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Abstract. If {At}t∈Ω and {Bt}t∈Ω are weakly*-measurable families of bounded Hilbert space operators such
that transformers X 7→

∫
Ω

A ∗

t XAt dµ(t) and X 7→
∫

Ω
B∗

t XBt dµ(t) on B(H) have their spectra contained in
the unit disc, then for all bounded operators X∣∣∣∣∣∣∆A X∆B

∣∣∣∣∣∣ 6 ∣∣∣∣∣∣∣∣∣∣ X −
∫

Ω

A ∗

t XBt dµ(t)
∣∣∣∣∣∣∣∣∣∣, (1)

where ∆A
de f
= s−limr↗1

(
I +

∑
∞

n=1 r2n
∫

Ω
· · ·

∫
Ω

∣∣∣At1 · · ·Atn

∣∣∣2dµn(t1,· · ·, tn)
)−1/2

and ∆B by analogy.

If additionally
∑
∞

n=1

∫
Ωn

∣∣∣A ∗

t1
· · ·A ∗

tn

∣∣∣2dµn(t1,· · ·, tn) and
∑
∞

n=1

∫
Ωn

∣∣∣B∗

t1
· · ·B∗

tn

∣∣∣2dµn(t1,· · ·, tn) both represent
bounded operators, then for all p, q, s > 1 such that 1

q + 1
s = 2

p and for all Schatten p trace class operators X∣∣∣∣∣∣∣∣∣∣∆1− 1
q

A
X∆

1− 1
s

B

∣∣∣∣∣∣∣∣∣∣
p
6

∣∣∣∣∣∣∣∣∣∣∆− 1
q

A ∗

(
X −

∫
Ω

A ∗

t XBtdµ(t)
)
∆
−

1
s

B∗

∣∣∣∣∣∣∣∣∣∣
p
. (2)

If at least one of those families consists of bounded commuting normal operators, then (1) holds for all
unitarily invariant Q-norms. Applications to the shift operators are also given.

1. Introduction

Let B(H) and C∞(H) denote respectively spaces of all bounded and all compact linear operators acting
on a separable, infinite-dimensional, complex Hilbert space H . Each ”symmetric gauge (s.g.) function”
(also known as symmetric norming functions) Φ on sequences gives rise to a symmetric norm or a unitarily

invariant (u.i.) norm on operators defined by ||X ||Φ
de f
= Φ({sn(X)}∞n=1), with s1(X) > s2(X) > · · · being the

singular values of X. We will denote by the symbol |||·||| any such norm, which is therefore defined on a
naturally associated norm ideal C|||·|||(H) of C∞(H) and satisfies the invariance property |||UXV ||| = |||X ||| for
all X ∈ C|||·|||(H) and for all unitary operators U,V. Even more, |||AXB||| 6 |||CXD||| whenever A∗A 6 C∗C
and BB∗ 6 DD∗. This is the consequence of Ky-Fan dominance property, which says that |||X ||| 6 |||Y ||| iff
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k=1 sk(X) 6

∑n
k=1 sk(Y) for all n∈N, and the monotonicity of eigenvalues {λn}

∞

n=1 of compact self-adjoint
operators, which gives that

sn(AXB) = λ
1
2
n (B∗X∗A∗AXB) 6 λ

1
2
n (B∗X∗C∗CXB) = λ

1
2
n (CXBB∗X∗C∗) 6 λ

1
2
n (CXDD∗X∗C∗) = sn(CXD) (3)

for all n ∈ N, because B∗X∗A∗AXB 6 B∗X∗C∗CXB implies λn(B∗X∗A∗AXB) 6 λn(B∗X∗C∗CXB) and similarly
CXBB∗X∗C∗ 6 CXDD∗X∗C∗ implies λn(CXBB∗X∗C∗) 6 λn(CXDD∗X∗C∗).

Each norm |||·||| is lower semi-continuous, i.e., |||w−limn→∞ Xn ||| 6 lim infn→∞ |||Xn ||| . This follows from the
well known representation formula |||X ||| = sup

{
|tr(XY)|
|||Y |||∗

: Y is finite dimensional
}
,where |||·|||∗ stands for the

dual norm of |||·||| (see Th. 2.7 (d) in [18]).
One way to modify a s.g. function Φ is to introduce for p > 1 its (degree) p modification Φ(p) as a new

s.g. function by

Φ(p)
(
(zn)∞n=1

) de f
=

p
√

Φ
(
(|zn|

p)∞n=1

)
,

which will be defined on its natural domain consisting of all complex sequences z = (zn)∞n=1 complying with
(|zn|

p)∞n=1 ∈ `Φ. A simple proof that Φ(p) is a s.g. function can be found in [11].
For example, if we denote by ` a s.g. function determing the norm in `1, then we see that ` (p) is exactly

the s.g. function determing the norm in `p. More generally, this gives the way for p modification ||·||Φ(p) of
any u.i. CΦ(H) norm ||·||Φ trough the formula

||X ||Φ(p)
de f
= |||X |p ||

1
p

Φ
for all X ∈ B(H) such that |X |p ∈ CΦ(H). (4)

Schatten tracial p-norms defined as ||X ||p
de f
=

p
√∑

∞

n=1 sp
n(X) for 1 6 p < ∞, are exactly p-modification of

the trace norm ||·||1. Another widely known class of such norms are so called Q-norms, which represent a
(degree) 2 modifications of some other u.i. norms. Given f , 1 ∈ H , we will use the notation f ⊗ 1? for one
dimensional operators f ⊗ 1? : H → H : h 7→ 〈h, 1〉 f , known to have their linear span dense in each of
Cp(H) for 1 ≤ p ≤ ∞. For a more complete account of the theory of norm ideals, the interested reader is
referred to [5], [18] and [17].

