Coefficient Bounds for Certain Subclasses of Close-To-Convex Functions of Complex Order

Serap Bulut ${ }^{\text {a }}$
${ }^{a}$ Kocaeli University, Faculty of Aviation and Space Sciences, Arslanbey Campus, TR-41285 Kartepe-Kocaeli, TURKEY

Abstract

In this paper, we determine the coefficient bounds for functions in certain subclasses of close-to-convex functions of complex order, which are introduced here by means of a certain non-homogeneous Cauchy-Euler-type differential equation of order m. Relevant connections of some of the results obtained with those in earlier works are also provided.

1. Introduction, Definitions and Preliminaries

Let $\mathbb{R}=(-\infty, \infty)$ be the set of real numbers, $\mathbb{C}:=\mathbb{C}^{*} \cup\{0\}$ be the set of complex numbers,

$$
\mathbb{N}:=\{1,2,3, \ldots\}=\mathbb{N}_{0} \backslash\{0\}
$$

be the set of positive integers and

$$
\mathbb{N}^{*}:=\mathbb{N} \backslash\{1\}=\{2,3,4, \ldots\}
$$

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk

$$
\mathbb{U}=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<1\} .
$$

Recently Xu et al. [12] introduced the subclasses $\mathcal{S}_{\varphi}(\lambda, \gamma)$ and $\mathcal{K}_{\varphi}(\lambda, \gamma, m ; u)$ of analytic functions of complex order $\gamma \in \mathbb{C}^{*}$, and obtained the coefficient bounds for the Taylor-Maclaurin coefficients for functions in each of these new sublasses $\mathcal{S}_{\varphi}(\lambda, \gamma)$ and $\mathcal{K}_{\varphi}(\lambda, \gamma, m ; u)$ of complex order $\gamma \in \mathbb{C}^{*}$, which is given by Definitions 1.1 and 1.2 below.

[^0]Definition 1.1. (see [12]) Let $\varphi: \mathbb{U} \rightarrow \mathbb{C}$ be a convex function such that

$$
\varphi(0)=1 \quad \text { and } \quad \mathfrak{R}(\varphi(z))>0 \quad(z \in \mathbb{U})
$$

We denote by $\mathcal{S}_{\varphi}(\lambda, \gamma)$ the class of functions $f \in \mathcal{A}$ satisfying

$$
1+\frac{1}{\gamma}\left(\frac{z\left[(1-\lambda) f(z)+\lambda z f^{\prime}(z)\right]^{\prime}}{(1-\lambda) f(z)+\lambda z f^{\prime}(z)}-1\right) \in \varphi(\mathbb{U}) \quad(z \in \mathbb{U})
$$

where $0 \leq \lambda \leq 1 ; \gamma \in \mathbb{C}^{*}$.
Definition 1.2. (see [12]) A function $f \in \mathcal{A}$ is said to be in the class $\mathcal{K}_{\varphi}(\lambda, \gamma, m ; u)$ if it satisfies the following non-homogenous Cauchy-Euler differential equation:

$$
\begin{aligned}
& z^{m} \frac{d^{m} w}{d z^{m}}+\binom{m}{1}(u+m-1) z^{m-1} \frac{d^{m-1} w}{d z^{m-1}}+\cdots+\binom{m}{m} w \prod_{j=0}^{m-1}(u+j)=h(z) \prod_{j=0}^{m-1}(u+j+1) \\
& \left(w=f(z) \in \mathcal{A} ; h \in \mathcal{S}_{\varphi}(\lambda, \gamma) ; m \in \mathbb{N}^{*} ; u \in \mathbb{R} \backslash(-\infty,-1]\right)
\end{aligned}
$$

Making use of Definitions 1.1 and 1.2, Xu et al. [12] proved the following coefficient bounds for the Taylor-Maclaurin coefficients for functions in the sublasses $\mathcal{S}_{\varphi}(\lambda, \gamma)$ and $\mathcal{K}_{\varphi}(\lambda, \gamma, m ; u)$ of analytic functions of complex order $\gamma \in \mathbb{C}^{*}$.

