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C-Normal Topological Property
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Abstract. A topological space X is called C-normal if there exist a normal space Y and a bijective function
f : X −→ Y such that the restriction f� C : C −→ f (C) is a homeomorphism for each compact subspace
C ⊆ X. We investigate this property and present some examples to illustrate the relationships between
C-normality and other weaker kinds of normality.

Introduction

In this paper, we investigate C-normal topological property which was presented by Arhangel’skii in
2012 when he was visiting Mathematics Department, King Abdulaziz University at Jeddah, Saudi Arabia.
We prove that both submetrizability and local compactness imply C-normality but the converse is not true in
general. We present some examples to show that C-normality and mild normality are independent of each
other. Throughout this paper, we denote an ordered pair by 〈x, y〉, the set of positive integers byN and the
set of real numbers byR. A T4 space is a T1 normal space, and a Tychonoff space is a T1 completely regular
space. For a subset A of a space X, intA and A denote the interior and the closure of A, respectively. An
ordinal γ is the set of all ordinals α such that α < γ. The first infinite ordinal is ω0 and the first uncountable
ordinal is ω1.

1. C-Normal Topological Property

Definition 1.1. (Arhangel’skii, 2012) A topological space X is called C-normal if there exist a normal space
Y and a bijective function f : X −→ Y such that the restriction f� C : C −→ f (C) is a homeomorphism for
each compact subspace C ⊆ X.

Obviously, any normal space is C-normal, just by taking X = Y and f to be the identity function. But
the converse is not true in general. For example, the square of the Sorgenfrey line is C-normal which
is not normal. It is C-normal because it is submetrizable. Recall that a topological space (X, τ) is called
submetrizable if there exists a metric d on X such that the topology τd on X generated by d is coarser than τ,
i.e. τd ⊆ τ, see [2].

Theorem 1.2. Every submetrizable space is C-normal.
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Proof. Let τ′ be a metrizable topology on X such that τ′ ⊆τ. Then ( X , τ′ ) is normal and the identity
function idX : ( X , τ ) −→ ( X , τ′ ) is a continuous bijective. If C is any compact subspace of ( X , τ ), then
the restriction of the identity function on C onto idX(C) is a homeomorphism because C is compact, idX(C)
is Hausdorff being a subspace of the metrizable space ( X , τ′ ), and every continuous one-to-one mapping
of a compact space onto a Hausdorff space is a homeomorphism [1, 3.1.13].

Arhangel’skii introduced the notion of epinormality on his visit to Saudi Arabia as mentioned earlier.
A topological space (X, τ) is called epinormal if there is a coarser topology τ′ on X such that ( X , τ′ ) is T4.
By a similar proof as that of Theorem 1.2 above, we can prove the following corollary.

Corollary 1.3. Every epinormal space is C-normal.

Any indiscrete space which has more than one element is an example of a C-normal space which is not
epinormal.

Corollary 1.4. If X is a T1 space such that the only compact subsets are the finite subsets, then X is C-normal.

Proof. Let X be a T1 space such that the only compact subsets are the finite subsets. Let Y = X and consider
Y with the discrete topology. Then the identity function from X onto Y works.

Here is an example of a non-C-normal space,

Example 1.5. R with the particular point topology τp, see [8], where the particular point is p ∈ R, is not
C-normal. Recall that τp = {∅} ∪ {U ⊆ R : p ∈ U}. It is well-known that (R , τp) is neither T1 nor normal
space and if A ⊆ R, then {{x, p } : x ∈ A} is an open cover for A, thus a subset A of R is compact if and only
if it is finite. To see that (R , τp) is not C-normal, suppose that (R , τp) is C-normal. Let Y be a normal space
and f : R −→ Y be a bijective such that the restriction f� C : C −→ f (C) is a homeomorphism for each
compact subspace C of (R , τp). For the space Y, we have only two cases:

Case 1: Y is T1. Take C = {x, p}, where x , p; then C is a compact subspace of (R , τp). By assumption
f� C : C −→ f (C) = { f (x), f (p)} is a homeomorphism. Since f (C) is a finite subspace of Y and Y is T1, then
f (C) is a discrete subspace of Y. Thus, we obtain that f|C is not continuous which is a contradiction as f|C is
a homeomorphism.

