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Drawing Graph Joins in the Plane with Restrictions on Crossings
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Abstract. A graph is called 1-planar if it can be drawn in the plane so that each of its edges is crossed by
at most one other edge. In 2014, Zhang showed that the set of all 1-planar graphs can be decomposed into
three classes C0,C1 and C2 with respect to the types of crossings. He proved that every n-vertex 1-planar
graph of class C1 has a C1-drawing with at most 3

5 n − 6
5 crossings. Consequently, every n-vertex 1-planar

graph of class C1 has at most 18
5 n − 36

5 edges.
In this paper we prove a stronger result. We show that every C1-drawing of a 1-planar graph has at

most 3
5 n− 6

5 crossings. Next we present a construction of n-vertex 1-planar graphs of class C1 with 18
5 n− 36

5
edges. Finally, we present the decomposition of 1-planar join products.

1. Introduction

All graphs considered in this paper are finite, simple and undirected, unless otherwise stated. We use
V(G) and E(G) to denote the vertex set and the edge set of a graph G, respectively. The crossing number of
G, denoted by cr(G), is the minimum possible number of crossings in a drawing of G in the plane.

A drawing of a graph is 1-planar if each of its edges is crossed at most once. If a graph has a 1-planar
drawing, then it is 1-planar. Let G be a 1-planar graph drawn in the plane so that none of its edges is crossed
more than once. The associated plane graph G× of G is the plane graph obtained from G so that the crossings
of G become new vertices of degree four; we call these vertices false. Vertices of G× which are also vertices
of G are called true. Similarly, the edges and faces of G× are called false, if they are incident with a false
vertex, and true otherwise. For a false vertex c let NG× (c) denote the set of neighbors of c in G×.

It is easy to see that if a graph has a 1-planar drawing in which two edges e1, e2 with a common endvertex
cross, then the drawing of e1 and e2 can be changed so that these two edges no longer cross. Therefore,
we may assume that adjacent edges never cross and that no edge is crossing itself. Consequently, every
crossing involves two edges with four distinct endvertices, i.e. |NG× (c)| = 4 for every false vertex c.

A 1-planar graph is of class C0 if it has a 1-planar drawing D such that for any two false vertices c1, c2
of D× it holds |ND× (c1) ∩ ND× (c2)| = 0. This class of 1-planar graphs was investigated in [7, 9, 10] under
the notion plane graphs with independent crossings. A 1-planar graph is of class Ci, i ∈ {1, 2}, if it is not
of class Ck for any k < i and it has a 1-planar drawing D such that for any two false vertices c1, c2 of D× it
holds |ND× (c1) ∩ ND× (c2)| ≤ i. The corresponding drawing is called Ci-drawing, i = 0, 1, 2. The class C1 was
investigated in [8] under the notion plane graphs with near-independent crossings.
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The author of [8] proved that any goodC1-drawing (that is, aC1-drawing with minimum possible number
of crossings) of an n-vertex 1-planar graph of classC1 has at most 3

5 n− 6
5 crossings. In this paper we improve

this result. We show that this bound holds for any C1-drawing. From this result it follows that any n-vertex
1-planar graph of class C1 has at most 18

5 n − 36
5 edges. We show that this bound is tight.

The obtained results help us to determine the decomposition of 1-planar join products. The join product
(or shortly, join) G + H of two graphs G and H is obtained from vertex-disjoint copies of G and H by adding
all edges between V(G) and V(H).

The disjoint union of two graphs G1 and G2 will be denoted by G1∪G2 and the disjoint union of k copies
of a graph G1 will be denoted by kG1.

2. Results

First we show (for the sake of completeness) that every 1-planar graph G has a 1-planar drawing D such
that for any two false vertices c1, c2 of D× it holds |ND× (c1) ∩ND× (c2)| ≤ 2 (cf. Proposition 1.1 in [8]).

Assume that there are crossings c1, c2 in a 1-planar drawing D such that for the corresponding false
vertices it holds |ND× (c1)∩ND× (c2)| ≥ 3. Let xy and zw be the edges which cross at c1. Since |ND× (c1)∩ND× (c2)| ≥
3, without loss of generality, we can assume that the crossing c2 is the interior point of the edge xz. In this
case we can redraw the edge xz such that it is crossing-free by following the edges that cross at c1 from x
and z until they meet in a close neighborhood of c1. Therefore, if D× contains false vertices c1, c2 such that
|ND× (c1) ∩ND× (c2)| ≥ 3, then we can eliminate one of them.