Theorem 1.3. (see [12]) Let the function $f \in \mathcal{A}$ be defined by (1). If $f \in \mathcal{S}_{\varphi}(\lambda, \gamma)$, then

$$
\left|a_{n}\right| \leq \frac{\prod_{k=0}^{n-2}\left[k+\left|\varphi^{\prime}(0)\right| \cdot|\gamma|\right]}{(n-1)![1+\lambda(n-1)]} \quad\left(n \in \mathbb{N}^{*}\right)
$$

Theorem 1.4. (see [12]) Let the function $f \in \mathcal{A}$ be defined by (1). If $f \in \mathcal{K}_{\varphi}(\lambda, \gamma, m ; u)$, then

$$
\begin{aligned}
& \left|a_{n}\right| \leq \frac{\prod_{k=0}^{n-2}\left[k+\left|\varphi^{\prime}(0)\right| \cdot|\gamma|\right] \prod_{j=0}^{m-1}(u+j+1)}{(n-1)![1+\lambda(n-1)] \prod_{j=0}^{m-1}(u+j+n)} \quad\left(m, n \in \mathbb{N}^{*}\right) \\
& \left(0 \leq \lambda \leq 1 ; \gamma \in \mathbb{C}^{*} ; u \in \mathbb{R} \backslash(-\infty,-1]\right)
\end{aligned}
$$

Here, in our present sequel to some of the aforecited works (especially [12]), we first introduce the following subclasses of analytic functions of complex order $\gamma \in \mathbb{C}^{*}$.

Definition 1.5. Let $\varphi: \mathbb{U} \rightarrow \mathbb{C}$ be a convex function such that

$$
\varphi(0)=1 \quad \text { and } \quad \mathfrak{R}(\varphi(z))>0 \quad(z \in \mathbb{U})
$$

We denote by $\mathcal{S} Q_{\varphi}(\lambda, \gamma, \delta, \tau)$ the class of functions $f \in \mathcal{A}$ satisfying

$$
1+\frac{1}{\gamma}\left(\frac{z\left[(1-\lambda) f(z)+\lambda z f^{\prime}(z)\right]^{\prime}}{(1-\lambda) g(z)+\lambda z g^{\prime}(z)}-1\right) \in \varphi(\mathbb{U}) \quad(z \in \mathbb{U})
$$

where $g \in \mathcal{S}_{\varphi}(\delta, \tau) ; 0 \leq \lambda, \delta \leq 1 ; \gamma, \tau \in \mathbb{C}^{*}$.

Definition 1.6. A function $f \in \mathcal{A}$ is said to be in the class $\mathcal{K} Q_{\varphi}(\lambda, \gamma, \delta, \tau, m ; u)$ if it satisfies the following nonhomogenous Cauchy-Euler differential equation of order m :

$$
\begin{aligned}
& z^{m} \frac{d^{m} w}{d z^{m}}+\binom{m}{1}(u+m-1) z^{m-1} \frac{d^{m-1} w}{d z^{m-1}}+\cdots+\binom{m}{m} w \prod_{j=0}^{m-1}(u+j)=h(z) \prod_{j=0}^{m-1}(u+j+1) \\
& \left(w=f(z) \in \mathcal{F} ; h \in \mathcal{S} Q_{\varphi}(\lambda, \gamma, \delta, \tau) ; m \in \mathbb{N}^{*} ; u \in \mathbb{R} \backslash(-\infty,-1]\right)
\end{aligned}
$$

Remark 1. There are many choices of the function φ which would provide interesting subclasses of analytic functions of complex order $\gamma \in \mathbb{C}^{*}$. In particular,
(i) if we let

$$
\varphi(z)=\frac{1+A z}{1+B z} \quad(-1 \leq B<A \leq 1 ; z \in \mathbb{U})
$$

then it is easy to verify that φ is a convex function in \mathbb{U} and satisfies the hypotheses of Definition 1.5. Therefore we obtain the new classes

$$
\mathcal{S} Q_{\varphi}(\lambda, \gamma, \delta, \tau)=\mathcal{K} Q(\lambda, \gamma, \delta, \tau, A, B) \quad \text { and } \quad \mathcal{K} Q_{\varphi}(\lambda, \gamma, \delta, \tau, m ; u)=\mathcal{D} \mathcal{K}(\lambda, \gamma, \delta, \tau, A, B, m ; u)
$$