For an operator valued (o.v.) function A : Ω → B(H) : t 7→ At we say to be weak*-measurable if
t 7→

〈
At f , 1

〉
is measurable for all f , 1 ∈ H . If t 7→

〈
At f , 1

〉
is in L1(Ω, µ) for all f ∈ H , then t 7→ tr(AtY) is

also in L1(Ω, µ) for all Y ∈ C1(H) and there exist Gel’fand or weak*-integral
∫

Ω
A dµ ∈ B(H) such that

tr
(∫

Ω

A dµY
)

=

∫
Ω

tr(AtY) dµ(t) for all Y ∈ C1(H).

Specially,
〈∫

Ω
A dµ f , 1

〉
=

∫
Ω

〈
At f , 1

〉
dµ(t) for all f , 1 ∈ H , and this is exactly the relation that entirely defines∫

Ω
A dµ. An example of the very useful weak*-integral is

∫
Ω

A ∗A dµ =
∫

Ω
|A |2 dµ, with the associated

quadratic form
〈∫

Ω
A ∗A dµ f , f

〉
=

∫
Ω

∣∣∣∣∣∣A f
∣∣∣∣∣∣2 dµ for all f ∈ H , provided by the finiteness of the last term in

expression.
For weakly∗-measurable o.v. functions A ,B : Ω → B(H) and for all X ∈ B(H) a function t 7→ AtXBt

is also weakly∗-measurable one. If this function is weakly*-integrable for all X ∈ B(H), then this inner
product type linear transformation X 7→

∫
Ω

AtXBt dµ(t) will be called inner product type integral (i.p.t.i.)
transformer on B(H) and denoted by

∫
Ω

At ⊗Bt dµ(t). A special case when µ is a counting measure onN
is mostly known and widely investigated, and such transformers are known as elementary mappings or
elementary operators.

As shown in Lemma 3.1 (a) in [9], a sufficient condition for
∫

Ω
A ∗
⊗B dµ to be bounded on B(H) is

provided when both A ∗A and B∗B are weak*-integrable. If each of families (At)t∈Ω and (Bt)t∈Ω consists
of commuting normal operators, then by Th. 3.2 in [9] the i.p.t.i. transformer

∫
Ω

At ⊗Bt dµ(t) leaves every
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u.i. norm ideal C|||·|||(H) invariant and the following Cauchy-Schwarz inequality holds:∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∫

Ω

AtXBt dµ(t)

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ 6

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
√∫

Ω

A ∗

t At dµ(t) X

√∫
Ω

B∗t Bt dµ(t)

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣. (5)

As noted in [7] p. 8–9, double operator integrals (d.o.i.) defined by the apparatus developed by
Birman and Solomyak (see review articles [3] and [4]) can be seen as an example of weak*-integrals and
they have found various application, including operators means and related topics (see ([7], [14] and
references therein). Moreover, with given self-adjoint operators H and K, for an d.o.i. induced transformer
to be bounded on C1(H) it is necessary and sufficient to be of the form

∫
Ω
α(H, t) ⊗ β(K, t) dµ(t), such that∣∣∣∣∣∣∫

Ω
|α(H, t)|2 dµ(t)

∣∣∣∣∣∣ · ∣∣∣∣∣∣∫
Ω
|α(K, t)|2 dµ(t)

∣∣∣∣∣∣ < +∞, as established by the celebrated result of Peller in [15] and [16].
This shows that in this case d.o.i. induced transformers can be seen as a special case of i.p.t.i. transformers
when At = α(H, t) and Bt = β(H, t) for some self-adjoint (or unitary) operators H and K and for all t ∈ Ω.
Anyway, any successfulness of the application of d.o.i. or weak*-integrals in practice relies of the optimality
of the chosen integral representation for the considered transformer, with means inequalities in [6], [7] and
[14] as examples of such good practice.

Normality and commutativity condition in (5) can be dropped for Schatten tracial p norms as shown in
Th. 3.3 in [9] and this represents a type of noncommutative (extension of) theory beyond d.o.i. transformers.
For some applications of this theorem see [12], as well as [9] for the improved estimate for the solution of
the Lyapunov equation given in [2].

In Th. 3.1 in [10] a formula for the exact norm of i.p.t.i. transformer
∫

Ω
At ⊗Bt dµ(t) acting on C2(H)

is found. In Th. 2.1 in [10] the exact norm of i.p.t.i. transformer
∫

Ω
A ∗

t ⊗ At dµ(t) is given for two specific
cases:∣∣∣∣∣∣∣∣∣∣∫

Ω

A ∗

t ⊗At dµ(t)
∣∣∣∣∣∣∣∣∣∣
B(H)→CΦ(H)

=

∣∣∣∣∣∣∣∣∣∣∫
Ω

A ∗

t At dµ(t)
∣∣∣∣∣∣∣∣∣∣

Φ

=

∣∣∣∣∣∣∣∣∣∣∫
Ω

A ∗

t ⊗At dµ(t)(I)
∣∣∣∣∣∣∣∣∣∣

Φ

, (6)

∣∣∣∣∣∣∣∣∣∣∫
Ω

A ∗

t ⊗At dµ(t)
∣∣∣∣∣∣∣∣∣∣
CΦ(H)→C1(H)

=

∣∣∣∣∣∣∣∣∣∣∫
Ω

AtA
∗

t dµ(t)
∣∣∣∣∣∣∣∣∣∣

Φ∗

=

∣∣∣∣∣∣∣∣∣∣∫
Ω

At ⊗A ∗

t dµ(t)(I)
∣∣∣∣∣∣∣∣∣∣

Φ∗

, (7)

where Φ∗ stands for a s.g. function related to the norm in the dual space CΦ(H)∗.
If both families {At}t∈Ω and {Bt}t∈Ω consist of commuting normal operators, such that

∫
Ω

A ∗A dµ 6 I
and

∫
Ω

B∗B dµ 6 I, then for all X ∈ C|||·|||(H)∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
√

I −
∫

Ω

A ∗A dµX

√
I −

∫
Ω

B∗B dµ

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ 6

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣X −

∫
Ω

A XB dµ

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣. (8)

A central result of this paper will be the extension of this inequality to the noncommutative settings, to
the families consisting of not necessarily normal, nor commuting operators.

