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Abstract. Let G be a finite group of order pqr where p > q > r > 2 are prime numbers. In this paper, we
find the spectrum of Cayley graph Cay(G,S) where S ⊆ G \ {e} is a normal symmetric generating subset.

1. Introduction

Arthur Cayley in 1878 introduced the concept of Cayley graphs in terms of a group to explain the
algebraic structures of abstract groups which are described by a set of generators. Recently, this theory has
grown into an important branch in algebraic graph theory. The theory of Cayley graphs has some relations
with many well-known problems in pure algebra such as classification, isomorphism and enumeration of
Cayley graphs, (see for instance [11, 16]) and practical problems which are considered by graph and group
theorists. Recently, many authors have studied Cayley graphs and there are a lot of results concerning
spectrum of Cayley graphs. Babai was the first mathematician who considered the spectrum of Cayley
graphs and in one of his papers [1], he explained how we can determine the eigenvalues of Cayley graphs.
This exciting research topic is received increasing attention in recent years, see for example [3, 13]. Babai in
that paper employed algebraic graph theory techniques, but computing the eigenvalues of Cayley graphs
via the character table of related group is considered by Diaconis et al. in [7], for the first time. Following
their method, we compute the spectrum of Cayley graphs of order pqr where p > q > r > 2 are prime
numbers. In other words, let G be a group of order pqr, this note is concerned the construction of Cayley
graph Γ = Cay(G,S), where S ⊆ G \ {1} is a normal symmetric generating subset. We accomplish the
computation of eigenvalues of Γ, in three main steps. First, we compute the presentation of groups of order
pqr. The second observation is to compute the character table of related groups. In section three, by using
Theorem 2.4, we compute the spectrum of these Cayley graphs. Here our notation is standard and mainly
taken from the standard books of graph theory and representation theory such as [2, 6, 9, 10, 15] as well as
[3, 4, 12].

2. Definitions and Preliminaries

In this section, we introduce some basic notation and terminology used throughout the paper. A
Frobenius group of order pq where p is prime and q|p − 1 has the following presentation:

Fp,q = 〈a, b : ap = bq = 1, b−1ab = au
〉, (1)
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where u is an element of order q in multiplicative group Z∗p.
Let also G and H be two finite groups and G×H be direct product of G and H. Hölder in [8] introduced

the presentation of groups of order pqr. By using his results, we can prove that all groups of order pqr where
p > q > r > 2 are isomorphic with exactly one of the following structures:

• G1 = Zpqr,

• G2 = Zr × Fp,q(q|p − 1),

• G3 = Zq × Fp,r(r|p − 1),

• G4 = Fp,qr(qr|p − 1),

• G5 = Zp × Fq,r(r|q − 1),

• Gi+5 = 〈a, b, c : ap = bq = cr = 1, ab = ba, c−1bc = bu, c−1ac = avi
〉, where r|p − 1, q − 1, o(u) = r in Z∗q and

o(v) = r in Z∗p (1 ≤ i ≤ r − 1).

Let Γ be a simple graph with the adjacency matrix A(Γ). The characteristic polynomial χ(Γ, λ) of A(Γ) is
defined as χ(Γ, λ) = |λI −A| and the roots of this polynomial are called the spectrum of graph Γ, see [5]. By
a circulant matrix, we mean a square n × n matrix whose rows are a cyclic permutation of the first row. A
circulant matrix with the first row [c0, c1, c2, · · · , cn−1] is denoted by [[c0, c1, c2, · · · , cn−1]]. In other words, if

χ(Γ, λ) = (λ − λ1)m1 · · · (λ − λs)ms ,

then the spectrum of graph Γ is Spec(Γ) = {[λ1]m1 , · · · , [λs]ms }.
By a circulant graph, we mean a graph whose adjacency matrix is circulant. Since the spectrum of

circulant matrices plays a significant role in the study of spectrum of Cayley graphs of order pqr, we recall
some definition that will be used in the paper. For α = e

