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Abstract. In this paper, we determine the coefficient bounds for functions in certain subclasses of close-
to-convex functions of complex order, which are introduced here by means of a certain non-homogeneous
Cauchy-Euler-type differential equation of order m. Relevant connections of some of the results obtained
with those in earlier works are also provided.

1. Introduction, Definitions and Preliminaries

Let R = (−∞,∞) be the set of real numbers, C : = C∗∪ {0} be the set of complex numbers,

N := {1, 2, 3, . . .} =N0\ {0}

be the set of positive integers and

N∗ :=N\ {1} = {2, 3, 4, . . .} .

LetA denote the class of functions of the form

f (z) = z +

∞∑
n=2

anzn (1)

which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1} .

Recently Xu et al. [12] introduced the subclasses Sϕ
(
λ, γ

)
and Kϕ

(
λ, γ,m; u

)
of analytic functions

of complex order γ ∈ C∗, and obtained the coefficient bounds for the Taylor-Maclaurin coefficients for
functions in each of these new sublasses Sϕ

(
λ, γ

)
and Kϕ

(
λ, γ,m; u

)
of complex order γ ∈ C∗, which is

given by Definitions 1.1 and 1.2 below.
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Definition 1.1. (see [12]) Let ϕ : U→ C be a convex function such that

ϕ(0) = 1 and <
(
ϕ (z)

)
> 0 (z ∈ U) .

We denote by Sϕ
(
λ, γ

)
the class of functions f ∈ A satisfying

1 +
1
γ

(
z
[
(1 − λ) f (z) + λz f ′ (z)

]′
(1 − λ) f (z) + λz f ′ (z)

− 1
)
∈ ϕ (U) (z ∈ U) ,

where 0 ≤ λ ≤ 1; γ ∈ C∗.

Definition 1.2. (see [12]) A function f ∈ A is said to be in the class Kϕ
(
λ, γ,m; u

)
if it satisfies the following

non-homogenous Cauchy-Euler differential equation:

zm dmw
dzm +

(
m
1

)
(u + m − 1) zm−1 dm−1w

dzm−1 + · · · +

(
m
m

)
w

m−1∏
j=0

(
u + j

)
= h(z)

m−1∏
j=0

(
u + j + 1

)
(
w = f (z) ∈ A; h ∈ Sϕ

(
λ, γ

)
; m ∈N∗; u ∈ R\ (−∞,−1]

)
.

Making use of Definitions 1.1 and 1.2, Xu et al. [12] proved the following coefficient bounds for the
Taylor-Maclaurin coefficients for functions in the sublassesSϕ

(
λ, γ

)
andKϕ

(
λ, γ,m; u

)
of analytic functions

of complex order γ ∈ C∗.

Theorem 1.3. (see [12]) Let the function f ∈ A be defined by (1). If f ∈ Sϕ
(
λ, γ

)
, then

|an| ≤

n−2∏
k=0

[
k +

∣∣∣ϕ′ (0)
∣∣∣ · ∣∣∣γ∣∣∣]

(n − 1)! [1 + λ (n − 1)]
(n ∈N∗) .

Theorem 1.4. (see [12]) Let the function f ∈ A be defined by (1). If f ∈ Kϕ
(
λ, γ,m; u

)
, then

|an| ≤

n−2∏
k=0

[
k +

∣∣∣ϕ′ (0)
∣∣∣ · ∣∣∣γ∣∣∣] m−1∏

j=0

(
u + j + 1

)
(n − 1)! [1 + λ (n − 1)]

m−1∏
j=0

(
u + j + n

) (m,n ∈N∗) ,

(
0 ≤ λ ≤ 1; γ ∈ C∗; u ∈ R\ (−∞,−1]

)
.

Here, in our present sequel to some of the aforecited works (especially [12]), we first introduce the
following subclasses of analytic functions of complex order γ ∈ C∗.