2. Preliminaries

First we will consider a spectral radius formula for i.p.t.i. transformers.

Lemma 2.1. Let
∫

Ω
A ∗
⊗B dµ : B(H)→ B(H) : X 7→

∫
Ω

A ∗

t XBt dµ(t), then for its spectral radius we have

r
(∫

Ω

A ∗
⊗B dµ

)
6 inf

n∈N

∣∣∣∣∣∣∣∣∣∣∫
Ωn

∣∣∣At1 · · ·Atn

∣∣∣2dµn(t1,· · ·, tn)
∣∣∣∣∣∣∣∣∣∣ 1

2n

inf
n∈N

∣∣∣∣∣∣∣∣∣∣∫
Ωn

∣∣∣Bt1 · · ·Btn

∣∣∣2dµn(t1,· · ·, tn)
∣∣∣∣∣∣∣∣∣∣ 1

2n

(9)

= lim
n→∞

∣∣∣∣∣∣∣∣∣∣∫
Ωn

∣∣∣At1 · · ·Atn

∣∣∣2dµn(t1,· · ·, tn)
∣∣∣∣∣∣∣∣∣∣ 1

2n

lim
n→∞

∣∣∣∣∣∣∣∣∣∣∫
Ωn

∣∣∣Bt1 · · ·Btn

∣∣∣2dµn(t1,· · ·, tn)
∣∣∣∣∣∣∣∣∣∣ 1

2n

.

If At = Bt for all t ∈ Ω, then inequality in (9) turns into equality.
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Proof. First we prove that we have equality in (9) when At = Bt for all t ∈ Ω. Next, B(H) case of formula
(6) gives us the norm of the B(H) transformer

∫
Ω

A ∗
⊗A dµ :∣∣∣∣∣∣∣∣∣∣∫

Ω

A ∗
⊗A dµ

∣∣∣∣∣∣∣∣∣∣
B(H)→B(H)

=

∣∣∣∣∣∣∣∣∣∣∫
Ω

A ∗
⊗A dµ (I)

∣∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∫
Ω

A ∗

t At dµ(t)
∣∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∫
Ω

|At|
2 dµ(t)

∣∣∣∣∣∣∣∣∣∣ . (10)

With µ × · · · × µ︸      ︷︷      ︸
n - times

already denoted by µn, let also A |n〉
(t1,··· ,tn)

de f
= At1 · · ·Atn and B|n〉(t1,··· ,tn)

de f
= Bt1 · · ·Btn .As formula

(10) holds for
(∫

Ω
A ∗
⊗A dµ

)n
=

∫
Ω
· · ·

∫
Ω

A ∗

tn
· · ·A ∗

t1
⊗At1 · · ·Atn dµn(t1,· · ·, tn) =

∫
Ωn A |n〉∗

⊗A |n〉 dµn as well,
therefore∣∣∣∣∣∣∣∣∣∣(∫

Ω

A ∗
⊗A dµ

)n ∣∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∫
Ωn

A |n〉∗
⊗A |n〉 dµn

∣∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣(∫
Ωn

A |n〉∗
⊗A |n〉 dµn

)
(I)

∣∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∫
Ωn

∣∣∣A |n〉
∣∣∣2 dµn

∣∣∣∣∣∣∣∣∣∣ . (11)

Now, the equality in (9) follows from (11) by the very definition of the spectral radius

r
(∫

Ω

A ∗
⊗A dµ

)
de f
= inf

n∈N

∣∣∣∣∣∣∣∣∣∣(∫
Ω

A ∗
⊗A dµ

)n ∣∣∣∣∣∣∣∣∣∣ 1
n

= lim
n→∞

∣∣∣∣∣∣∣∣∣∣(∫
Ω

A ∗
⊗A dµ

)n ∣∣∣∣∣∣∣∣∣∣ 1
n

= inf
n∈N

∣∣∣∣∣∣∣∣∣∣∫
Ωn

∣∣∣A |n〉
∣∣∣2 dµ

∣∣∣∣∣∣∣∣∣∣ 1
n

= lim
n→∞

∣∣∣∣∣∣∣∣∣∣∫
Ωn

∣∣∣A |n〉
∣∣∣2 dµ

∣∣∣∣∣∣∣∣∣∣ 1
n

,

which proves the equality case in (9).
To treat the general case, note that

(∫
Ω

A ∗
⊗B dµ

)n
=

∫
Ωn A |n〉∗

⊗B|n〉 dµn, which by Lemma 3.1. (a1) of
[9] applied to

∫
Ωn A |n〉∗

⊗B|n〉 dµn gives

∣∣∣∣∣∣∣∣∣∣(∫
Ω

A ∗
⊗B dµ

)n ∣∣∣∣∣∣∣∣∣∣ 1
n

=

∣∣∣∣∣∣∣∣∣∣∫
Ωn

A |n〉∗
⊗B|n〉 dµn

∣∣∣∣∣∣∣∣∣∣ 1
n

6

∣∣∣∣∣∣∣∣∣∣∫
Ωn

A |n〉∗
⊗A |n〉 dµn

∣∣∣∣∣∣∣∣∣∣ 1
2n

∣∣∣∣∣∣∣∣∣∣∫
Ωn

B|n〉∗ ⊗B|n〉 dµn
∣∣∣∣∣∣∣∣∣∣ 1

2n

=

∣∣∣∣∣∣∣∣∣∣(∫
Ω

A ∗
⊗A dµ

)n ∣∣∣∣∣∣∣∣∣∣ 1
2n

∣∣∣∣∣∣∣∣∣∣(∫
Ω

B∗ ⊗B dµ
)n ∣∣∣∣∣∣∣∣∣∣ 1

2n

.