2π
n i (the n-th root of unity) all eigenvalues of circulant

matrix [[c0, c1, c2, · · · , cn−1]] are given by

λ j = c0 + cn−1α
j + cn−2α

2 j + · · · + c1α
(n−1) j, 0 ≤ j ≤ n − 1. (2)

The Cartesian product Γ1�Γ2 of two graphs Γ1 and Γ2 is a graph with vertex set V(Γ1) × V(Γ2) and two
vertices (u, v), (x, y) ∈ V(Γ1�Γ2) are adjacent if and only if either u = x and (v, y) ∈ E(Γ2) or (u, x) ∈ E(Γ1) and
v = y.

Theorem 2.1. [5] Let Γ1 and Γ2 be two graphs with eigenvalues λ1, · · · , λn and µ1, · · · , µm, respectively. Then for
1 ≤ i ≤ n and 1 ≤ j ≤ m, all eigenvalues of Γ1�Γ2 are λi + µ j.

A symmetric subset of group G is a subset S ⊆ G, where 1 < S and S = S−1. The Cayley graph
Γ = Cay(G,S) on G with respect to S is a graph with vertex set V(Γ) = G and two vertices x, y ∈ V(Γ) are
adjacent if and only if y = xs for an element s ∈ S. It is a well-known fact that Cay(G,S) is connected if and
only if S generates the group G, see [17].

Proposition 2.2. [5]. Let Γ1 = Cay(G,∆1) and Γ2 = Cay(H,∆2) be two Cayley graphs. Then the Cartesian product
Γ1�Γ2 is the Cayley graph Cay(G ×H,S), where

S = {(x, 1), (1, y) : x ∈ ∆1, y ∈ ∆2} = (∆1, 1) ∪ (1,∆2).

Let V be a vector space, a general linear group GL(V) of V is the set of all A ∈ End(V) where A is
invertible. A representation of a group G is a homomorphism ρ : G → GL(V) and the degree of ρ is equal
to the dimension of V. The representation ρ : G → C∗ is trivial if and only if for all 1 ∈ G, ρ(1) = 1. Let
ϕ : G → GL(V) be a representation with ϕ(1) = ϕ1, the character χϕ : G → C∗ afforded by ϕ is defined
by setting χϕ(1) = tr(ϕ1). An irreducible character is the character of an irreducible representation and the
character χ is linear, if χ(1) = 1. The set of all irreducible characters of G is denoted by Irr(G). It is a
well-known fact that the number of irreducible characters of G is equal to the number of conjugacy classes
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of G and the number of linear characters of finite group G is [G : G′

] where G′

denotes the derivative
subgroup of G.

A character table is a matrix whose rows are correspond to the irreducible characters, whereas the
columns correspond to the conjugacy classes of G. The study of spectrum of Cayley graphs is closely
related to irreducible characters of G. If G is abelian, the eigenvalues of the Cayley graph are easily
determined as follows.

Theorem 2.3. Let G be a finite abelian group and S be a symmetric subset of G. Then the eigenvalues of the adjacency
matrix of Γ = Cay(G,S) are given by

λϕ =
∑
s∈S

ϕ(s)

where ϕ ∈ Irr(G).

Let G be a finite group with symmetric subset S. We recall that S is normal subset if and only if
S1 = 1−1S1 = S, for all 1 ∈ G. The following theorem is implicitly contained in [7, 14].

Theorem 2.4. Let G be a finite group with a normal symmetric subset S. Let A be the adjacency matrix of the graph
Γ = Cay(G,S). Then the eigenvalues of A are given by

λϕ =
1
ϕ(1)

∑
s∈S

ϕ(s)

where ϕ ∈ Irr(G). Moreover, the multiplicity of λϕ is ϕ(1)2.

