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Available at: http://www.pmf.ni.ac.rs/filomat

A Note on the Perturbation Bounds of W-weighted Drazin Inverse of
Linear Operator in Banach Space

Xue-Zhong Wanga, Hai-feng Mab, Marija Cvetkovićc
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Abstract. We investigate the perturbation bound of the W-weighted Drazin inverse for bounded linear
operators between Banach spaces and present two explicit expressions for the W-weighted Drazin inverse
of bounded linear operators in Banach space, which extend the results in Chin. Anna. Math., 21C:1 (2000)
39-44 by Wei.

1. Introduction

The Drazin inverse is very useful in various applications (for example, applications in singular differ-
ential, difference equations, Markov chains and iterative method were found in the literature [1, 3, 17, 21,
24, 25]).

Cline and Greville [8] extended the Drazin inverse of square matrix to rectangular matrix. The per-
turbation bounds, a characterization, integral representation and the splitting method for the W-weighted
Drazin inverse can be found in ([4–7, 11, 13, 15, 18, 20, 22, 25, 26]). Qiao [16] previously introduced and
investigated the weighted Drazin inverse for bounded linear operators between Banach and Hilbert space,
which extending the concept by Cline and Greville into infinite dimensional situations. Wei [30] presented
the perturbation bound for the Drazin inverse AD of bounded linear operator A in Banach space. In this
note, we give two explicit expressions for the W-weighted Drazin inverse of a perturbed bounded linear
operator in Banach space, which improves the results in [30].

2. Preliminaries

Let H and K denote arbitrary Banach spaces. and B(H ,K ) be the set of all bounded linear operators
from H to K . Also, B(H) = B(H ,H). For any operator A ∈ B(H ,K ), we denote its range and null space
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by R(A) and N(A) respectively. We define the index of A, written by Ind(A), to be the least nonnegative k
for which R(Ak) = R(Ak+1) and N(Ak) = N(Ak+1). We will write ‖ · ‖ for the spectral norm.

Let A ∈ B(H ,K ), W ∈ B(K ,H), if for some nonnegative integer k > 0, there exists X ∈ B(H ,K )
satisfying

(AW)k+1XW = (AW)k, XWAWX = X, AWX = XWA,

then X is called the W-weighted Drazin inverse of A and denoted by X = Ad,w. If there exists Ad,w, then we
say that A is W-weighted Drazin invertible and Ad,w must be unique [18]. When H = K and W = I, the
W-weighted Drazin inverse of A is called Drazin inverse of A and denoted by X = AD. Further, if k = 1, the
Drazin inverse is reduced to group inverse and denoted by A].

The W-weighted Drazin inverse has the following properties ([19, 23]):
(i) Ad,w exists⇔ AW is Drazin invertible⇔WA is Drazin invertible;
(ii) Ad,w = A[(WA)D]2 = [(AW)D]2A;
(iii) Ad,wW = (AW)D, WAd,w = (WA)D;
(iv) WAWAd,w = WA(WA)D, Ad,wWAW = (AW)DAW.

3. Perturbation of the W-Weighted Drazin Inverse

Now we present the explicit formulae for the W-weighted Drazin inverse (A + E)d,w of bounded linear
operators in Banach space.

Throughout this paper, we need some notations. Let the projectors M = Ad,wWAW and F = WAWAd,w.

Theorem 3.1. Let A,E ∈ B(H ,K ), W ∈ B(K ,H) and k = max{Ind(AW), Ind(WA)}. Suppose that R((AW)k)
and R(((A + E)W)k) are closed subspace in H . If E = Ad,wWAWE, Z = I + Ad,wWEW and ‖Ad,w‖‖WEW‖ < 1.
Then we have

(A + E)d,w = Z−1Ad,w +

k−1∑
i=0

(Z−1Ad,wW)i+2E(I − F)(WA)i, (1)

with

‖(A + E)d,w − Ad,w‖

‖Ad,w‖
≤

κd,w(A)‖WEW‖/‖WAW‖
1 − κd,w(A)‖WEW‖/‖WAW‖

+

k−1∑
i=0
‖Z−1Ad,wW‖i+2

‖E(I − F)(WA)i
‖

‖Ad,w‖
,

where κd,w(A) = ‖WAW‖‖Ad,w‖ is the condition number with respect to the W-weighted Drazin inverse of A.