In the following we deal with the classification of 1-planar joins.

Lemma 2.1. Let W be a 1-planar graph of class C0. Then any C0-drawing of W contains at most |V(W)|
4 crossings.

Proof. It follows from the definition of C0-drawing.

Lemma 2.2. (cf. Lemma 2.9 in [8] ) Let W be a 1-planar graph of class C1. If W has at most 8 vertices, then any
C1-drawing of W has at most two crossings.

Proof. Let c1, c2, c3 be crossings in a C1-drawing D of W. Clearly, |ND× (c1) ∪ ND× (c2)| ≥ 7, since D is a C1-
drawing. Therefore, there is at most one true vertex in D× which is incident neither c1 nor c2. The false
vertex c3 is incident with at most one vertex in ND× (c1) and with at most one vertex in ND× (c2). Consequently,
c3 has at most three (true) neighbors, a contradiction.

Theorem 2.3. [5] Let Km,n denote the complete bipartite graph on m+n vertices. Then cr(Km,n) =
⌊

m
2

⌋ ⌊
m−1

2

⌋ ⌊
n
2

⌋ ⌊
n−1

2

⌋
for min{m,n} ≤ 6.

Lemma 2.4. If |V(G)| ≥ |V(H)| ≥ 4 and G + H is 1-planar, then G + H is of class C2.

Proof. If |V(G)| ≥ |V(H)| ≥ 4, then G+H contains K4,4 as a subgraph. The graph K4,4 is 1-planar, see [2]. From
Theorem 2.3 we have cr(K4,4) = 4, therefore any 1-planar drawing of K4,4 contains at least four crossings.
Hence, Lemma 2.1 and Lemma 2.2 imply that the graph K4,4 is of class C2 . The fact that G + H contains a
subgraph of class C2 implies that G + H also belongs to C2.

Lemma 2.5. If |V(G)| ≥ 5, |V(H)| ≥ 3 and G + H is 1-planar, then G + H is of class C2.

Proof. In this case G+H contains K5,3 as a subgraph. The graph K5,3 is 1-planar, see [2]. The crossing number
of K5,3 is four (see Theorem 2.3), hence (by Lemma 2.1 and Lemma 2.2) it is of class C2. Consequently, the
supergraph G + H of K5,3 is also of class C2.

From Lemma 2.4 and Lemma 2.5 we obtain, that there are only three possible cases for G + H to belong
to classes C0 and C1, namely:

• |V(G)| = |V(H)| = 3.

• |V(G)| = 4 and |V(H)| = 3.

• |V(G)| ≥ |V(H)| and |V(H)| ≤ 2.
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2.1. The first case: |V(G)| = |V(H)| = 3
If the graphs G and H have together (at most) six vertices, then G + H is always 1-planar, since it is a

subgraph of the complete graph on six vertices K6 which is 1-planar, see [2].

Lemma 2.6. If W is a 1-planar graph on at most six vertices, then W is either of class C0 or C2.

Proof. If W has a 1-planar drawing with at most one crossing, then it is of class C0. If any 1-planar drawing
D of W has at least two crossings, say c1, c2, then it is of class C2, since |ND× (c1) ∩ND× (c2)| > 1.

Let Cn and Pn denote the cycle and the path on n vertices, respectively.

Lemma 2.7. The graphs C3 + (P2 ∪ P1) and P3 + P3 are of class C0.

Proof. C0-drawings of the graphs C3 + (P2 ∪ P1) and P3 + P3 are shown in Figure 1.

C3 + (P2 ∪ P1) P3 + P3

Figure 1: C0-drawings of the graphs C3 + (P2 ∪ P1) and P3 + P3.

The crossing numbers of join products of cycles and paths were studied in [6].

Theorem 2.8. [6] cr(Cn + Pm) =
⌊

m
2

⌋ ⌊
m−1

2

⌋ ⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 1 for m ≥ 2,n ≥ 3 with min{m,n} ≤ 6.