Proposition 2.5. [10] Let G and H be two finite groups with irreducible charactersϕ1, ϕ2, · · · , ϕr and η1, η2, · · · , ηs,
respectively. Let M(G) and M(H) be character tables of G and H, respectively. Then the direct product group G ×H
has exactly rs irreducible characters ϕiη j, where 1 ≤ i ≤ r and 1 ≤ j ≤ s. In particular, the character table of group
G ×H is

M(G ×H) = M(G) ⊗M(H),

where ⊗ denotes the Kronecker product.

Before computing the spectrum of Cayley graphs of order pqr, we need to study the spectrum of
Cay(G,S) where G is isomorphic to one of the following groups that will serve as basic building blocks in
the considered Cayley graphs in Section 3.3: the cyclic groupZn, Dihedral group D2n and Frobenius group
Fp,q. In what follows, assume that

δA(B) =

{
1 A ⊆ B
0 A * B .

For 1 ∈ G, let 1G denotes the conjugacy class of 1 in G and C1 = 1G
∪ (1−1)G. It is clear that every normal

subset of G is a union of its conjugacy classes. In other words, if S is a symmetric normal generating subset
of G, then S ⊆

⋃
1∈G

C1 and all eigenvalues of Cayley graph Cay(G,S) are as follows:

λχ =
1
χ(1)

∑
1∈G

∑
s∈C1

δC1 (S)|C1|[χ(s)],

where χ ∈ Irr(G).
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Example 2.6. Consider the cyclic group Zn in two following cases:
Case 1. n is odd, thus C0 = {1} and Ci = {xi, x−i

} (1 ≤ i ≤ n−1
2 ) are non-trivial symmetric subsets of Zn, so

S ⊆

n−1
2⋃

i=1

Ci.

For 0 ≤ j ≤ n − 1, χ j(xi) = ωi j are all irreducible characters of Zn, where x is a generator of Zn and ω = e
2π
n i. Hence

λχ j =

n−1
2∑

i=1

δCi (S)(ωi j + ω−i j).

Case 2. n is even, hence all non-trivial symmetric subsets are

C0 = {1}, Ci = {xi, x−i
} (1 ≤ i ≤

n
2
− 2) and C n

2−1 = {xn/2
}.

Therefore,

S ⊆

n
2−1⋃
i=1

Ci.

Similar to the last case, we have

λχ j =

n
2−2∑
i=1

δCi (S)(ωi j + ω−i j) + (−1) jδC n
2 −1

(S).

Example 2.7. Here we determine the spectrum of Cay(D2n,S) where S is normal symmetric subset. In finding the
number of conjugacy classes of dihedral group, it is convenient to consider two separately cases:
Case 1. n is odd, then D2n has precisely 1

2 (n + 3) conjugacy classes:

1G = {1}, (ai)G = {ai, a−i
} (1 ≤ i ≤ (n − 1)/2), bG = {b, ba, · · · , ban−1

}.

Hence the non-trivial symmetric subsets of D2n are

Ci = (ai)G, (1 ≤ i ≤
n − 1

2
) and C n+1

2
= bG.

This implies that S ⊆

n+1
2⋃

i=1

Ci and so by using Table 1, we have

λχ1 = nδC n+1
2

(S) + 2

n−1
2∑

i=1

δCi (S),

λχ2 = −nδC n+1
2

(S) + 2

n−1
2∑

i=1

δCi (S),

λψ j =

n−1
2∑

i=1

δCi (S)(εi j + ε−i j) (1 ≤ j ≤
n − 1

2
),

where ε = e
2π
n i.
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Case 2. n is even, then D2n has precisely n
2 + 3 conjugacy classes (0 ≤ j ≤ n − 1):

1G = {1}, (a
n
2 )G, (ai)G, (ba2 j)G, (ba2 j+1)G.

So the non-trivial symmetric subsets of D2n are:

Ci = (ai)G, (1 ≤ i ≤
n
2
− 1),C n

2
= (an/2)G,C n

2 +1 = bG and C n
2 +2 = (ba)G.