Definition 1.5. Let ϕ : U→ C be a convex function such that

ϕ(0) = 1 and <
(
ϕ (z)

)
> 0 (z ∈ U) .

We denote by SQϕ
(
λ, γ, δ, τ

)
the class of functions f ∈ A satisfying

1 +
1
γ

(
z
[
(1 − λ) f (z) + λz f ′ (z)

]′
(1 − λ) 1 (z) + λz1′ (z)

− 1
)
∈ ϕ (U) (z ∈ U) ,

where 1 ∈ Sϕ (δ, τ) ; 0 ≤ λ, δ ≤ 1; γ, τ ∈ C∗.
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Definition 1.6. A function f ∈ A is said to be in the class KQϕ
(
λ, γ, δ, τ,m; u

)
if it satisfies the following non-

homogenous Cauchy-Euler differential equation of order m :

zm dmw
dzm +

(
m
1

)
(u + m − 1) zm−1 dm−1w

dzm−1 + · · · +

(
m
m

)
w

m−1∏
j=0

(
u + j

)
= h(z)

m−1∏
j=0

(
u + j + 1

)
(
w = f (z) ∈ A; h ∈ SQϕ

(
λ, γ, δ, τ

)
; m ∈N∗; u ∈ R\ (−∞,−1]

)
.

Remark 1. There are many choices of the function ϕwhich would provide interesting subclasses of analytic
functions of complex order γ ∈ C∗. In particular,
(i) if we let

ϕ (z) =
1 + Az
1 + Bz

(−1 ≤ B < A ≤ 1; z ∈ U) ,

then it is easy to verify that ϕ is a convex function in U and satisfies the hypotheses of Definition 1.5.
Therefore we obtain the new classes

SQϕ
(
λ, γ, δ, τ

)
= KQ

(
λ, γ, δ, τ,A,B

)
and KQϕ

(
λ, γ, δ, τ,m; u

)
= DK

(
λ, γ, δ, τ,A,B,m; u

)
.

For δ = λ and τ = 1, these classes introduced and studied by Ul-Haq et al. [10].
(ii) if we let

ϕ (z) =
1 +

(
1 − 2β

)
z

1 − z
(
0 ≤ β < 1; z ∈ U

)
,

then we obtain the new classes

SQϕ
(
λ, γ, δ, τ

)
= KQ

(
λ, γ, δ, τ, β

)
and KQϕ

(
λ, γ, δ, τ,m; u

)
= BK

(
λ, γ, δ, τ, β; u

)
.

For δ = λ, τ = 1 and m = 2, these classes are introduced and studied by Ul-Haq et al. [9].
In this paper, by using the subordination principle between analytic functions, we obtain coefficient

bounds for the Taylor-Maclaurin coefficients for functions in the substantially more general function classes
SQϕ

(
λ, γ, δ, τ

)
and KQϕ

(
λ, γ, δ, τ,m; u

)
of analytic functions of complex order γ ∈ C∗, which we have

introduced here.
Our results presented here would generalize and improve the corresponding results obtained earlier

by (for example) Altıntaş et al. [1], Nasr and Aouf [4], Robertson [5], Srivastava et al. [7] and Ul-Haq et al.
[9, 10], (see also [2, 3, 8, 11]).

In our investigation, we shall make use of the principle of subordination between analytic functions,
which is explained in Definition 1.7 below.

Definition 1.7. For two functions f and 1, analytic inU, we say that the function f is subordinate to 1 inU, and
write

f (z) ≺ 1 (z) (z ∈ U) ,

if there exists a Schwarz function ω, analytic inU, with

ω (0) = 0 and |ω (z)| < 1 (z ∈ U)

such that

f (z) = 1 (ω (z)) (z ∈ U) .

Indeed, it is known that

f (z) ≺ 1 (z) (z ∈ U)⇒ f (0) = 1 (0) and f (U) ⊂ 1 (U) .