(12)

Finally, by letting n→∞ in (12) we get the spectral radius formula

r
(∫

Ω

A ∗
⊗B dµ

)
6

√
r
(∫

Ω

A ∗ ⊗A dµ
)
r
(∫

Ω

B∗ ⊗B dµ
)
,

according to the already proven part of the proposition. But this is nothing else than (9), as proclaimed.

In the situation that we will consider bellow, it says that the spectrum of the transformer
∫

Ω
A ∗
⊗

A dµ is contained in the unit disc iff infn∈N

∣∣∣∣∣∣∫
Ω
· · ·

∫
Ω

∣∣∣At1 · · ·Atn

∣∣∣2dµn(t1,· · ·, tn)
∣∣∣∣∣∣ 1

n 6 1. Also, if additionally

r
(∫

Ω
B∗ ⊗B dµ

)
6 1, then r

(∫
Ω

A ∗
⊗B dµ

)
6 1 as well.

Definition 2.1. Let A : Ω→ B(H) be weakly* - measurable family, such that r
(∫

Ω
A ∗
⊗A dµ

)
6 1. For the

transformer
∫

Ω
A ∗
⊗A dµ we define its associated spectral (radius) defect operator:

∆A
de f
= s−lim

r↗1

(
I +

∞∑
n=1

r2n
∫

Ωn

∣∣∣At1 · · ·Atn

∣∣∣2 dµn(t1,· · ·, tn)
)−1/2

=

√√
s−lim

r↗1

(
I +

∞∑
n=1

r2n

∫
Ωn

∣∣∣At1 · · ·Atn

∣∣∣2 dµn(t1,· · ·, tn)
)−1

.

(13)
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Correctness of this definition is based on the fact that family of operators appearing in (13) represents a
family of strongly decreasing (by r) positive contractions, due to the operator monotonicity of the function
t 7→

√
t on [0,+∞). Consequently, it strongly converges and ∆A itself is therefore a positive contraction.

Last equality in (13) is a consequence of the fact that ∆2
A

=s−limr↗1

(
I +

∑
∞

n=1 r2n
∫

Ωn

∣∣∣At1 · · ·Atn

∣∣∣2 dµn(t1,· · ·, tn)
)−1

,

due to the continuity of multiplication of operators in the strong operator topology.

Remark 1: If I +
∑
∞

n=1

∫
Ωn

∣∣∣A |n〉
∣∣∣2 dµn represents a bounded Hilbert space operator (which is by the

Banach-Steinhaus theorem equivalent to the property that
∑
∞

n=1

∫
Ωn

∣∣∣∣∣∣A |n〉 f
∣∣∣∣∣∣2dµn < +∞ for every f ∈ H),

then it is invertible and its inverse is exactly ∆2
A
. When this argument is applied to rA instead of A , then

we realize that in fact
∆−2

rA = I +
∑
∞

n=1 r2n
∫

Ω
· · ·

∫
Ω

∣∣∣At1 · · ·Atn

∣∣∣2 dµn(t1,· · ·, tn), and so (13) actually says that ∆A = s− limr↗1 ∆rA .

Moreover, as ∆−2
rA = I + r2

∫
Ω

A ∗

t ∆−2
rA At dµ(t), it follows I = ∆2

rA + r2
∫

Ω
∆rA A ∗

t ∆−2
rA At∆rA dµ(t), from which

we derive by the limiting process I − ∆2
A

= s−limr↗1

∫
Ω

∣∣∣∆−1
rA At∆rA

∣∣∣2 dµ(t) > 0. This also shows that ∆A is a
positive contraction, as well as how much ∆2

A
declines from I.

An appropriate use of (6) can also show us that
∣∣∣∣∣∣∑∞n=0 r2n

∫
ΩnA

|n〉∗
⊗A |n〉 dµn

∣∣∣∣∣∣ =
∣∣∣∣∣∣∆−2

rA

∣∣∣∣∣∣ (where, in the
sense of definition (24) applied to A = B, the summand for n = 0 is understood as the identity transformer
on B(H)).

Example 1. For the right unilateral shift S : `2
N
→ `2

N
: (x1, · · · , xn, · · · ) 7→ (0, x1, · · · , xn, · · · ) its adjoint

operator is the left unilateral shift S∗ : `2
N
→ `2

N
: (x1, · · · , xn, · · · ) 7→ (x2, · · · , xn, · · · ). For any n ∈ N we have

S∗nSn = I and SnS∗n = I −
∑n

j=1 e j ⊗ e j
?, where {en}

∞

n=1 stands for the standard basis of `2
N
. Thus

∆Sn = s−lim
r↗1

∆rSn = s−lim
r↗1

( ∞∑
k=0

r2kS∗knSkn
)−1/2

= s−lim
r↗1

√

1 − r2I = 0.

Let us denote Pm
de f
=

∑m
j=1 e j ⊗ e j

? for all m∈N. Then, a direct computation reveals that

∆S∗n = s−lim
r↗1

∆rS∗n = s−lim
r↗1

( ∞∑
k=0

r2kSknS∗kn
)−1/2

= s−lim
r↗1

( ∞∑
k=0

r2k
(
I − Pkn

))−1/2

= s−lim
r↗1

( ∞∑
k=0

r2k
∞∑

l=k+1

(
Pln − P(l−1)n

))−1/2

= s−lim
r↗1

( ∞∑
l=1

l−1∑
k=0

r2k
nl∑

j=n(l−1)+1

e j ⊗ e j
?