Proof. For the convenience, let H = Ad,w −Ad,wWEWZ−1Ad,w and Y is the right-hand side of (1). Observe
that H = Z−1Ad,w and EW = Ad,wWAWEW. By direct computation, we have

(A + E)WY = (A + E)WH + (A + E)W
k−1∑
i=0

(HW)i+2E(I − F)(WA)i)

= AWAd,w − EWZ−1Ad,w + EWAd,w − EWAd,wWEWZ−1Ad,w

+ (A + E)W
k−1∑
i=0

(HW)i+2E(I − F)(WA)i

= AWAd,w − EW(Z−1
− I + Ad,wWEWZ−1)Ad,w + (A + E)W

k−1∑
i=0

(HW)i+2E(I − F)(WA)i
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= AWAd,w + (A + E)W(Ad,w − Ad,wWEWZ−1Ad,w)W
k−1∑
i=0

(HW)i+1E(I − F)(WA)i

= AWAd,w + AWAd,wW
k−1∑
i=0

(HW)i+1E(I − F)(WA)i

= AWAd,w + Ad,wWAW
k−1∑
i=0

(HW)i+1E(I − F)(WA)i

= AWAd,w +
k−1∑
i=0

(HW)i+1E(I − F)(WA)i.

Since

HW(A + EWAWAd,w) = Ad,wWA + Ad,wWEWAWAd,w − Ad,wWEWZ−1Ad,wWA
−Ad,wWEWZ−1Ad,wWEWAWAd,w

= AWAd,w + Ad,wWEWZ−1(Z − I − Ad,wWEW)AWAd,w
= AWAd,w,

which implies that

HWA = AWAd,w −HWEWAWAd,w,

and then

HW(A + E) = AWAd,w + HWE(I −WAWAd,w) = AWAd,w + HWE(I − F). (2)

Thus, we can obtain

k−1∑
i=0

[HW]i+2E(I − F)(WA)iW(A + E) =
k−1∑
i=0

(HW)i+2E(I − F)(WA)i+1

=
k−1∑
i=1

(HW)i+1E(I − F)(WA)i.
(3)

Combining (2) and (3), we have

YW(A + E) = AWAd,w + HWE(I − F) +
k−1∑
i=1

(HW)i+1E(I − F)(WA)i

= AWAd,w +
k−1∑
i=0

(HW)i+1E(I − F)(WA)i.

Hence,

YW(A + E)WY = AWAd,wWY +
k−1∑
i=0

(HW)i+1E(I − F)(WA)iWY

= Ad,wWAW[H +
k−1∑
i=0

(HW)i+2E(I − F)(WA)i]

+
k−1∑
i=0

(HW)i+1E(I − F)(WA)iW[H +
k−1∑
i=0

(HW)i+2E(I − F)(WA)i]

= Y.

It can be verified that for every m ≥ k = max{Ind(AW), Ind(WA)},

[(A + E)W]m+1YW = (A + E)m.

Note that

(A + E)d,w − Ad,w = [I − Ad,wWEWZ−1
− I]Ad,w +

k−1∑
i=0

[(Ad,w − Ad,wWEWZ−1Ad,w)W]i+2E(I − F)(WA)i,



X. Wang, H. Ma, M. Cvetković / Filomat 31:2 (2017), 505–511 508

we have

‖(A + E)d,w − Ad,w‖

‖Ad,w‖
≤

κd,w(A)‖WEW‖/‖WAW‖
1 − κd,w(A)‖WEW‖/‖WAW‖

+

k−1∑
i=0
‖(Ad,w − Ad,wWEWZ−1Ad,w)W‖i+2

‖E(I − F)(WA)i
‖

‖Ad,w‖
.

We finish the proof. �

In a similar way, we present another perturbation bound of bounded linear operators in Banach space.