Lemma 2.9. The graph C3 + P3 is of class C2.

Proof. The join C3 + P3 is 1-planar, since it is a subgraph of K6, which is 1-planar. From Theorem 2.8 it
follows cr(C3 + P3) = 2. Hence, Lemma 2.1 and Lemma 2.6 imply that C3 + P3 is of class C2.

2.2. The second case: |V(G)| = 4 and |V(H)| = 3
Lemma 2.10. If |V(G)| = 4 and |V(H)| = 3, then the graph G + H cannot be of class C0.

Proof. The graph G + H contains K4,3 as a subgraph whose crossing number is two (by Theorem 2.3). This
means that any drawing of G + H contains at least two crossings. Therefore, G + H cannot be of class C0
(see Lemma 2.1).

Lemma 2.11. The graphs P4 + P3 and 2P2 + C3 are of class C1.

Proof. From Lemma 2.10 it follows that these graphs cannot be of class C0. C1-drawings of the graphs
P4 + P3 and 2P2 + C3 are shown in Figure 2.



J. Czap, P. Šugerek / Filomat 31:2 (2017), 363–370 366

P4 + P3 2P2 + C3

Figure 2: C1-drawings of the graphs P4 + P3 and 2P2 + C3.

Lemma 2.12. Let |V(G)| = 4 and |V(H)| = 3. If G + H is 1-planar and G contains a vertex of degree three, then
G + H is of class C2.

Proof. In this case the graph G contains K3,1 as a subgraph. Hence, G + H contains K3,3,1 as a subgraph.
The crossing number of K3,3,1 is 3, see [1]. Therefore, from Lemma 2.2 it follows that K3,3,1 does not have a
C1-drawing. Consequently, if its supergraph G + H is 1-planar, then it must be of class C2.

Lemma 2.13. The graph C4 + 3P1 is of class C2.

Proof. The join C4 + 3P1 is 1-planar, see [3]. From Lemma 2.10 it follows that C4 + 3P1 cannot be of class
C0. Assume that it is of class C1. Color the edges of C4 with red and the other edges of C4 + 3P1 with black
(the edges which join vertices of C4 and 3P1). Any drawing of C4 + 3P1 has at least two crossings which are
incident with only black edges, since the black edges induce K4,3. Therefore, any C1-drawing of C4 + 3P1
has exactly two crossings (see Lemma 2.2). This means that in any C1-drawing of C4 + 3P1 no red edge is
crossed. The red cycle divides the plane into two parts. If all vertices of 3P1 belong to the same part, then
we remove one of them, after that we insert the removed vertex to the other part and we join it with the
vertices of C4. Clearly, we again obtain a C1-drawing of C4 + 3P1. So we can assume that the inner part of C4
contains exactly two vertices of 3P1. Consequently, all crossings are inside the red C4, since the black edges
which are outside the red C4 are incident with a common vertex and no red edge is crossed. Therefore, if
we remove the vertex which lies outside the red C4 we obtain a C1-drawing of a graph on six vertices (with
two crossings), a contradiction (see Lemma 2.6).

Lemma 2.14. The graph (C3 ∪ P1) + 3P1 is of class C2.

Proof. The join (C3 ∪P1) + 3P1 is 1-planar, see [3]. From Lemma 2.10 it follows that (C3 ∪P1) + 3P1 cannot be
of class C0. Assume that it is of class C1. Then any C1-drawing of (C3 ∪ P1) + 3P1 has exactly two crossings.
Let D be a C1-drawing of (C3 ∪ P1) + 3P1. The associated plane graph D× has 9 vertices and 19 edges. Any
plane triangulation on 9 vertices has 21 edges. This implies that D× has either a face of size 5 or two faces
of size 4. If D× has a face f of size 5, then there are at least 3 true vertices on the boundary of f (since
false vertices cannot be adjacent). We claim that we can add two diagonals e1, e2 to f which join only true
vertices. This is not possible if and only if at least one of these edges is already present in (C3 ∪ P1) + 3P1.
Assume that e1 is in (C3 ∪ P1) + 3P1. If it is crossed by an other edge, then by relocating e1 to the inner part
of f we can decrease the number of crossings to one, which is not possible. If e1 is not crossed, then its
endvertices form a 2-vertex-cut in D×. In [4] it was proved, that the associated plane graph of a 3-connected
1-plane graph with minimum number of crossings is also 3-connected. Since (C3 ∪ P1) + 3P1 is 3-connected
(it contains a 3-connected induced subgraph K4,3), it cannot contain a 2-vertex-cut.