)−1/2

= s−lim
r↗1

∞∑
l=1

1√∑l−1
k=0 r2k

nl∑
j=n(l−1)+1

e j ⊗ e j
? =

∞∑
k=1

1
√

k

nk∑
j=n(k−1)+1

e j ⊗ e j
?. (14)

In other words, ∆S∗n is in Cp(H) for all p > 2,with its eigenvalue sequence
{

1
√

k

}∞
k=1

and each of its eigenvalues
has the multiplicity n.

Another situation when an explicit formula for ∆A can be given is in the case when this family consists
of commuting normal operators.

Lemma 2.2. If {At}t∈Ω consists of commuting normal operators and
∫

Ω
A ∗A dµ 6 I, then

∆A =

√
I −

∫
Ω

A ∗A dµ. (15)
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Proof. Since {At}t∈Ω are commuting normal operators, then At commute with
∫

Ω
A ∗A dµ for every t ∈ Ω,

so that consequently we have∫
Ωn

∣∣∣A |n〉
∣∣∣2 dµn =

∫
Ωn

∣∣∣At1 · · ·Atn

∣∣∣2 dµn(t1,· · ·, tn) =
(∫

Ω

A ∗

t At dµ(t)
)n

=
(∫

Ω

|A |2 dµ
)n

.

Therefore r
(∫

Ω
A ∗
⊗A dµ

)
=

∣∣∣∣∣∣∫
Ω

A ∗A dµ
∣∣∣∣∣∣ 6 1, and we also have

∆A = s−lim
r↗1

(
I +

∞∑
n=1

r2n
∫

Ωn

∣∣∣A |n〉
∣∣∣2 dµn

)− 1
2

= s−lim
r↗1

(
I +

∞∑
n=1

r2n
(∫

Ω

|A |2 dµ
)n)− 1

2

= s−lim
r↗1

√
I − r2

∫
Ω

A ∗A dµ =

√
I −

∫
Ω

A ∗A dµ. (16)

Equality (16) can easily be checked by the use of the spectral theorem for positive contraction
∫

Ω
A ∗A dµ.

3. Main Results and Applications

We start with the norm inequalities for i.p.t.i. transformers acting on Cp(H).

Theorem 3.1. Let {At}t∈Ω and {Bt}t∈Ω be weakly*-measurable families of bounded operators such that
r
(∫

Ω
A ∗
⊗A dµ

)
6 1 and r

(∫
Ω

B∗ ⊗B dµ
)
6 1. Then for all X ∈ B(H)

||∆A X∆B || 6

∣∣∣∣∣∣∣∣∣∣X −∫
Ω

A ∗

t XBt dµ(t)
∣∣∣∣∣∣∣∣∣∣ . (17)

If additionally p > 2 and
∞∑

n=1

∫
Ωn

∣∣∣∣∣∣A ∗

t1
· · ·A ∗

tn
f
∣∣∣∣∣∣2dµn(t1,· · ·, tn) < +∞ for all f ∈ H , (18)

then r
(∫

Ω
A ⊗A ∗ dµ

)
6 1 and for all X ∈ Cp(H)∣∣∣∣∣∣∣∣∣∣∆1− 2

p

A
X∆B

∣∣∣∣∣∣∣∣∣∣
p
6

∣∣∣∣∣∣∣∣∣∣ ∆
−

2
p

A ∗

(
X −

∫
Ω

A ∗

t XBt dµ(t)
)∣∣∣∣∣∣∣∣∣∣

p
. (19)

Similarly, when p > 2 and
∞∑

n=1

∫
Ωn

∣∣∣∣∣∣B∗t1
· · ·B∗tn

f
∣∣∣∣∣∣2dµn(t1,· · ·, tn) < +∞ for all f ∈ H , (20)

then r
(∫

Ω
B ⊗B∗ dµ

)
6 1 and for all X ∈ Cp(H)∣∣∣∣∣∣∣∣∣∣∆A X∆

1− 2
p

B

∣∣∣∣∣∣∣∣∣∣
p
6

∣∣∣∣∣∣∣∣∣∣(X −∫
Ω

A ∗

t XBt dµ(t)
)
∆
−

2
p

B∗

∣∣∣∣∣∣∣∣∣∣
p
. (21)

If p, q, s > 1 are such that 1
q + 1

s = 2
p and if both conditions (18) and (20) are fulfilled, then

r
(∫

Ω

A ⊗A ∗ dµ
)
6 1 and r

(∫
Ω

B ⊗B∗ dµ
)
6 1. (22)

and for all X ∈ Cp(H)∣∣∣∣∣∣∣∣∣∣∆1− 1
q

A
X∆

1− 1
s

B

∣∣∣∣∣∣∣∣∣∣
p
6

∣∣∣∣∣∣∣∣∣∣ ∆
−

1
q

A ∗

(
X −

∫
Ω

A ∗

t XBt dµ(t)
)
∆
−

1
s

B∗

∣∣∣∣∣∣∣∣∣∣
p
. (23)
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Proof. We restrict ourselves to the proof of (23), as it contains all essential steps for the proof of (17), (19)

and (21). In accordance with the already used notation, let A ∗|n〉(t1,· · ·, tn)
de f
= A ∗

t1
· · ·A ∗

tn
and B∗|n〉(t1,· · ·, tn)

de f
=

B∗t1
· · ·B∗tn

for all (t1,· · ·, tn) ∈ Ωn. Adding to the previous notation, for C,D ∈ B(H) let∫
Ω0

CA |0〉∗
⊗B|0〉D dµ0 de f

= C ⊗D : B(H)→ B(H) : X 7→ CXD (24)

and let
∫

Ω0

∣∣∣A |0〉
∣∣∣2 dµ0 de f

=
∫

Ω0

∣∣∣A ∗|0〉
∣∣∣2 dµ0 de f

=
∫

Ω0

∣∣∣B|0〉∣∣∣2 dµ0 de f
=

∫
Ω0

∣∣∣B∗|0〉∣∣∣2 dµ0 de f
= I, the identity operator on

H . First, we will prove (22). Condition (18) provides that
∑
∞

n=0

∫
Ωn

∣∣∣A ∗

t1
· · ·A ∗

tn

∣∣∣2dµn(t1,· · ·, tn) is a bounded
Hilbert space operator, and it actually equals to ∆−2