For $\delta=\lambda$ and $\tau=1$, these classes introduced and studied by Ul-Haq et al. [10].
(ii) if we let

$$
\varphi(z)=\frac{1+(1-2 \beta) z}{1-z} \quad(0 \leq \beta<1 ; z \in \mathbb{U})
$$

then we obtain the new classes

$$
\mathcal{S} Q_{\varphi}(\lambda, \gamma, \delta, \tau)=\mathcal{K} Q(\lambda, \gamma, \delta, \tau, \beta) \quad \text { and } \quad \mathcal{K} Q_{\varphi}(\lambda, \gamma, \delta, \tau, m ; u)=\mathcal{B K}(\lambda, \gamma, \delta, \tau, \beta ; u)
$$

For $\delta=\lambda, \tau=1$ and $m=2$, these classes are introduced and studied by Ul-Haq et al. [9].
In this paper, by using the subordination principle between analytic functions, we obtain coefficient bounds for the Taylor-Maclaurin coefficients for functions in the substantially more general function classes $\mathcal{S} Q_{\varphi}(\lambda, \gamma, \delta, \tau)$ and $\mathcal{K} Q_{\varphi}(\lambda, \gamma, \delta, \tau, m ; u)$ of analytic functions of complex order $\gamma \in \mathbb{C}^{*}$, which we have introduced here.

Our results presented here would generalize and improve the corresponding results obtained earlier by (for example) Altıntaş et al. [1], Nasr and Aouf [4], Robertson [5], Srivastava et al. [7] and Ul-Haq et al. [9,10$]$, (see also [2, 3, 8, 11]).

In our investigation, we shall make use of the principle of subordination between analytic functions, which is explained in Definition 1.7 below.
Definition 1.7. For two functions f and g, analytic in \mathbb{U}, we say that the function f is subordinate to g in \mathbb{U}, and write

$$
f(z)<g(z) \quad(z \in \mathbb{U})
$$

if there exists a Schwarz function ω, analytic in \mathbb{U}, with

$$
\omega(0)=0 \quad \text { and } \quad|\omega(z)|<1 \quad(z \in \mathbb{U})
$$

such that

$$
f(z)=g(\omega(z)) \quad(z \in \mathbb{U})
$$

Indeed, it is known that

$$
f(z)<g(z) \quad(z \in \mathbb{U}) \Rightarrow f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U})
$$

Furthermore, if the function g is univalent in \mathbb{U}, then we have the following equivalence

$$
f(z)<g(z) \quad(z \in \mathbb{U}) \Leftrightarrow f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U})
$$

2. Main Results and their Demonstration

In order to prove our main results (Theorems 2.2 and 2.3 below), we first recall the following lemma due to Rogosinski [6].

Lemma 2.1. Let the function \mathfrak{g} given by

$$
\mathfrak{g}(z)=\sum_{k=1}^{\infty} \mathfrak{b}_{k} z^{k} \quad(z \in \mathbb{U})
$$

be convex in \mathbb{U}. Also let the function \mathfrak{f} given by

$$
\mathfrak{f}(z)=\sum_{k=1}^{\infty} \mathfrak{a}_{k} z^{k} \quad(z \in \mathbb{U})
$$

be holomorphic in \mathbb{U}. If

$$
\mathfrak{f}(z)<\mathfrak{g}(z) \quad(z \in \mathbb{U})
$$

then

$$
\left|\mathfrak{a}_{k}\right| \leq\left|\mathfrak{b}_{1}\right| \quad(k \in \mathbb{N})
$$