Furthermore, if the function 1 is univalent inU, then we have the following equivalence

f (z) ≺ 1 (z) (z ∈ U)⇔ f (0) = 1 (0) and f (U) ⊂ 1 (U) .
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2. Main Results and their Demonstration

In order to prove our main results (Theorems 2.2 and 2.3 below), we first recall the following lemma
due to Rogosinski [6].

Lemma 2.1. Let the function g given by

g (z) =

∞∑
k=1

bkzk (z ∈ U)

be convex inU. Also let the function f given by

f(z) =

∞∑
k=1

akzk (z ∈ U)

be holomorphic inU. If

f (z) ≺ g (z) (z ∈ U) ,

then

|ak| ≤ |b1| (k ∈N) .

We now state and prove each of our main results given by Theorems 2.2 and 2.3 below.

Theorem 2.2. Let the function f ∈ A be defined by (1). If f ∈ SQϕ
(
λ, γ, δ, τ

)
, then

|an| ≤

n−2∏
k=0

[
k +

∣∣∣ϕ′ (0)
∣∣∣ · |τ|]

n! [1 + δ (n − 1)]

+

∣∣∣ϕ′ (0)
∣∣∣ · ∣∣∣γ∣∣∣

n [1 + λ (n − 1)]

1 +

n−2∑
j=1

[
1 + λ

(
n − j − 1

)] n− j−2∏
k=0

[
k +

∣∣∣ϕ′ (0)
∣∣∣ · |τ|](

n − j − 1
)
!
[
1 + δ

(
n − j − 1

)]
 (n ∈N∗) ,

(
1 ∈ Sϕ (δ, τ) ; 0 ≤ λ, δ ≤ 1; γ, τ ∈ C∗

)
.

Proof. Let the function f ∈ SQϕ
(
λ, γ, δ, τ

)
be of the form (1). Therefore, there exists a function

1(z) = z +

∞∑
n=2

bnzn
∈ Sϕ (δ, τ) (τ ∈ C∗) (2)

so that

1 +
1
γ

(
z
[
(1 − λ) f (z) + λz f ′ (z)

]′
(1 − λ) 1 (z) + λz1′ (z)

− 1
)
∈ ϕ (U) . (3)

Note that by Theorem 1.3, we have

|bn| ≤

n−2∏
k=0

[
k +

∣∣∣ϕ′ (0)
∣∣∣ · |τ|]

(n − 1)! [1 + δ (n − 1)]
(n ∈N∗) . (4)
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Let

F (z) = (1 − λ) f (z) + λz f ′ (z) = z +

∞∑
n=2

Anzn, An = [1 + λ (n − 1)] an (5)

G (z) = (1 − λ) 1 (z) + λz1′ (z) = z +

∞∑
n=2

Bnzn, Bn = [1 + λ (n − 1)] bn. (6)

Then (3) is of the form

1 +
1
γ

(
zF′ (z)
G (z)

− 1
)
∈ ϕ (U) . (7)

Let us define the function p(z) by

p(z) = 1 +
1
γ

(
zF′ (z)
G (z)

− 1
)

(z ∈ U). (8)

Therefore, we deduce that

p (0) = ϕ (0) = 1 and p(z) ∈ ϕ (U) (z ∈ U).

So we have

p(z) ≺ ϕ(z) (z ∈ U).

Hence, by Lemma 2.1, we obtain∣∣∣∣∣∣p(m) (0)
m!

∣∣∣∣∣∣ = |cm| ≤
∣∣∣ϕ′ (0)

∣∣∣ (m ∈N) , (9)

where

p(z) = 1 + c1z + c2z2 + · · · (z ∈ U). (10)

Also from (8), we find

zF′(z) − G(z) = γ
(
p(z) − 1

)
G(z). (11)

Since A1 = B1 = 1, in view of (11), we obtain

nAn − Bn = γ {cn−1 + cn−2B2 + · · · + c1Bn−1} = γ

cn−1 +

n−2∑
j=1

c jBn− j

 (n ∈N∗) . (12)