Hence S ⊆

n
2 +2⋃
i=1

Ci and by using Table 2, we have

λχ1 = δC n
2
(S) +

n
2

(δC n
2 +1

(S) + δC n
2 +2

(S)) + 2

n
2−1∑
i=1

δCi (S),

λχ2 = δC n
2
(S) −

n
2

(δC n
2 +1

(S) + δC n
2 +2

(S)) + 2

n
2−1∑
i=1

δCi (S),

λχ3 = (−1)
n
2 δC n

2
(S) +

n
2

(δC n
2 +1

(S) − δC n
2 +2

(S)) + 2

n
2−1∑
i=1

δCi (S)(−1) j,

λχ4 = (−1)
n
2 δC n

2
(S) −

n
2

(δC n
2 +1

(S) − δC n
2 +2

(S)) + 2

n
2−1∑
i=1

δCi (S)(−1) j,

λψ j = (−1) jδC n
2
(S) +

n
2−1∑
i=1

δCi (S)(εi j + ε−i j) (1 ≤ j ≤
n
2
− 1).

As a special case, one of the minimal symmetric normal generating subset of group D2n is

S =

{
bG
∪ {a, a−1

} 2|n
bG 2 6 |n .

Hence the spectrum of Cayley graph Γ = Cay(D2n,S) when 2 - n is {[−n]1, [n]1, [0]2n−2
} and when 2|n is as follows:

{[±n/2 ± 2]1, [0]2n−4
}

.

1 1 ar b
χ1 1 1 1
χ2 1 1 -1
ψ j 2 ε jr + ε− jr 0

Table 1. The character table of D2n where n is odd and 1 ≤ r, j ≤ n−1
2 .

1 1 a
n
2 ar b ba

χ1 1 1 1 1 1
χ2 1 1 1 −1 − 1
χ3 1 (−1)

n
2 (−1)r 1 − 1

χ4 1 (−1)
n
2 (−1)r

−1 1
ψ j 2 2(−1) j ε jr + ε− jr 0 0

Table 2. The character table of D2n where n is even and 1 ≤ r, j ≤ n
2 − 1.
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Since all eigenvalues of Γ = Cay(D2n,S) are symmetric with respect to the origin, according to [5, Theorem 3.2.3] Γ
is bipartite.

Example 2.8. For the Frobenius group Fp,q introduced in section one, let L be the subgroup of Z∗p consisting of the
powers of u. Write t = (p−1)/q, and choose coset representatives v1, · · · , vt for L inZ∗p. By applying [11, Proposition
25.9], the conjugacy classes of Fp,q are

{1},
(avi )G = {avil : l ∈ L} (1 ≤ i ≤ t)
(bn)G = {ambn : 0 ≤ m ≤ p − 1}(1 ≤ n ≤ q − 1).

It follows that the Frobenius group Fp,q has precisely

1. q linear characters χn(0 ≤ n ≤ q − 1), where χn(axby) = ωny, ω = e2πi/q, 0 ≤ x ≤ p − 1 and 0 ≤ y ≤ q − 1.
2. t characters of degree q given by

ϕ j(axby) = 0, 1 ≤ y ≤ q − 1

ϕ j(ax) =
∑
l∈L

αv jlx, 1 ≤ x ≤ p − 1

where α = e
2π
p i, 1 ≤ j ≤ t, 1 ≤ x ≤ p − 1 and v1L, · · · , vtL are the cosets in Z∗p of the subgroup L.

The non-trivial symmetric subsets of Fp,q are

Cn = (bn)G
∪ (b−n)G, (1 ≤ n ≤ (q − 1)/2) and Cn+i = (avi )G

∪ (a−vi )G, (1 ≤ i ≤ t).

Hence S ⊆
(q+t−1)/2⋃

i=1

Ci and so all eigenvalues of Γ = Cay(Fp,q,S) are as follows:

λχm = p
(q−1)/2∑

n=1

δCn (S)(ωnm + ω−nm) + 2q
t/2∑
i=1

δCn+i (S) (0 ≤ m ≤ q − 1),

λϕ j =

t/2∑
i=1

δCn+i (S)
∑
l∈L

(αviv jl + α−viv jl) (1 ≤ j ≤ t).