Theorem 3.2. Let A,E ∈ B(H ,K ), W ∈ B(K ,H) and k = max{Ind(AW), Ind(WA)}. Suppose that R((AW)k)
and R(((A + E)W)k) are closed subspaces in H . If E = EWAWAd,w, Z = I + WEWAd,w and ‖Ad,w‖‖WEW‖ < 1.
Then we have

(A + E)d,w = Ad,wZ−1 +

k−1∑
i=0

(AW)i(I −M)E(WAd,wZ−1)i+2, (4)

with

‖(A + E)d,w − Ad,w‖

‖Ad,w‖
≤

κd,w(A)‖WEW‖/‖WAW‖
1 − κd,w(A)‖WEW‖/‖WAW‖

+

k−1∑
i=0
‖(AW)i(I −M)E‖‖WAd,wZ−1

‖

‖Ad,w‖
,

where κd,w(A) = ‖WAW‖‖Ad,w‖ is the condition number with respect to the W-weighted Drazin inverse of A.

Proof. Similar to the proof of Theorem 3.1. Let H = Ad,wZ−1 = Ad,w − Ad,wZ−1WEWAd,w and Y is the
right-hand side of (4). It follows WE = WEWAWAd,w from E = EWAWAd,w, by direct computation, we have

YW(A + E) = HW(A + E) +
k−1∑
i=0

(I −M)(AW)i(I −M)EF(WH)i+2W(A + E)

= Ad,wWA − Ad,wZ−1WEWAd,wWA + Ad,wWE − Ad,wZ−1WEWAd,wWE

+
k−1∑
i=0

(AW)i(I −M)E(WH)i+2W(A + E)

= Ad,wWA − Ad,w(Z−1
− I + Z−1(Z − I))WE

+
k−1∑
i=0

(AW)i(I −M)E(WH)i+1)WHW(A + E)

= Ad,wWA +
k−1∑
i=0

(AW)i(I −M)E(WH)i+1W(Ad,w − Ad,wZ−1WEWAd,w)W(A + E)

= Ad,wWA +
k−1∑
i=0

(AW)i(I −M)E[W(Ad,w − Ad,wZ−1WEWAd,w)]i+1WAWAd,w

= Ad,wWA +
k−1∑
i=0

(AW)i(I −M)E(WH)i+1.

Since

(A + Ad,wWAWE)WH = AWAd,w − AWAd,wZ−1WEWAd,w + Ad,wWAWEWAd,w
−Ad,wWAWEWAd,wZ−1WEWAd,w

= AWAd,w + AWAd,w(−I + Z −WEWAd,w)Z−1WEWAd,w
= AWAd,w,
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which implies that

AWH = AWAd,w − Ad,wWAWEWH,

and then

(A + E)WH = AWAd,w + EWH(I − Ad,wWAW) = AWAd,w + EWH(I −M). (5)

Moreover,

(A + E)W
k−1∑
i=0

(AW)i(I −M)E(WH)i+2 =
k−1∑
i=0

(AW)i+1(I −M)E(WH)i+2

=
k−1∑
i=1

(AW)i(I −M)E(WH)i+1.
(6)

Together with (5) and (6), we have

(A + E)WY = (A + E)WH + (A + E)W
k−1∑
i=0

(AW)i(I −M)E(WH)i+2

= AWAd,w + EWH(I −M) +
k−1∑
i=1

(AW)i(I −M)E(WH)i+1

= AWAd,w +
k−1∑
i=0

(AW)i(I −M)E(WH)i+1.

Thus YW(A + E) = (A + E)WY. By simple computation, we can show

YW(A + E)WY = Y,

and for every m ≥ k = max{Ind(AW), Ind(WA)},

[(A + E)W]m+1YW = (A + E)m.

Note that

(A + E)d,w − Ad,w = Ad,w[I − Z−1WEWAd,w − I] +

k−1∑
i=0

(AW)i(I −M)E[W(Ad,w − Ad,wZ−1WEWAd,w)]i+2.