Now we get from (4) , (5), (6) , (9) and (12) ,

|an| ≤

n−2∏
k=0

[
k +

∣∣∣ϕ′ (0)
∣∣∣ · |τ|]

n! [1 + δ (n − 1)]

+

∣∣∣ϕ′ (0)
∣∣∣ · ∣∣∣γ∣∣∣

n [1 + λ (n − 1)]

1 +

n−2∑
j=1

[
1 + λ

(
n − j − 1

)] n− j−2∏
k=0

[
k +

∣∣∣ϕ′ (0)
∣∣∣ · |τ|](

n − j − 1
)
!
[
1 + δ

(
n − j − 1

)]
 (n ∈N∗) .

This evidently completes the proof of Theorem 2.2.
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Theorem 2.3. Let the function f ∈ A be defined by (1). If f ∈ KQϕ
(
λ, γ, δ, τ,m; u

)
, then

|an| ≤


n−2∏
k=0

[
k +

∣∣∣ϕ′ (0)
∣∣∣ · |τ|]

n! [1 + δ (n − 1)]

+

∣∣∣ϕ′ (0)
∣∣∣ · ∣∣∣γ∣∣∣

n [1 + λ (n − 1)]

1 +

n−2∑
j=1

[
1 + λ

(
n − j − 1

)] n− j−2∏
k=0

[
k +

∣∣∣ϕ′ (0)
∣∣∣ · |τ|](

n − j − 1
)
!
[
1 + δ

(
n − j − 1

)]



×

m−1∏
j=0

(
u + j + 1

)
m−1∏
j=0

(
u + j + n

) (n ∈N∗) , (13)

(
0 ≤ λ, δ ≤ 1; γ, τ ∈ C∗; m ∈N∗; u ∈ R\ (−∞,−1]

)
.

Proof. Let the function f ∈ A be given by (1). Also let

h(z) = z +

∞∑
n=2

hnzn
∈ SQϕ

(
λ, γ, δ, τ

)
.

We then deduce from Definition 1.6 that

an =

m−1∏
j=0

(
u + j + 1

)
m−1∏
j=0

(
u + j + n

)hn (n ∈N∗, u ∈ R\ (−∞,−1]) .

Thus, by using Theorem 2.2 in conjunction with the above equality, we have assertion (13) of Theorem 2.3.
This completes the proof of Theorem 2.3.

3. Corollaries and consequences

In this section, we apply our main results (Theorems 2.2 and 2.3) in order to deduce each of the following
corollaries and consequences.

Setting

ϕ (z) =
1 + Az
1 + Bz

(−1 ≤ B < A ≤ 1; z ∈ U) ,

in Theorems 2.2 and 2.3, we get Corollaries 3.1 and 3.2, respectively.

Corollary 3.1. Let the function f ∈ A be defined by (1). If f ∈ KQ
(
λ, γ, δ, τ,A,B

)
, then

|an| ≤

n−2∏
k=0

[k + |τ| (A − B)]

n! [1 + δ (n − 1)]

+

∣∣∣γ∣∣∣ (A − B)

n [1 + λ (n − 1)]

1 +

n−2∑
j=1

[
1 + λ

(
n − j − 1

)] n− j−2∏
k=0

[k + |τ| (A − B)](
n − j − 1

)
!
[
1 + δ

(
n − j − 1

)]
 (n ∈N∗) ,
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1 ∈ Sϕ (δ, τ) ; 0 ≤ λ, δ ≤ 1; γ, τ ∈ C∗; −1 ≤ B < A ≤ 1

)
.