Here we determine a minimal normal symmetric generating subset S of Fp,q such that Fp,q = 〈S〉. Since
bG = {amb : 0 ≤ m ≤ p − 1}, by putting m = 0, it follows that b ∈ 〈bG

〉 and consequently a ∈ 〈bG
〉. Hence

Fp,q = 〈a, b〉 ⊆ 〈bG
〉 and thus Fp,q = 〈bG

〉. Since S−1 = S, then necessarily S = bG
∪ (b−1)G. According to Theorem

2.4, we have:

λχ =
1
χ(1)

∑
s∈S

χ(s) =
|bG
|χ(b) + |(b−1)G

|χ(b−1)
χ(1)

=
p(χ(b) + χ(b−1))

χ(1)

for all χ ∈ Irr(Fp,q). Hence the spectrum of Fp,q is {[p(ω j + ω− j]1, [0]tq2
} where (0 ≤ j ≤ q − 1).

3. Main Results and Discussions

Following Example 2.8, the aim of this section is to compute the spectrum of Cayley graphs of order pqr
where p > q > r > 2 are prime numbers. To do this, at first we determine the character tables of all groups
of order pqr.

3.1. Character table of groups G1 − G5

Let G be a cyclic group of order n, then all irreducible characters of G are linear and for 1 ≤ i, j ≤ n, we
have χi : G → C with χi(a j) = εi j where ε = e

2π
n i. This implies that in this case, all irreducible characters

of G1 can be computed by putting n = pqr. By using Proposition 2.5 and Example 2.6, the character table
of groups Zr × Fp,q, Zq × Fp,r and Zp × Fq,r are CT(Zr) ⊗ CT(Fp,q), CT(Zq) ⊗ CT(Fp,rp) and CT(Zp) ⊗ CT(Fq,r),
respectively. Finally, the character table of G4 can be computed directly from Example 2.8.
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3.2. Character table of Gi+5(1 ≤ i ≤ r − 1)

Here we compute the character table of group G6 and the others can be computed similarly. Let G = G6,
first we compute the conjugacy classes of G. Let U = 〈u〉 and V = 〈v〉 be the subgroups of order r ofZ∗q and
Z∗p, respectively.

Lemma 3.1. The conjugacy classes of G are

{1}, (avi )G, (bui )G, (ci)G, (bu′i av′i )G

where ui is a coset representative of U inZ∗q, vi is a coset representative of V inZ∗p and (u′i , v
′

i) is a coset representative
of 〈(u, v)〉 in Z∗q ×Z∗p.

Proof. It is easy to see that for 1 ≤ k ≤ r − 1, c−kbck = buk
and so bui

’s are conjugate and so |bG
| ≥ r. On the

other hand, 〈ba〉 ≤ CG(b) and hence |CG(b)| ≥ pq. This implies that |bG
| ≤ r and thus |bG

| = r. Further, one can
prove that (bui )G(1 ≤ i ≤ q−1

r ) and (av j )G(1 ≤ j ≤ p−1
r ) are conjugacy classes of G. We can prove that

cG = {cbia j
| 0 ≤ i ≤ q − 1, 0 ≤ j ≤ p − 1},

...

(cr−1)G = {cr−1bia j
| 0 ≤ i ≤ q − 1, 0 ≤ j ≤ p − 1},

(bu′i av′i )G = {bu′i av′i , bu′i uav′i v, · · · , bu′i ur−1
av′i vr−1

}

where (u′i , v′i) is a coset representative of 〈(u, v)〉 in Z∗q ×Z∗p and |〈(u, v)〉| = r.