Case 2: Y is not T1. We claim that the topology on Y is the particular point topology with f (p) as its
particular point. To prove this claim, we suppose not, then there exists a non-empty open set U ⊂ Y such
that f (p) < U. Pick y ∈ U and let x ∈ R be the unique real number such that f (x) = y. Consider {x, p }. Note
that x , p because f (x) = y ∈ U, f (p) < U, and f is one-to-one. Consider f� {x, p} : {x, p} −→ {y, f (p)}. Now,
{y} is open in the subspace {y, f (p) } of Y because {y} = U ∩ {y, f (p)}, but f−1({y}) = {x} and {x} is not open
in the subspace {x, p} of (R , τp), which means f� {x, p} is not continuous, a contradiction, and our claim is
proved. But any particular point space consisting of more than one point cannot be normal, so we get a
contradiction as Y is assumed to be normal.

Therefore, (R , τp) is not C-normal.

Theorem 1.6. If X is a compact non-normal space, then X cannot be C-normal.

Proof. Let X be a compact non-normal space. Suppose that X is C-normal, then there exist normal space Y
and a bijective function f : X −→ Y such that the restriction f� C : C −→ f (C) is a homeomorphism for each
compact subspace C ⊆ X. Since X is compact, then X � Y, and this is a contradiction as Y is normal and X
is not. Therefore, X cannot be C-normal.

From the above theorem, we conclude that R with the finite complement topology is not C-normal.

Theorem 1.7. C-normality is a topological property.
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Proof. Let X be a C-normal space and let X � Z. Let Y be a normal space and let f : X −→ Y be a bijective
function such that the restriction f� C : C −→ f (C) is a homeomorphism for each compact subspace C ⊆ X.
Let 1 : Z −→ X be a homeomorphism. Then Y and f ◦ 1 : Z −→ Y satisfy the requirements.

A space X is called locally compact if X is Hausdorff and for each x ∈ X and each open neighborhood V
of x there exists an open neighborhood U of x such that x ∈ U ⊆ U ⊆ V and U is compact.

Theorem 1.8. Every locally compact space is C-normal.

Proof. Let X be any locally compact topological space. By [1, 3.3.D] and [5], there exists a T2 compact space
Z and a bijective continuous f : X −→ Z. Since f is continuous, then for any compact subspace A ⊆ X we
have that f� A : A −→ f (A) is a homeomorphism because 1 − 1, onto, and continuity are inherited from f ,
and f� A is closed as A is compact and f (A) is Hausdorff.

Corollary 1.9. Since every locally compact space is C-normal, Deleted Tychonoff Plank [8] is a Tychonoff non-normal
space which is C-normal.

The converse of Theorem 1.8 is not true in general as shown by the following example.

Example 1.10. Recall that the Dieudonné Plank, [8], is defined as follows: Let

X = ((ω1 + 1) × (ω0 + 1)) \ {〈ω1, ω0〉}.

Write X = A ∪ B ∪ N, where A = {〈ω1,n〉 : n < ω0}, B = {〈α,ω0〉 : α < ω1}, and N = {〈α,n〉 : α < ω1 and
n < ω0}. The topology τ on X is generated by the following neighborhood system: For each 〈α,n〉 ∈ N,
let B(〈α,n〉) = {{〈α,n〉}}. For each 〈ω1,n〉 ∈ A, let B(〈ω1,n〉) = {Vα(n) = (α,ω1] × {n} : α < ω1}. For each
〈α,ω0〉 ∈ B, let B(〈α,ω0〉) = {Vn(α) = {α} × (n, ω0] : n < ω0}. It is well-known that the Dieudonné Plank is
Tychonoff non-normal space which is not locally compact, [8]. Now, a subset C ⊆ X is compact if and only
if C satisfies all of the following conditions:

(i) C ∩ A and C ∩ B are both finite;
(ii) If 〈ω1,n〉 ∈ C, then the set (ω1 × {n}) ∩ C is finite;

(iii) The set {〈α,n〉 ∈ C : 〈α,ω0〉 < C } is finite.