If D× contains two faces of size 4, then we can proceed similarly as above.
Consequently, we can add two edges to D× which join only true vertices. If at least one of these two

edges, say e1, joins two vertices of C3 ∪ P1, then we obtain a C1-drawing of G + 3P1, where G is a graph
C3 ∪ P1 with the edge e1. Since G contains a vertex of degree 3, Lemma 2.12 implies that G + 3P1 does not
belong to the class C1, a contradiction. Therefore, the two edges e1, e2 must join vertices of 3P1. In this case
we obtain a C1-drawing of (C3 ∪ P1) + P3, what is impossible, since its subgraph C3 + P3 is of class C2, see
Lemma 2.9.
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Lemma 2.15. The graph (P3 ∪ P1) + C3 is of class C2.

Proof. It follows from Lemma 2.9.

2.3. The last case: |V(G)| ≥ |V(H)| and |V(H)| ≤ 2
Note that the graphs nP1 + 2P1 = Kn,2 and nP1 + P1 = Kn,1 are planar, hence they belong to C0. Therefore,

if the graph H has at most two vertices, then there exists graph G with arbitrarily many vertices such that
the join G + H is 1-planar. Hence, it is not possible to describe, in this case, belonging of G + H without
additional constraints on G.

2.3.1. The maximum degree of G
Let ∆(G) denote the maximum degree of a graph G.

Lemma 2.16. If G + 2P1 or G + P2 is of class C0, then ∆(G) ≤ 3. Moreover, this bound is tight.

Proof. If G has a vertex of degree at least four, then it contains K4,1 as a subgraph. Therefore, K4,3 is a
subgraph of G + H. The crossing number of K4,3 is two, therefore K4,3 and its supergraph G + H cannot be
of class C0, see Lemma 2.1.

Now we show that the bound is sharp. Let Ck = v1v2 . . . vkv1 be a cycle on k ≥ 6 vertices. The plane
drawing of this cycle divides the plane into two parts. Insert the edges v1v3 and v4v6 into different parts.
We obtain a graph Gk which has k vertices, k + 2 edges and maximum degree three, moreover, if we put the
vertices of 2P1 into different faces of size k − 1, then we can easily obtain a C0-drawing of Gk + 2P1.

Let G−k be the graph obtained from Gk by removing the edge v3v4. Clearly, ∆(G−k ) = 3 and the graph
G−k + P2 has a C0-drawing.

Lemma 2.17. If G + 2P1 or G + P2 is of class C1, then ∆(G) ≤ 4. Moreover, this bound is tight.

Proof. If G has a vertex of degree at least five, then it contains K5,1 as a subgraph. Therefore, G + H contains
K5,3 as a subgraph, moreover, K5,3 is of class C2 (see the proof of Lemma 2.5). Consequently, the supergraph
G + H of K5,3 cannot be of class C1.

Figure 3 describes a graph G of maximum degree four and a C1-drawing of G + 2P1, therefore the upper
bound 4 for ∆(G) is sharp.

−→

Figure 3: The graph G and a C1-drawing of G + 2P1.

2.3.2. The number of edges of G
Theorem 2.18. [9] Let W be a 1-planar graph of class C0. Then |E(W)| ≤ 13

4 |V(W)| − 6. Moreover, this bound is
tight.

The following assertion improves Theorem 2.2 in [8]. The author of [8] considered only such drawings
which have the minimum number of crossings.

Lemma 2.19. Let W be an n-vertex 1-planar graph of class C1. Then every C1-drawing of W has at most 3
5 n − 6

5
crossings.
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Proof. Let D be a C1-drawing of W. Let c denote the number of crossings in D. The associated plane graph
D× has n + c vertices. Note that no two false vertices are adjacent in D×. Hence, we can extend D× to
a plane semitriangulation T (i.e. a plane multigraph triangulating the plane) by adding some edges into
non-triangular faces of D× which join only true vertices.