A ∗ . Obviously, it is bounded from bellow by I. As

∣∣∣∣∣∣∣∣∣∣(∫
Ω

A ⊗A ∗dµ
)n ∣∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∫
Ωn

A |n〉
⊗A |n〉∗ dµn

∣∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∫
Ωn

∣∣∣A ∗|n〉
∣∣∣2 dµn

∣∣∣∣∣∣∣∣∣∣ 6 ∣∣∣∣∣∣∣∣∣∣ ∞∑
n=0

∫
Ωn

∣∣∣A ∗|n〉
∣∣∣2 dµn

∣∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∆−2

A ∗

∣∣∣∣∣∣ ,
it follows that

r
(∫

Ω

A ⊗A ∗dµ
)

=

∣∣∣∣∣∣∣∣∣∣(∫
Ω

A ⊗A ∗dµ
)n ∣∣∣∣∣∣∣∣∣∣ 1

n

6 inf
n∈N

∥∥∥∆−2
A ∗

∥∥∥ 1
n = 1.

Similarly, ∆−2
B∗ =

∑
∞

n=0

∫
Ωn

∣∣∣B|n〉∗∣∣∣2 dµn is a bounded operator, and also r
(∫

Ω
B ⊗B∗dµ

)
6 1. For every r ∈ [0, 1)

we have(
I − r2

∫
Ω

A ∗
⊗B dµ

)−1

=

∞∑
n=0

r2n
(∫

Ω

A ∗
⊗B dµ

)n

=

∞∑
n=0

r2n
∫

Ωn
A |n〉∗

⊗B|n〉 dµn, (25)

and therefore∣∣∣∣∣∣∣∣∣∣∆1− 1
q

rA X∆
1− 1

s
rB

∣∣∣∣∣∣∣∣∣∣
p

=

∣∣∣∣∣∣
∣∣∣∣∣∣ ∞∑

n=0

r2n∆
1− 1

q

rA

∫
Ωn

A |n〉∗
(
X − r2

∫
Ω

A ∗XB dµ
)
B|n〉 dµn∆

1− 1
s

rB

∣∣∣∣∣∣
∣∣∣∣∣∣
p

6

∣∣∣∣∣∣∣∣∣∣Cr

(
X − r2

∫
Ω

A ∗XBdµ
)
Dr

∣∣∣∣∣∣∣∣∣∣
p
,

(26)

by virtue of Th. 3.3 in [9], where

Cr
de f
=

( ∞∑
n=0

r2n
∫

Ωn
A |n〉∆

1− 1
q

rA

( ∞∑
n=0

r2n∆
1− 1

q

rA

∫
Ωn

∣∣∣A |n〉
∣∣∣2 dµn∆

1− 1
q

rA

)q−1

∆
1− 1

q

rA A |n〉∗ dµn
) 1

2q

=

( ∞∑
n=0

r2n
∫

Ωn
A |n〉∆

1− 1
q

rA

(
∆

1− 1
q

rA ∆−2
rA ∆

1− 1
q

rA

)q−1
∆

1− 1
q

rA A |n〉∗ dµn
) 1

2q

=

( ∞∑
n=0

r2n
∫

Ωn
A |n〉A |n〉∗dµn

) 1
2q

= ∆
−

1
q

rA ∗ (27)

and, by analogy,

Dr
de f
=

( ∞∑
n=0

r2n
∫

Ωn
B|n〉∆

1− 1
s

rB

( ∞∑
n=0

r2n∆
1− 1

s
rB

∫
Ωn

∣∣∣B|n〉∣∣∣2 dµn∆
1− 1

s
rB

)s−1

∆
1− 1

s
rB B|n〉∗ dµn

) 1
2s

= ∆
−

1
s

rB∗ . (28)

Thus we have proved (23) for rA and rB instead of A and B respectively. First note that ∆−2
rA ∗ 6 ∆−2

A ∗ implies

∆
−

2
q

rA ∗ 6 ∆
−

2
q

A ∗ due to the operator monotonicity of the function t 7→ t
1
q on [0,+∞). Similarly ∆

−
2
s

rB∗ 6 ∆
−

2
s

B∗ ,which
due to monotonicity property (3) gives∣∣∣∣∣∣∣∣∣∣∆− 1

q

rA ∗

(
X − r2

∫
Ω

A ∗XB dµ
)
∆
−

1
s

rB∗

∣∣∣∣∣∣∣∣∣∣
p
6

∣∣∣∣∣∣∣∣∣∣∆− 1
q

A ∗

(
X − r2

∫
Ω

A ∗XBdµ
)
∆
−

1
s

B∗

∣∣∣∣∣∣∣∣∣∣
p
.
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All we have to do now is to invoke the lower semicontinuity of Schatten tracial p norms to see that∣∣∣∣∣∣∣∣∣∣∆1− 1
q