Now, define Y = X = A ∪ B ∪ N. Generate a topology τ′ on Y by the following neighborhood system:
Elements of B ∪ N have the same local base as in X. For each 〈ω1,n〉 ∈ A, let B(〈ω1,n〉) = {{〈ω1,n〉}}. Then
Y is T4 space because it is paracompact. Consider the identity function id : X −→ Y. Let C ⊂ X be any
compact subspace. Then id� C : C −→ id(C) = C is a bijectition. Let 〈a, b〉 be any element in C. If 〈a, b〉 ∈ N,
then {〈a, b〉} which is open in C as a subspace of X and Y will give that id� C is continuous. If 〈a, b〉 ∈ B and
W is any basic open set of 〈a, b〉 in C as a subspace of Y, then W is also a basic open set of 〈a, b〉 in C as a
subspace of X, hence id� C is continuous. If 〈a, b〉 ∈ A, then the smallest open neighborhood of 〈a, b〉 in C as
a subspace of Y is {〈a, b〉}. Since C is compact in X, then, by item (ii) above, the set (ω1 × {b}) ∩ C is finite.
Write (ω1 × {b}) ∩ C = {〈α1, b〉, ..., 〈αm, b〉}. Pick β < ω1 such that αi < β for each i ∈ {1, ...,m}. Then Vβ(b) is a
basic open set of 〈a, b〉 in X, hence Vβ(b) ∩ C = {〈a, b〉} is an open neighborhood of 〈a, b〉 in C as a subspace
of X. Thus id� C is continuous. From the three cases, we conclude id� C is continuous. Since C is compact
as a subspace of X and C is Hausdorff as a subspace of Y, we conclude that id� C is a homeomorphism.
Therefore, the Dieudonné Plank X is C-normal.

2. C-Normality and Other Properties

Recall that, see [3] and [4], a subset E of a space X is called a closed domain (called also, regularly closed,
κ-closed) if E = intE, and a topological space X is called mildly normal [6] (called also, κ-normal [7]) if any
two disjoint closed domains E and F of X, there exist two disjoint open sets U and V such that E ⊆ U and
F ⊆ V. In general, C-normality and mild normality do not imply each other. (R , τp) is not C-normal, as
we proved in 1.5, but it is mildly normal as the only closed domains are R and the empty set. C-normality
does not imply mild normality as shown by the following example.
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Example 2.1. Let P denote the irrationals and Q denote the rationals. For each p ∈ P and n ∈ N, let
pn = 〈p, 1

n 〉 ∈ R
2. For each p ∈ P, fix a sequence (p?n )n∈N of rationals such that p′n = 〈p?n , 0〉 −→ 〈p, 0〉, where the

convergence is taken in R2 with its usual topologyU. For each p ∈ P and n ∈N, let An(〈p, 0〉) = {p′k : k ≥ n}
and Bn(〈p, 0〉) = {pk : k ≥ n}. Now, for each p ∈ P and n ∈N, let Un(〈p, 0〉) = {〈p, 0〉} ∪ An(〈p, 0〉) ∪ Bn(〈p, 0〉).

Let X = {〈x, 0〉 ∈ R2 : x ∈ R} ∪ {〈p, 1
n 〉 = pn : p ∈ P and n ∈N}. For each q ∈ Q, let B(〈q, 0〉) = {{〈q, 0〉}}. For

each p ∈ P, let B(〈p, 0〉) = {Un(〈p, 0〉) : n ∈ N}. For each p ∈ P and each n ∈ N, let B(pn) = {{pn}}. Denote by
τ the unique topology on X that has {B(〈x, 0〉),B(pn) : x ∈ R, p ∈ P,n ∈N} as its neighborhood system. Let
Z = {〈x, 0〉 : x ∈ R}. That is, Z is the x-axis. Then ( Z, τZ ) � (R , RS ), where RS is the Rational Sequence
Topology, see [8]. Since Z is closed in X and (R , RS ) is not normal, then X is not normal, but, since any
basic open set is closed-and-open and X is T1, then X is zero-dimensional, hence Tychonoff. Now, Let E ⊂ P
and F ⊂ P be closed disjoint subsets that cannot be separated in (R , RS ). Let C = ∪{B1(〈p, 0〉) : p ∈ E} and
D = ∪{B1(〈p, 0〉) : p ∈ F}. Then C and D are both open in ( X, τ ) and C and D are disjoint closed domains
that cannot be separated, hence X is not mildly normal. But X is submetrizable, hence C-normal.

Let X be any topological space. Let X′ = X × {1}. Note that X ∩ X′ = ∅. Let A(X) = X ∪ X′. For
simplicity, for an element x ∈ X, we will denote the element 〈x, 1〉 in X′ by x′ and for a subset B ⊆ X let
B′ = {x′ : x ∈ B} = B×{1} ⊆ X′. For each x′ ∈ X′, letB(x′) = {{x′}}. For each x ∈ X, letB(x) = {U∪(U′\{x′}) : U is
open in X with x ∈ U }. Letτ denote the unique topology on A(X) which has {B(x) : x ∈ X}∪{B(x′) : x′ ∈ X′}
as its neighborhood system. A(X) with this topology is called the Alexandroff Duplicate of X.