We now state and prove each of our main results given by Theorems 2.2 and 2.3 below.
Theorem 2.2. Let the function $f \in \mathcal{A}$ be defined by (1). If $f \in \mathcal{S} Q_{\varphi}(\lambda, \gamma, \delta, \tau)$, then

$$
\begin{aligned}
& \left|a_{n}\right| \leq \\
& \quad \frac{\prod_{k=0}^{n-2}\left[k+\left|\varphi^{\prime}(0)\right| \cdot|\tau|\right]}{n![1+\delta(n-1)]} \\
& \quad+\frac{\left|\varphi^{\prime}(0)\right| \cdot|\gamma|}{n[1+\lambda(n-1)]}\left(1+\sum_{j=1}^{n-2} \frac{[1+\lambda(n-j-1)] \prod_{k=0}^{n-j-2}\left[k+\left|\varphi^{\prime}(0)\right| \cdot|\tau|\right]}{(n-j-1)![1+\delta(n-j-1)]}\right) \quad\left(n \in \mathbb{N}^{*}\right), \\
& \left(g \in \mathcal{S}_{\varphi}(\delta, \tau) ; 0 \leq \lambda, \delta \leq 1 ; \gamma, \tau \in \mathbb{C}^{*}\right) .
\end{aligned}
$$

Proof. Let the function $f \in \mathcal{S} Q_{\varphi}(\lambda, \gamma, \delta, \tau)$ be of the form (1). Therefore, there exists a function

$$
\begin{equation*}
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \in \mathcal{S}_{\varphi}(\delta, \tau) \quad\left(\tau \in \mathbb{C}^{*}\right) \tag{2}
\end{equation*}
$$

so that

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{z\left[(1-\lambda) f(z)+\lambda z f^{\prime}(z)\right]^{\prime}}{(1-\lambda) g(z)+\lambda z g^{\prime}(z)}-1\right) \in \varphi(\mathbb{U}) \tag{3}
\end{equation*}
$$

Note that by Theorem 1.3, we have

$$
\begin{equation*}
\left|b_{n}\right| \leq \frac{\prod_{k=0}^{n-2}\left[k+\left|\varphi^{\prime}(0)\right| \cdot|\tau|\right]}{(n-1)![1+\delta(n-1)]} \quad\left(n \in \mathbb{N}^{*}\right) \tag{4}
\end{equation*}
$$

Let

$$
\begin{array}{ll}
F(z)=(1-\lambda) f(z)+\lambda z f^{\prime}(z)=z+\sum_{n=2}^{\infty} A_{n} z^{n}, & A_{n}=[1+\lambda(n-1)] a_{n} \\
G(z)=(1-\lambda) g(z)+\lambda z g^{\prime}(z)=z+\sum_{n=2}^{\infty} B_{n} z^{n}, & B_{n}=[1+\lambda(n-1)] b_{n} \tag{6}
\end{array}
$$

Then (3) is of the form

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{z F^{\prime}(z)}{G(z)}-1\right) \in \varphi(\mathbb{U}) \tag{7}
\end{equation*}
$$

Let us define the function $p(z)$ by

$$
\begin{equation*}
p(z)=1+\frac{1}{\gamma}\left(\frac{z F^{\prime}(z)}{G(z)}-1\right) \quad(z \in \mathbb{U}) \tag{8}
\end{equation*}
$$

Therefore, we deduce that

$$
p(0)=\varphi(0)=1 \quad \text { and } \quad p(z) \in \varphi(\mathbb{U}) \quad(z \in \mathbb{U}) .
$$

So we have

$$
p(z)<\varphi(z) \quad(z \in \mathbb{U})
$$

Hence, by Lemma 2.1, we obtain

$$
\begin{equation*}
\left|\frac{p^{(m)}(0)}{m!}\right|=\left|c_{m}\right| \leq\left|\varphi^{\prime}(0)\right| \quad(m \in \mathbb{N}) \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
p(z)=1+c_{1} z+c_{2} z^{2}+\cdots \quad(z \in \mathbb{U}) \tag{10}
\end{equation*}
$$

Also from (8), we find

$$
\begin{equation*}
z F^{\prime}(z)-G(z)=\gamma(p(z)-1) G(z) \tag{11}
\end{equation*}
$$