A
X∆

1− 1
s

B

∣∣∣∣∣∣∣∣∣∣
p

=

∣∣∣∣∣∣∣∣∣∣w−lim
r↗1

∆
1− 1

q

rA X∆
1− 1

s
rB

∣∣∣∣∣∣∣∣∣∣
p
6 lim inf

r↗1

∣∣∣∣∣∣∣∣∣∣∆− 1
q

rA ∗

(
X − r2

∫
Ω

A ∗XB dµ
)
∆
−

1
s

rB∗

∣∣∣∣∣∣∣∣∣∣
p

6 lim inf
r↗1

∣∣∣∣∣∣∣∣∣∣∆− 1
q

A ∗

(
X − r2

∫
Ω

A ∗XB dµ
)
∆
−

1
s

B∗

∣∣∣∣∣∣∣∣∣∣
p

=

∣∣∣∣∣∣∣∣∣∣∆− 1
q

A ∗

(
X −

∫
Ω

A ∗XBdµ
)
∆
−

1
s

B∗

∣∣∣∣∣∣∣∣∣∣
p
,

which concludes the proof of (23).
(17) could essentially be seen as the special case of (23) for 1

q = 1
s = 0, with almost identical proof which

differs from the just presented one only by the use of B(H) norm ||·|| instead of Schatten tracial p norm ||·||p,
the use Lemma 3.1. (12) of [9] instead of Th. 3.3 in [9] and 0 instead of 1

q and 1
s . Thus, requirements (18) and

(20) are not needed in this occasion. Similarly, (18) and (20) are not needed for the proof of (21) and (19)
respectively.

For arbitrary A,B ∈ B(H) a bilateral multiplier transformer A∗ ⊗ B : B(H) → B(H) : X 7→ A∗XB gives
the simplest example of i.p.t.i. transformer, with the measure space consisting of a single point. When
r(A) 6 1 and r(B) 6 1, then

r(A∗ ⊗ A) = inf
n∈N

∣∣∣∣∣∣|An
|
2
∣∣∣∣∣∣ 1

2n = inf
n∈N
||An
||

1
n = r(A) = r(A∗) = r(A ⊗ A∗) 6 1,

while ∆−2
rA =

∑
∞

n=0 r2nA∗nAn and consequently ∆A = s−limr↗1

(∑
∞

n=0 r2nA∗nAn
)−1/2

=

√
s−limr↗1

(∑
∞

n=0 r2nA∗nAn
)−1
,

based on (13). With a similar conclusions for ∆B, Th. 3.1 gives

Corollary 3.2. If r(A) 6 1 and r(B) 6 1 for some A,B ∈ B(H), then for all X ∈ B(H)∣∣∣∣∣∣
∣∣∣∣∣∣
√√

s−lim
r↗1

( ∞∑
n=0

r2nA∗nAn
)−1

X

√√
s−lim

r↗1

( ∞∑
n=0

r2nB∗nBn
)−1

∣∣∣∣∣∣
∣∣∣∣∣∣ 6 ∣∣∣∣∣∣X − A∗XB

∣∣∣∣∣∣. (29)

If additionally
∑
∞

n=1 ||A∗n f ||2 < +∞ for all f ∈ H , then for all p > 2 and for all X ∈ Cp(H)∣∣∣∣∣∣
∣∣∣∣∣∣(s −lim

r↗1

( ∞∑
n=0

r2nA∗nAn
)−1) 1

2−
1
p

X s−lim
r↗1

( ∞∑
n=0

r2nB∗nBn
)− 1

2
∣∣∣∣∣∣
∣∣∣∣∣∣
p

6

∣∣∣∣∣∣
∣∣∣∣∣∣( ∞∑

n=0

AnA∗n
) 1

p (
X − A∗XB

)∣∣∣∣∣∣
∣∣∣∣∣∣
p

. (30)

Alternatively, if
∑
∞

n=1 ||B∗n f ||2 < +∞ for all f ∈ H , then for all p > 2 and for all X ∈ Cp(H)∣∣∣∣∣∣
∣∣∣∣∣∣s −lim

r↗1

( ∞∑
n=0

r2nA∗nAn
)− 1

2

X
(
s−lim

r↗1

( ∞∑
n=0

r2nB∗nBn
)−1) 1

2−
1
p
∣∣∣∣∣∣
∣∣∣∣∣∣
p

6

∣∣∣∣∣∣
∣∣∣∣∣∣(X − A∗XB

)( ∞∑
n=0

BnB∗n
) 1

p
∣∣∣∣∣∣
∣∣∣∣∣∣
p

. (31)

In the case when operator A is a normal contraction, formula (15) gives ∆A =
√

I − A∗A, and thus
√

I − A∗A represents also the defect operator DA for A, according to the notation in [13]. Hence (29) actually
generalize Th. 2.3. from [8] to non-normal operators with their spectra in the unit disc, in the case of
uniform norm.

In the case of shift operator, formula (14) gives

Corollary 3.3. For the right unilateral shift S, for all m,n∈N and for all X ∈ B(H) we have∣∣∣∣∣∣
∣∣∣∣∣∣
( ∞∑

k=1

1
√

k

mk∑
l=m(k−1)+1

el ⊗ el
?

)
X

( ∞∑
k=1

1
√

k

nk∑
l=n(k−1)+1

el ⊗ el
?

)∣∣∣∣∣∣
∣∣∣∣∣∣ 6 ∣∣∣∣∣∣X − SmXS∗n

∣∣∣∣∣∣. (32)
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Besides shifts and other contractions, Cor. 3.2 is applicable to operators of the form A = TCT−1 and
B = WDW−1, for some contractions C and D and some invertible operators T and W. This cames from the
simple fact that spectras of A and C coincide, as well as spectras of B and D. In fact, it is well known that
operators similar to contractions are exactly those operators which spectrum is contained in the unit disc
(see Cor. 8.2. in [13]).