We have

‖(A + E)d,w − Ad,w‖

‖Ad,w‖
≤

κd,w(A)‖WEW‖/‖WAW‖
1 − κd,w(A)‖WEW‖/‖WAW‖

+

k−1∑
i=0
‖(AW)i(I −M)E‖‖W(Ad,w − Ad,wZ−1WEWAd,w)‖i+2

‖Ad,w‖
,

which completes the proof. �

In Theorems 3.1 and 3.2, if we suppose that W = I, then we immediately obtain the following corollaries.

Corollary 3.3. ([30, Theorem 4.1]) Let A,E ∈ B(H) and k = Ind(A). Suppose that R(Ak) and R((A + E)k) are
closed subspaces inH . If E = AADE, Z = I + ADE and ‖AD

‖‖E‖ < 1. Then we have

(A + E)D = Z−1AD +

k−1∑
i=0

(Z−1AD)i+2E(I − AAD)Ai,
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with

‖(A + E)D
− AD

‖

‖AD‖
≤
‖ADE‖

1 − ‖ADE‖
+

k−1∑
i=0

κD(A)i+1

(1 − ‖ADE‖)i+2

‖E‖
‖A‖
‖I − AAD

‖,

where κD(A) = ‖A‖‖AD
‖ is the condition number with respect to the Drazin inverse of A.

Proof. Since W = I, we have AADE = E. It follows from Theorem 3.1 that

(A + E)D = Z−1AD +

k−1∑
i=0

(Z−1AD)i+2E(I − AAD)Ai.

Thus
‖(A + E)D

− AD
‖

‖AD‖
≤
‖ADE‖

1 − ‖ADE‖
+

k−1∑
i=0

κD(A)i+1

(1 − ‖ADE‖)i+2

‖E‖
‖A‖
‖I − AAD

‖. �

Corollary 3.4. ([30, Theorem 4.2]) Let A,E ∈ B(H) and k = Ind(A). Suppose that R(Ak) and R((A + E)k) are
closed subspaces inH . If E = EAAD, Z = I + EAD and ‖AD

‖‖E‖ < 1. Then we have

(A + E)D = ADZ−1 +

k−1∑
i=0

(I − ADA)AiE(ADZ−1)i+2,

with
‖(A + E)D

− AD
‖

‖AD‖
≤
‖EAD

‖

1 − ‖EAD‖
+

k−1∑
i=0

κD(A)i+1

(1 − ‖EAD‖)i+2

‖E‖
‖A‖
‖I − AAD

‖. �

where κD(A) = ‖A‖‖AD
‖ is the condition number with respect to the Drazin inverse of A.

Proof. From Theorem 3.2, we have

(A + E)D = ADZ−1 +

k−1∑
i=0

Ai(I − ADA)E(ADZ−1)i+2.

Thus
‖(A + E)D

− AD
‖

‖AD‖
≤
‖EAD

‖

1 − ‖EAD‖
+

k−1∑
i=0

κD(A)i+1

(1 − ‖EAD‖)i+2

‖E‖
‖A‖
‖I − AAD

‖. �

In particular, if E = EAAD = AADE hold in Corollary 3.1 or Corollary 3.2, then we can obtain the known
results on the Drazin inverse [25, 30].

Corollary 3.5. ([30, Corollary 4.1]) Let A,E ∈ B(H) and k = Ind(A). Suppose that R(Ak) and R((A + E)k) are
closed subspaces inH . If E = EAAD = AADE and ‖AD

‖‖E‖ < 1. Then

(A + E)D = (I + ADE)−1AD = AD(I + EAD)−1,

with

‖(A + E)D
− AD

‖

‖AD‖
≤
‖ADE‖

1 − ‖ADE‖
.

4. Conclusion

In this paper, we obtain the explicit representations for (A + E)d,w under a perturbed bounded linear
operator in Banach space, which improves the results in [30].
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[10] D.S. Djordjević and V. Rakoćević, Lectures on Generalized Inverses, Faculty of Sciencs and Mathematics, University of Nis̆, Nis̆,
2008.

[11] T. Lei, Y. Wei, and C.-W. Woo, Condition numbers and structured perturbation of the W-weighted Drazin inverse, Appl. Math.
Comput., 165 (2005) 185–194.
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