The obtained semitriangulation T has 2n+2c−4 faces (Let F(T) denote the face set of T. Clearly, 3|F(T)| =
2|E(T)|, since T is a semitriangulation. Combining this equality with Euler’s formula |V(T)|−|E(T)|+|F(T)| = 2,
we obtain |F(T)| = 2|V(T)| − 4) and 4c of them are false.

Observe that every true edge in T is incident with at most one false face. Therefore, the number of false
faces cannot be greater than the number of true edges. On the other hand, every true edge is incident with a
true face. Hence, the number of true edges is at most triple the number of true faces. Consequently, 4c ≤ 3t,
where t denotes the number of true faces.

Therefore, 2n + 2c − 4 = 4c + t ≥ 4c + 4
3 c. Consequently, 2n − 4 ≥ 10

3 c, which implies c ≤ 3
5 n − 6

5 .

Lemma 2.19 implies that every 1-planar graph G of class C1 has at most 18
5 |V(G)| − 36

5 edges, see [8]. Now
we show that this bound is tight.

We can construct graphs with the desired property using the graphs depicted in Figure 4.

u3

u2u1

v1

v2v3

v
′

3

v
′

2
v
′

1

u
′

3

u
′

1
u
′

2

G1 G2

Figure 4: The graphs G1 and G2.

Let S be a graph obtained from G1 by inserting the graph G2 into the central triangle v1v2v3 of G1 (by
identifying the triangles v1v2v3 and v′1v′2v′3). Let T be a graph obtained from S by inserting the graph G1 into
the central triangle u′1u′2u′3 of S (by identifying the triangles u′1u′2u′3 and u1u2u3). This graph has 27 vertices
and 90 edges, moreover, 18

5 · 27 − 36
5 = 90. Note that, if we iterate this procedure (in the second step we

begin with T) we can produce an infinite family of examples with the desired property.

Lemma 2.20. If G + 2P1 is of class C0, then |E(G)| ≤ |V(G)| + 2. Moreover, this bound is tight.

Proof. Let D be a C0-drawing of G + 2P1. Remove the two vertices of 2P1 from D thereby obtaining a
C0-drawing of G. First we show that this C0-drawing of G contains no crossings. Assume that, in this
drawing of G, the edges xy and zw cross each other at a crossing c. Now consider a subgraph {xy, zw}+ 2P1
of G + 2P1 in the drawing D. Lemma 2.1 implies that this drawing of {xy, zw} + 2P1 can contain at most
one crossing. Now we draw the edges xz, zy, yw,wx to {xy, zw} + 2P1 such that they are crossing-free by
following the edges that cross at c from the endvertices until they meet in a close neighborhood of c. In this
way we obtain a C0-drawing of K6 minus one edge. Any planar graph on 6 vertices has at most 12 edges.
The graph K6 minus one edge has 6 vertices and 14 edges. Therefore, any drawing of K6 minus one edge
has at least two crossings, consequently, it cannot admit a C0-drawing (see Lemma 2.1), a contradiction.

Since the drawing D without 2P1 is crossing-free, every crossed edge in D has an endvertex in 2P1.
Hence, D contains at most two crossings (since it is a C0-drawing). If we remove one crossed edge for each
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crossing in D, then we obtain a drawing without crossings. This implies |E(G)| + 2|V(G)| = |E(G + 2P1)| ≤
3|V(G + 2P1)| − 6 + 2 = 3|V(G)| + 2, which proves the claim.

To see that the bound is sharp it is sufficient to consider the graph Gk defined in the proof of Lemma
2.16.

Lemma 2.21. If G + P2 is of class C0, then |E(G)| ≤ |V(G)| + 1. Moreover, this bound is tight.

Proof. We can proceed similarly as in the proof of Lemma 2.20.

Lemma 2.22. If G + P1 is of class C0, then |E(G)| ≤ 9
4 |V(G)| − 11

4 . Moreover, this bound is tight.