To consider the validity of Th. 3.1 for an arbitrary u.i. Q-norm we need

Lemma 3.4. Let C ,D : Ω→ B(H) be weakly*-measurable families such that {Ct}t∈Ω consists of commuting normal
operators and

∫
Ω

∣∣∣∣∣∣Ct f
∣∣∣∣∣∣2 +

∣∣∣∣∣∣Dt f
∣∣∣∣∣∣2 dµ(t) < +∞ for all f ∈ H . Then for any Q-norm |||·|||(2) and for any X ∈ C|||·|||(2) (H)

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∫

Ω

C ∗XD dµ

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
(2)

6

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
√∫

Ω

C ∗C dµX

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
(2)

∣∣∣∣∣∣
∣∣∣∣∣∣
√∫

Ω

D ∗D dµ

∣∣∣∣∣∣
∣∣∣∣∣∣. (33)

Similarly, when {Dt}t∈Ω consists of commuting normal operators, then

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∫

Ω

C ∗XD dµ

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
(2)

6

∣∣∣∣∣∣
∣∣∣∣∣∣
√∫

Ω

C ∗C dµ

∣∣∣∣∣∣
∣∣∣∣∣∣ ·

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣X

√∫
Ω

D ∗D dµ

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
(2)

. (34)

Proof. Let us remember (4) that |||X |||(2) denote a Q-norm |||X∗X |||1/2 of any X such that X∗X ∈ C|||·|||(H). Based
on the Th. 3.1. (e) of [9] we have∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∫

Ω

C ∗XD dµ
∣∣∣∣2 ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∫
Ω

C ∗XD dµ
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣2

(2)
6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∫
Ω

C ∗XX∗C dµ
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ · ∣∣∣∣∣∣∣∣∣∣∫

Ω

D ∗D dµ
∣∣∣∣∣∣∣∣∣∣, (35)

where we took that α = 2, θ = 0, ||·||Φ1
= ||·||Φ2

= |||·||| and ||·||Φ3
= ||·|| . Furthermore, if the family {Ct}t∈Ω

consists of commuting normal operators, we have

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∫

Ω

C ∗XX∗C dµ

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ 6

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
√∫

Ω

C ∗C dµXX∗
√∫

Ω

C ∗C dµ

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ =

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
√∫

Ω

C ∗C dµX

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

(2)

, (36)

where we used Th. 3.2. of [9]. Finally, we get (33) from (35) and (36). The proof for (34) goes by analogy.

Theorem 3.5. Let A ,B : Ω→ B(H) be weakly*-measurable families such that

infn∈N

∣∣∣∣∣∣∣∣∫Ωn

∣∣∣At1 · · ·Atn

∣∣∣2 dµn(t1,· · ·, tn)
∣∣∣∣∣∣∣∣ 1

n
6 1 and infn∈N

∣∣∣∣∣∣∣∣∫Ωn

∣∣∣Bt1 · · ·Btn

∣∣∣2 dµn(t1,· · ·, tn)
∣∣∣∣∣∣∣∣ 1

n
6 1,

let |||·||| be an arbitrary u.i. norm and let X∗X ∈ C|||·|||(H). If {At}t∈Ω consists of commuting normal operators, then

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
√

I −
∫

Ω

A ∗

t At dµ(t) X∆B

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
(2)

6

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣X −

∫
Ω

A ∗

t XBt dµ(t)

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
(2)

. (37)

Similarly, if {Bt}t∈Ω consists of commuting normal operators, then

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣∆A X

√
I −

∫
Ω

B∗t Bt dµ(t)

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
(2)

6

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣X −

∫
Ω

A ∗

t XBt dµ(t)

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
(2)

. (38)
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Proof. Let 0 6 r < 1. Based on the expansion (25) and the previous Lemma 3.4 we have∣∣∣∣∣∣∣∣∣∣∣∣∆rA X∆rB

∣∣∣∣∣∣∣∣∣∣∣∣
(2)

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣∆rA

( ∞∑
n=0

r2n
(∫

Ω

A ∗
⊗B dµ

)n(
X − r2

∫
Ω

A ∗XB dµ
))

∆rB

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
(2)

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ ∞∑

n=0

r2n∆
1− 1

q

rA

∫
Ωn

A |n〉∗
(
X − r2

∫
Ω

A ∗XB dµ
)
B|n〉 dµn∆

1− 1
s

rB

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
(2)

6

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
√√

∆rA

∞∑
n=0

r2n

∫
Ωn

A |n〉∗A |n〉 dµn∆rA

(
X − r2

∫
Ω

A ∗XB dµ
)∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
(2)

∣∣∣∣∣∣
∣∣∣∣∣∣
√√

∆rB

∞∑
n=0

r2n

∫
Ωn

B|n〉∗B|n〉 dµn∆rB

∣∣∣∣∣∣
∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣X − r2
∫

Ω

A ∗XB dµ
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2)
. (39)

Since every Q-norm is also an u.i. norm and therefore it is lower semi-continuous, we have∣∣∣∣∣∣∣∣∣∣∣∣∆A X∆B

∣∣∣∣∣∣∣∣∣∣∣∣
(2)

=
∣∣∣∣∣∣∣∣∣∣∣∣w−lim

r↗1
∆rA X∆rB

∣∣∣∣∣∣∣∣∣∣∣∣
(2)
6 lim inf

r↗1

∣∣∣∣∣∣∣∣∣∣∣∣∆rA X∆rB

∣∣∣∣∣∣∣∣∣∣∣∣
(2)

6 lim inf
r↗1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣X − r2
∫

Ω

A ∗XB dµ
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣X −∫
Ω

A ∗XB dµ
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2)
. (40)

Taking (15) into account in (40) concludes the proof of (37). The proof for (38) goes by analogy.

Thus, in the case of Q-norms, Th. 3.5 extends Th. 4.1. of [9] to the situation when only one of families
{At}t∈Ω and {Bt}t∈Ω needs to consist of commuting normal operators. Specially, we have (37) and (38) to
hold for Schatten tracial p norms ||·||p for all p > 2. In a special case when Ω is a single point, Th 3.5 says that∣∣∣∣∣∣∣∣∣∣∣∣ √I − A∗AX∆B

∣∣∣∣∣∣∣∣∣∣∣∣
(2)
6 |||X − AXB|||(2) ,

whenever A is a normal contraction and r(B) 6 1. This extends Th. 2.3 in [8] to the case of Q-norms.
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