Since $A_{1}=B_{1}=1$, in view of (11), we obtain

$$
\begin{equation*}
n A_{n}-B_{n}=\gamma\left\{c_{n-1}+c_{n-2} B_{2}+\cdots+c_{1} B_{n-1}\right\}=\gamma\left(c_{n-1}+\sum_{j=1}^{n-2} c_{j} B_{n-j}\right) \quad\left(n \in \mathbb{N}^{*}\right) \tag{12}
\end{equation*}
$$

Now we get from (4), (5), (6), (9) and (12),

$$
\begin{aligned}
\left|a_{n}\right| \leq & \frac{\prod_{k=0}^{n-2}\left[k+\left|\varphi^{\prime}(0)\right| \cdot|\tau|\right]}{n![1+\delta(n-1)]} \\
& +\frac{\left|\varphi^{\prime}(0)\right| \cdot|\gamma|}{n[1+\lambda(n-1)]}\left(1+\sum_{j=1}^{n-2} \frac{[1+\lambda(n-j-1)] \prod_{k=0}^{n-j-2}\left[k+\left|\varphi^{\prime}(0)\right| \cdot|\tau|\right]}{(n-j-1)![1+\delta(n-j-1)]}\right) \quad\left(n \in \mathbb{N}^{*}\right)
\end{aligned}
$$

This evidently completes the proof of Theorem 2.2.

Theorem 2.3. Let the function $f \in \mathcal{A}$ be defined by (1). If $f \in \mathcal{K} Q_{\varphi}(\lambda, \gamma, \delta, \tau, m ; u)$, then

$$
\begin{align*}
&\left|a_{n}\right| \leq\left\{\frac{\prod_{k=0}^{n-2}\left[k+\left|\varphi^{\prime}(0)\right| \cdot|\tau|\right]}{n![1+\delta(n-1)]}\right. \\
&\left.\left.\left.+\frac{\left|\varphi^{\prime}(0)\right| \cdot|\gamma|}{n[1+\lambda(n-1)]}\right] 1+\sum_{j=1}^{n-2} \frac{[1+\lambda(n-j-1)] \prod_{k=0}^{n-j-2}\left[k+\left|\varphi^{\prime}(0)\right| \cdot|\tau|\right]}{(n-j-1)![1+\delta(n-j-1)]}\right)\right\} \\
& \times \frac{\prod_{j=0}^{m-1}(u+j+1)}{\prod_{j=0}^{m-1}(u+j+n)} \quad\left(n \in \mathbb{N}^{*}\right), \tag{13}\\
&\left(0 \leq \lambda, \delta \leq 1 ; \gamma, \tau \in \mathbb{C}^{*} ; m \in \mathbb{N}^{*} ; u \in \mathbb{R} \backslash(-\infty,-1]\right) .
\end{align*}
$$

Proof. Let the function $f \in \mathcal{A}$ be given by (1). Also let

$$
h(z)=z+\sum_{n=2}^{\infty} h_{n} z^{n} \in \mathcal{S} Q_{\varphi}(\lambda, \gamma, \delta, \tau)
$$

We then deduce from Definition 1.6 that

$$
a_{n}=\frac{\prod_{j=0}^{m-1}(u+j+1)}{\prod_{j=0}^{m-1}(u+j+n)} h_{n} \quad\left(n \in \mathbb{N}^{*}, u \in \mathbb{R} \backslash(-\infty,-1]\right) .
$$

Thus, by using Theorem 2.2 in conjunction with the above equality, we have assertion (13) of Theorem 2.3. This completes the proof of Theorem 2.3.

3. Corollaries and consequences

In this section, we apply our main results (Theorems 2.2 and 2.3) in order to deduce each of the following corollaries and consequences.

