXni| > 2ε

)
≥ C

∞∑
n=1

1
n

[
1 − P

(
max
1≤i≤n
|bniXni| > 2ε

)]2 n∑
i=1

P(|bniXni| > 2ε). (3.12)

Now we prove that P
(
max
1≤i≤n
|bniXni| > 2ε

)
→ 0 firstly. Denote Yni and Zni as in the proof of Theorem 3.1. It

follows from Markov’s inequality, the proof of Theorem 3.1 and Lemma 2.5 that

P
(
max
1≤i≤n
|bniXni| > 2ε

)
≤ P

(
max
1≤i≤n
|Yni| > ε

)
+ P

(
max
1≤i≤n
|Zni| > ε

)
≤ ε−p

n∑
i=1

E|Yni|
p + ε−1

n∑
i=1

E|Zni|

≤ C
n∑

i=1

|bni|
pE|X|pI(|X| ≤ f (n)) + C

n∑
i=1

|bni|
p( f (n))pP(|X| > f (n))

+C
n∑

i=1

|bni|E|X|I(|X| > f (n))

≤ C
n∑

i=1

|bni|
p(log f (n))rE|X|p/(log |X|)r

+C

 n∑
i=1

|bni|
p


1/p

n−(β+1)(p−1)/p(log n)r/pE|X|p/(log |X|)r

≤ C(log n)−δE|X|α/(log |X|)α/γ−δ + C(log n)−δ/αE|X|α/(log |X|)α/γ−δ

−→ 0, as n→∞. (3.13)
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Combining (3.12) and (3.13), we can obtain that

∞∑
n=1

1
n

P

max
1≤m≤n

m∑
i=1

|aniXni| > bnε

 ≥ C
∞∑

n=1

1
n

n∑
i=1

P (|bniXni| > 2ε) .

Hence, (3.10) implies (3.9). This completes the proof of the theorem.

By using Theorem 3.2, we can get the following corollary.

Corollary 3.3. Let 1 < α ≤ 2, α > γ > 0, and {Xni, 1 ≤ i ≤ n,n ≥ 1} be an array of rowwise NSD random variables
which is stochastically dominated by a random variable X with EXni = 0 and E|X|α/(log |X|)α/γ−1 < ∞. Assume that
{ani, 1 ≤ i ≤ n,n ≥ 1} is an array of constants satisfying

∑n
i=1 |ani|

α = O(n). Let bn = n1/α(log n)1/γ. Then (3.10)
holds.

Proof. By Theorem 3.2, it suffices to show that

J �
∞∑

n=1

1
n

n∑
i=1

P(|aniXni| > εn1/α(log n)1/γ) < ∞.

Actually,

J ≤ C
∞∑

n=1

n−1
n∑

i=1

P
(
|aniX| > εn1/α(log n)1/γ

)
= C

∞∑
n=1

n−1
n∑

i=1

P
(
|aniX| > εn1/α(log n)1/γ, |X| ≤ n1/α(log n)1/γ−1/α

)
+C

∞∑
n=1

n−1
n∑

i=1

P
(
|aniX| > εn1/α(log n)1/γ, |X| > n1/α(log n)1/γ−1/α

)
≤ C

∞∑
n=1

n−2(log n)−α/γ
n∑

i=1

|ani|
αE|X|αI(|X| ≤ n1/α(log n)1/r−1/α)

+C
∞∑

n=1

n−1
n∑

i=1

P
(
|X| > n1/α(log n)1/γ−1/α

)
≤ C

∞∑
n=1

n−1(log n)−α/γE|X|αI(|X| ≤ n1/α(log n)1/γ−1/α)

+C
∞∑

n=1

P
(
|X| > n1/α(log n)1/γ−1/α

)
≤ CE|X|α/(log |X|)α/γ−1 < ∞.

The proof is completed.

With Corollary 3.3 accounter for, we can get the following Marcinkiewicz-Zygmund type strong law of
large number for NSD random variables. The proof is standard, so we omit the details.

Corollary 3.4. Let 1 < α ≤ 2, α > γ > 0, and {Xn,n ≥ 1} be a sequence of NSD random variables which
is stochastically dominated by a random variable X with EXn = 0 and E|X|α/(log |X|)α/γ−1 < ∞. Assume that
{an,n ≥ 1} is a sequence of constants satisfying

∑n
i=1 |ai|

α = O(n). Let bn = n1/α(log n)1/γ. Then for all ε > 0,

∞∑
n=1

1
n

P

max
1≤m≤n

∣∣∣∣∣∣∣
m∑

i=1

aiXi

∣∣∣∣∣∣∣ > bnε

 < ∞, (3.14)
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and thus

1
n1/α(log n)1/γ

n∑
i=1

aiXi → 0 a.s. as n→∞. (3.15)

Remark 3.5. The results of Theorems 3.1 and 3.2 generalize the corresponding ones of Chen and Sung [5] for
sequences of identically distributed NA random variables to the case of arrays of rowwise NSD random variables
without identical distribution.

Remark 3.6. Theorem 3.2 and Corollaries 3.3, 3.4 state convergence results for weighted sums of NSD variables
normalized by terms of the form bn = n1/α(log n)1/γ. Such normalizations have appeared in earlier literature, as Cuzick
[7] or Bai and Cheng [3] for independent random variables, and Cai [4] for NA random variables. However, the moment
condition E exp(h|X|γ) < ∞ for some h, γ > 0 in the literatures above is much stronger than E|X|α/(log |X|)α/γ−δ < ∞
for some 1 < α ≤ 2, α > γ > 0, and 0 < δ < α/γ. Hence, the results of Theorem 3.2 and Corollaries 3.3, 3.4 generalize
and improve the corresponding ones of Cuzick [7] and Bai and Cheng [3] for independent random variables, and Cai
[4] for NA random variables to the case of NSD random variables.

Example 3.7. Let ani = 1 for 1 ≤ i ≤ n and n ≥ 1. Then the array {ani, 1 ≤ i ≤ n,n ≥ 1} satisfies
∑n

i=1 |ani|
α = O(n).

Let {Xni, 1 ≤ i ≤ n,n ≥ 1} be an array of rowwise NSD random variables which is stochastically dominated by a
random variable X with EXni = 0 and E|X|α/(log |X|)α/γ−δ < ∞ for some 1 < α ≤ 2, α > γ > 0, and 0 < δ < α/γ.
Noting that E|X|α/(log |X|)α/γ−δ < ∞ is equivalent to

∑
∞

n=1 P
(
|X| > εn1/α(log n)1/γ

)
< ∞, we have by the definition

of stochastic domination that for all ε > 0,

∞∑
n=1

1
n

n∑
i=1

P (|aniXni| > bnε) ≤ C
∞∑

n=1

1
n

n∑
i=1

P
(
|X| > εn1/α(log n)1/γ

)
= C

∞∑
n=1

P
(
|X| > εn1/α(log n)1/γ

)
< ∞.

Thus, it follows from Theorem 3.2 and the inequality above that for all ε > 0,

∞∑
n=1

1
n

P

max
1≤m≤n

∣∣∣∣∣∣∣
m∑

i=1

Xni

∣∣∣∣∣∣∣ > εn1/α(log n)1/γ

 < ∞.
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