Corollary 3.2. Let the function f ∈ A be defined by (1). If f ∈ DK
(
λ, γ, δ, τ,A,B,m; u

)
, then

|an| ≤


n−2∏
k=0

[k + |τ| (A − B)]

n! [1 + δ (n − 1)]

+

∣∣∣γ∣∣∣ (A − B)

n [1 + λ (n − 1)]

1 +

n−2∑
j=1

[
1 + λ

(
n − j − 1

)] n− j−2∏
k=0

[k + |τ| (A − B)](
n − j − 1

)
!
[
1 + δ

(
n − j − 1

)]



m−1∏
j=0

(
u + j + 1

)
m−1∏
j=0

(
u + j + n

) (n ∈N∗) ,

(
0 ≤ λ, δ ≤ 1; γ, τ ∈ C∗; −1 ≤ B < A ≤ 1; m ∈N∗; u ∈ R\ (−∞,−1]

)
.

Remark 2. It is easy to see that

k + |τ| (A − B) ≤ k +
2 |τ| (A − B)

1 − B
(k ∈N∗, −1 ≤ B < A ≤ 1, τ ∈ C∗) ,

which would obviously yield significant improvements over [10, Theorems 1 and 2], with δ = λ and τ = 1
in Corollaries 3.1 and 3.2, respectively.

Setting

ϕ (z) =
1 +

(
1 − 2β

)
z

1 − z
(
0 ≤ β < 1; z ∈ U

)
,

in Theorems 2.2 and 2.3, we get Corollaries 3.3 and 3.4, respectively.

Corollary 3.3. Let the function f ∈ A be defined by (1). If f ∈ KQ
(
λ, γ, δ, τ, β

)
, then

|an| ≤

n−2∏
k=0

[
k + 2 |τ|

(
1 − β

)]
n! [1 + δ (n − 1)]

+
2
∣∣∣γ∣∣∣ (1 − β)

n [1 + λ (n − 1)]

1 +

n−2∑
j=1

[
1 + λ

(
n − j − 1

)] n− j−2∏
k=0

[
k + 2 |τ|

(
1 − β

)]
(
n − j − 1

)
!
[
1 + δ

(
n − j − 1

)]
 (n ∈N∗) ,

(
1 ∈ Sϕ (δ, τ) ; 0 ≤ λ, δ ≤ 1; γ, τ ∈ C∗; 0 ≤ β < 1

)
.
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Corollary 3.4. Let the function f ∈ A be defined by (1). If f ∈ BK
(
λ, γ, δ, τ, β; u

)
, then

|an| ≤


n−2∏
k=0

[
k + 2 |τ|

(
1 − β

)]
n! [1 + δ (n − 1)]

+
2
∣∣∣γ∣∣∣ (1 − β)

n [1 + λ (n − 1)]

1 +

n−2∑
j=1

[
1 + λ

(
n − j − 1

)] n− j−2∏
k=0

[
k + 2 |τ|

(
1 − β

)]
(
n − j − 1

)
!
[
1 + δ

(
n − j − 1

)]



×

m−1∏
j=0

(
u + j + 1

)
m−1∏
j=0

(
u + j + n

) (n ∈N∗) ,

(
0 ≤ λ, δ ≤ 1; γ, τ ∈ C∗; 0 ≤ β < 1; m ∈N∗; u ∈ R\ (−∞,−1]

)
.

Remark 3. Taking δ = λ, τ = 1 and m = 2 in Corollaries 3.3 and 3.4, we have [9, Theorems 1 and 2],
respectively.
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[2] O. Altıntaş, Ö. Özkan and H.M. Srivastava, Majorization by starlike functions of complex order, Complex Variables Theory Appl.
46 (3) (2001) 207–218.

[3] G. Murugusundaramoorthy and H.M. Srivastava, Neighborhoods of certain classes of analytic functions of complex order, J.
Inequal. Pure Appl. Math. 5 (2: Article 24) (2004) 1–8 (electronic).

[4] M.A. Nasr and M.K. Aouf, Radius of convexity for the class of starlike functions of complex order, Bull. Fac. Sci. Assiut Univ. A
12 (1) (1983) 153–159.

[5] M.S. Robertson, On the theory of univalent functions, Ann. of Math. (2) 37 (2) (1936) 374–408.
[6] W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. (Ser. 2) 48 (1943) 48–82.
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