Setting

$$
\varphi(z)=\frac{1+A z}{1+B z} \quad(-1 \leq B<A \leq 1 ; z \in \mathbb{U})
$$

in Theorems 2.2 and 2.3, we get Corollaries 3.1 and 3.2, respectively.
Corollary 3.1. Let the function $f \in \mathcal{A}$ be defined by (1). If $f \in \mathcal{K} Q(\lambda, \gamma, \delta, \tau, A, B)$, then

$$
\begin{aligned}
\left|a_{n}\right| \leq & \frac{\prod_{k=0}^{n-2}[k+|\tau|(A-B)]}{n![1+\delta(n-1)]} \\
& +\frac{|\gamma|(A-B)}{n[1+\lambda(n-1)]}\left(1+\sum_{j=1}^{n-2} \frac{[1+\lambda(n-j-1)] \prod_{k=0}^{n-j-2}[k+|\tau|(A-B)]}{(n-j-1)![1+\delta(n-j-1)]}\right) \quad\left(n \in \mathbb{N}^{*}\right)
\end{aligned}
$$

$$
\left(g \in \mathcal{S}_{\varphi}(\delta, \tau) ; 0 \leq \lambda, \delta \leq 1 ; \gamma, \tau \in \mathbb{C}^{*} ;-1 \leq B<A \leq 1\right)
$$

Corollary 3.2. Let the function $f \in \mathcal{A}$ be defined by (1). If $f \in \mathcal{D K}(\lambda, \gamma, \delta, \tau, A, B, m ; u)$, then

$$
\begin{aligned}
\left|a_{n}\right| \leq & \left\{\begin{array}{l}
\prod_{k=0}^{n-2}[k+|\tau|(A-B)] \\
n![1+\delta(n-1)]
\end{array}\right. \\
& \left.+\frac{|\gamma|(A-B)}{n[1+\lambda(n-1)]}\left(1+\sum_{j=1}^{n-2} \frac{[1+\lambda(n-j-1)] \prod_{k=0}^{n-j-2}[k+|\tau|(A-B)]}{(n-j-1)![1+\delta(n-j-1)]}\right)\right) \frac{\prod_{j=0}^{m-1}(u+j+1)}{\prod_{j=0}^{m-1}(u+j+n)} \quad\left(n \in \mathbb{N}^{*}\right),
\end{aligned}
$$

$$
\left(0 \leq \lambda, \delta \leq 1 ; \gamma, \tau \in \mathbb{C}^{*} ;-1 \leq B<A \leq 1 ; m \in \mathbb{N}^{*} ; u \in \mathbb{R} \backslash(-\infty,-1]\right)
$$

Remark 2. It is easy to see that

$$
k+|\tau|(A-B) \leq k+\frac{2|\tau|(A-B)}{1-B} \quad\left(k \in \mathbb{N}^{*},-1 \leq B<A \leq 1, \tau \in \mathbb{C}^{*}\right)
$$

which would obviously yield significant improvements over [10, Theorems 1 and 2], with $\delta=\lambda$ and $\tau=1$ in Corollaries 3.1 and 3.2, respectively.

Setting

$$
\varphi(z)=\frac{1+(1-2 \beta) z}{1-z} \quad(0 \leq \beta<1 ; z \in \mathbb{U})
$$

in Theorems 2.2 and 2.3, we get Corollaries 3.3 and 3.4, respectively.

Corollary 3.3. Let the function $f \in \mathcal{A}$ be defined by (1). If $f \in \mathcal{K} Q(\lambda, \gamma, \delta, \tau, \beta)$, then

$$
\begin{aligned}
& \left|a_{n}\right| \leq \frac{\prod_{k=0}^{n-2}[k+2|\tau|(1-\beta)]}{n![1+\delta(n-1)]} \\
& \quad+\frac{2|\gamma|(1-\beta)}{n[1+\lambda(n-1)]}\left(1+\sum_{j=1}^{n-2} \frac{[1+\lambda(n-j-1)] \prod_{k=0}^{n-j-2}[k+2|\tau|(1-\beta)]}{(n-j-1)![1+\delta(n-j-1)]}\right) \quad\left(n \in \mathbb{N}^{*}\right), \\
& \left(g \in \mathcal{S}_{\varphi}(\delta, \tau) ; 0 \leq \lambda, \delta \leq 1 ; \gamma, \tau \in \mathbb{C}^{*} ; 0 \leq \beta<1\right)
\end{aligned}
$$