Proof. From Theorem 2.18 we obtain |E(G)| + |V(G)| = |E(G + P1)| ≤ 13
4 |V(G + P1)| − 6 = 13

4 |V(G)| − 11
4 which

proves the claim.
Now we prove that the bound is sharp. Put n = 2k with k ≥ 2 being even. Take two paths a1a2 . . . ak−1ak,

b1b2 . . . bk−1 and, for each i ∈ {1, . . . , k− 1}, add new edges aibi, ai+1bi and the edge ak−2ak; in addition, for each
even j ∈ {2, . . . , k − 2}, add new edges b ja j−1. The resulting graph Gn−1 has n − 1 vertices and 9

4 (n − 1) − 11
4

edges and a 1-planar drawing in which the edges aibi+1, ai+1bi cross, for each odd i ∈ {1, . . . , k − 3} and the
other edges are crossing-free (see Figure 5). If we put a new vertex v into the outer face of G×n−1 and join it
with all vertices of G×n−1 such that the edge vak−1 cross the edge bk−1ak and the other edges incident with v
are crossing-free, then we obtain a C0-drawing of Gn−1 + P1.

Figure 5: The graph G11.

Lemma 2.23. If G + 2P1 is of class C1, then |E(G)| ≤ 8
5 |V(G)|.

Proof. Since every 1-planar graph G of class C1 has at most 18
5 |V(G)| − 36

5 edges, we obtain |E(G)|+ 2|V(G)| =
|E(G + 2P1)| ≤ 18

5 |V(G + 2P1)| − 36
5 = 18

5 |V(G)|which proves the claim.

Lemma 2.24. There is a graph G with |E(G)| = 3
2 |V(G)| such that G + 2P1 is of class C1.

Proof. Let C = v1v2 . . . v4`v1 be a cycle on 4` ≥ 8 vertices. The plane drawing of this cycle divides the
plane into two parts. Add the edges v4k−2v4k, k = 1, . . . , `, to the inner part and the edges v4`v2,v4kv4k+2,
k = 1, . . . , `−1, to the outer part. In such a way we obtain a graph G with 4` vertices and 6` edges. Moreover,
G + 2P1 has a C1-drawing.

Lemma 2.25. If G + P1 is of class C1, then |E(G)| ≤ 13
5 |V(G)| − 18

5 .

Proof. Similarly as in the proof of Lemma 2.23 we obtain |E(G)| + |V(G)| = |E(G + P1)| ≤ 18
5 |V(G + P1)| − 36

5 =
18
5 |V(G)| − 18

5 which proves the claim.

Lemma 2.26. There is a graph G with |E(G)| = 12
5 |V(G)| − 19

5 such that G + P1 is of class C1.

Proof. Let G1 be a graph depicted in Figure 6. Let Gk, k ≥ 2, be a graph obtained from Gk−1 and G1 by
identifying the edges v1v2 of Gk−1 and u1u2 of G1. The graph Gk, k ≥ 2, has 3k + 1 vertices of degree three,
k vertices of degree six, k − 1 vertices of degree nine and 2 vertices of degree four. Therefore, it has 12k + 1
edges. On the other hand, this graph has 5k + 2 vertices. Consequently, |E(Gk)| = 12

5 |V(Gk)| − 19
5 .

The graph Gk + P1 has a C1-drawing, since Gk is of class C1 and all true vertices of G×k are incident with
the outer face.
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v2

v1

u2

u1

G1 G4

Figure 6: The graphs G1 and G4.

3. Conclusion

In this paper we showed that every 1-planar graph is of class Ci for some i ∈ {0, 1, 2}. After that we
proved that the join G + H is of class C0 if and only if the pair [G,H] is subgraph-majorized (that is, both G
and H are subgraphs of graphs of the major pair) by one of pairs [C3,P2 ∪ P1], [P3,P3] and is of class C1 if
and only if the pair [G,H] is subgraph-majorized by one of pairs [2P2 ∪ C3], [P4,P3] in the case when both
factors of the graph join have at least three vertices.

In [3] it was proved that the join G + H is 1-planar if and only if the pair [G,H] is subgraph-majorized by
one of pairs [C3 ∪C3,C3], [C4,C4], [C4,C3], [K2,1,1,P3] in the case when both factors of the graph join have at
least three vertices. Therefore we have full characterization of 1-planar joins in the case when both factors
have at least three vertices.

Finally, we proved several necessary conditions for the bigger factor in the case when the smaller one
has at most two vertices; in addition, we improved two results of Zhang [8].
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