Theorem 2.2. If X is C-normal, then its Alexandroff Duplicate A(X) is also C-normal.

Proof. Let X be any C-normal space. Pick a normal space Y and a bijective function f : X −→ Y such
that f� C : C −→ f (C) is a homeomorphism for each compact subspace C ⊆ X. Consider the Alexandroff
duplicate spaces A(X) and A(Y) of X and Y respectively. Since Y is normal, then A(Y) is also normal. Define
1 : A(X) −→ A(Y) by 1(a) = f (a) if a ∈ X. If a ∈ X′, let b be the unique element in X such that b′ = a, then
define 1(a) = ( f (b))′. Then 1 is a bijective function. Now, a subspace C ⊆ A(X) is compact if and only if
C ∩X is compact in X and for each open set U in X with C ∩X ⊆ U, we have that (C ∩X′) \U′ is finite. Let
C ⊆ A(X) be any compact subspace. We show 1� C : C −→ 1(C) is a homeomorphism. Let a ∈ C be arbitrary.
If a ∈ C ∩ X′, let b ∈ X be the unique element such that b′ = a. For the smallest basic open neighborhood
{( f (b))′} of the point 1(a) we have that {a} is open in C and 1({a}) ⊆ {( f (b))′}. If a ∈ C ∩ X. Let W be any
open set in Y such that 1(a) = f (a) ∈ W. Consider H = (W ∪ (W′

\ { f (a)′})) ∩ 1(C) which is a basic open
neighborhood of f (a) in 1(C). Since f� C ∩ X : C∩X −→ f (C∩X) is a homeomorphism, then there exists an
open set U in X with a ∈ U and f� C ∩ X(U ∩ C) ⊆W. Now, (U ∪ (U′ \ {a′})) ∩ C = G is open in C such that
a ∈ G and 1� C(G) ⊆ H. Therefore, 1� C is continuous. Now, we show that 1� C is open. Let K ∪ (K′ \ {k′}),
where k ∈ K and K is open in X, be any basic open set in A(X), then (K ∩ C) ∪ ((K′ ∩ C) \ {k′}) is a basic open
set in C. Since X∩C is compact in X, then 1� C(K∩ (X∩C)) = f� X ∩ C(K∩ (X∩C)) is open in Y∩ f (C∩X) as
f� X ∩ C is a homeomorphism. Thus K∩C is open in Y∩ f (X∩C). Also, 1((K′∩C) \ {k′}) is open in Y′∩1(C)
being a set of isolated points. Thus 1� C is an open function. Therefore, 1� C is a homeomorphism.

Theorem 2.3. C-normality is an additive property.

Proof. Let Xα be a C-normal space for each α ∈ Λ. We show that their sum ⊕α∈ΛXα is C-normal. For each
α ∈ Λ, pick a normal space Yα and a bijective function fα : Xα −→ Yα such that fα� Cα : Cα −→ fα(Cα)
is a homeomorphism for each compact subspace Cα of Xα. Since Yα is normal for each α ∈ Λ, then the
sum ⊕α∈ΛYα is normal, [1, 2.2.7]. Consider the function sum [1, 2.2.E], ⊕α∈Λ fα : ⊕α∈ΛXα −→ ⊕α∈ΛYα defined
by ⊕α∈Λ fα(x) = fβ(x) if x ∈ Xβ, β ∈ Λ. Now, a subspace C ⊆ ⊕α∈ΛXα is compact if and only if the set
Λ0 = {α ∈ Λ : C ∩ Xα , ∅} is finite and C ∩ Xα is compact in Xα for each α ∈ Λ0. If C ⊆ ⊕α∈ΛXα is compact,
then (⊕α∈Λ fα)|C is a homeomorphism because fα� C ∩ Xα is a homeomorphism for each α ∈ Λ0.

The following problems are still open.

Problem 2.4. 1. Is C-normality hereditary with respect to closed subspaces?
2. If X is a Dowker space, is then X × I C-normal? (Arhangel’skii)
3. Does there exist a Tychonoff non-normal space which is not C-normal? (Arhangel’skii)
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