Corollary 3.4. Let the function $f \in \mathcal{A}$ be defined by (1). If $f \in \mathcal{B K}(\lambda, \gamma, \delta, \tau, \beta ; u)$, then

$$
\begin{aligned}
&\left|a_{n}\right| \leq\left\{\frac{\prod_{k=0}^{n-2}[k+2|\tau|(1-\beta)]}{n![1+\delta(n-1)]}\right. \\
&\left.+\frac{2|\gamma|(1-\beta)}{n[1+\lambda(n-1)]}\left(1+\sum_{j=1}^{n-2} \frac{[1+\lambda(n-j-1)] \prod_{k=0}^{n-j-2}[k+2|\tau|(1-\beta)]}{(n-j-1)![1+\delta(n-j-1)]}\right)\right\} \\
& \times \frac{\prod_{j=0}^{m-1}(u+j+1)}{\prod_{j=0}^{m-1}(u+j+n)} \quad\left(n \in \mathbb{N}^{*}\right), \\
&\left(0 \leq \lambda, \delta \leq 1 ; \gamma, \tau \in \mathbb{C}^{*} ; 0 \leq \beta<1 ; m \in \mathbb{N}^{*} ; u \in \mathbb{R} \backslash(-\infty,-1]\right) .
\end{aligned}
$$

Remark 3. Taking $\delta=\lambda, \tau=1$ and $m=2$ in Corollaries 3.3 and 3.4, we have [9, Theorems 1 and 2], respectively.

References

[1] O. Altıntaş, H. Irmak, S. Owa and H.M. Srivastava, Coefficient bounds for some families of starlike and convex functions of complex order, Appl. Math. Letters 20 (2007) 1218-1222.
[2] O. Altıntaş, Ö. Özkan and H.M. Srivastava, Majorization by starlike functions of complex order, Complex Variables Theory Appl. 46 (3) (2001) 207-218.
[3] G. Murugusundaramoorthy and H.M. Srivastava, Neighborhoods of certain classes of analytic functions of complex order, J. Inequal. Pure Appl. Math. 5 (2: Article 24) (2004) 1-8 (electronic).
[4] M.A. Nasr and M.K. Aouf, Radius of convexity for the class of starlike functions of complex order, Bull. Fac. Sci. Assiut Univ. A 12 (1) (1983) 153-159.
[5] M.S. Robertson, On the theory of univalent functions, Ann. of Math. (2) 37 (2) (1936) 374-408.
[6] W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. (Ser. 2) 48 (1943) 48-82.
[7] H.M. Srivastava, O. Altıntaş and S. Kırcı Serenbay, Coefficient bounds for certain subclasses of starlike functions of complex order, Appl. Math. Lett. 24 (2011) 1359-1363.
[8] H.M. Srivastava, Q.-H. Xu and G.-P. Wu, Coefficient estimates for certain subclasses of spiral-like functions of complex order, Appl. Math. Lett. 23 (2010) 763-768.
[9] W. Ul-Haq, A. Nazneen and N. Rehman, Coefficient estimates for certain subfamilies of close-to-convex functions of complex order, Filomat 28 (6) (2014) 1139-1142.
[10] W. Ul-Haq, A. Nazneen, M. Arif and N. Rehman, Coefficient bounds for certain subclasses of close-to-convex functions of Janowski type, J. Comput. Anal. Appl. 16 (1) (2014) 133-138.
[11] Q.-X. Xu, Q.-M. Cai and H.M. Srivastava, Sharp coefficient estimates for certain subclasses of starlike functions of complex order, Appl. Math. Comput. 225 (2013) 43-49.
[12] Q.-H. Xu, Y.-C. Gui and H.M. Srivastava, Coefficient estimates for certain subclasses of analytic functions of complex order, Taiwanese J. Math. 15 (5) (2011) 2377-2386.

[^0]: 2010 Mathematics Subject Classification. Primary 30C45; Secondary 30C50
 Keywords. Analytic functions, close-to-convex functions of complex order, non-homogeneous Cauchy-Euler differential equations, coefficient bounds, subordination.

 Received: 07 April 2016; Accepted: 03 September 2016
 Communicated by Hari M. Srivastava
 Email address: serap.bulut@kocaeli.edu.tr (Serap Bulut)