It follows from Lemma 3.1 that G has p−1
r +

q−1
r +

(p−1)(q−1)
r +r conjugacy classes and then the same number

of irreducible characters. On the other hand, G/G′

� 〈c|cr = 1〉 � Zr. Hence G has r linear characters lifted
from linear characters of G/G′

. These characters are as χ̃n : G/G′

→ C∗ with χ̃n(cmG′

) = εmn where ε = e
2πi

r

and m,n ∈ {0, 1, · · · , r − 1}.
According to [11, Theorem 17.11], all linear characters of G are as χn : G → C∗ with χn(1) = χ̃n(1G′

).
Hence

χn(aw) = χ̃n(awG
′

) = χ̃n(G
′

) = χn(1) = 1,
χn(bv) = χ̃n(bvG

′

) = χ̃n(G
′

) = χn(1) = 1,
χn(bv0 aw0 ) = χ̃n(bv0 aw0 G

′

) = χ̃n(G
′

) = χn(1) = 1,
χn(ct) = χ̃n(ctG

′

) = εtn(0 ≤ n ≤ r − 1 and 1 ≤ t ≤ r − 1),

where (v0,w0) is a coset representative of 〈(u, v)〉 in Z∗q ×Z∗p.
Here we determine all non-linear irreducible characters of G. First notice that H = 〈a〉 is a normal

subgroup of G and if ur
≡ 1(mod q), then

G/H � 〈b, c| bq = cr = 1, c−1bc = bu
〉 � Fq,r.

According to [11, Theorem 25.10], the Frobenius group Fq,r has r linear characters and q−1
r irreducible

characters of degree r. Let us denote the non-linear characters by ϕ̃m. Then we have:

ϕ̃m(H) = r,

ϕ̃m(bxH) =

r−1∑
i=0

λumxui
(1 ≤ m ≤

q − 1
r
, 1 ≤ x ≤ q − 1),

ϕ̃m(bxcyH) = 0 (1 ≤ y ≤ r − 1),
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where λ = e
2πi
q and u1, · · · ,um are distinct coset representative of U = 〈u〉 in Z∗q. By lifting these characters,

we can compute q−1
r irreducible characters of G of degree r denoted by ϕm(1 ≤ m ≤ q−1

r ), e.g.

ϕm(ax) = r (0 ≤ x ≤ p − 1),

ϕm(byax) =

r−1∑
i=0

λum yui
(0 ≤ x ≤ p − 1, 1 ≤ y ≤ q − 1),

ϕm(ck) = 0 (1 ≤ k ≤ r − 1).

Similarly, for the normal subgroup K = 〈b〉 of G, we have:

G/K � 〈a, c| ap = cr = 1, c−1ac = av
〉 � Fp,r.

Consequently, this group has p−1
r irreducible characters of degree r denoted by θ̃l(1 ≤ l ≤ p−1

r ). Similar to
the last discussion, the irreducible characters of G lifted from θ̃l are as follows:

θl(ax) = θl(byax) =

r−1∑
i=0

γvlxvi
,

θl(by) = r,
θl(ck) = 0 (1 ≤ k ≤ r − 1),

where γ = e
2πi
p and v1, · · · , vl are distinct coset representative of V = 〈v〉 in Z∗p.

Finally, by considering subgroup G′

= 〈ba〉 � Zq ×Zp, its irreducible characters are of the form ψiξ j(0 ≤
i ≤ q − 1, 0 ≤ j ≤ p − 1) and

ψi(by) = λiy, ξ j(ax) = γ jx.

This leads us to conclude that
ψiξ j(byax) = ψi(by)ξ j(ax) = λiyγ jx.

Let now m ∈ Z∗q and n ∈ Z∗p, then

(ψmξn ↑ G)(1) =
|G|
|〈ba〉|

(ψmξn)(1) =
pqr
pq

= r.

On the other hand,

|CG(by)| = |CG′ (b
y)| = |CG(ax)| = |CG′ (a

x)| = |CG(byax)|
= |CG′ (b

yax)| = pq

and so

(ψmξn ↑ G)(ax) =

r−1∑
i=0

ξn(axvi
) =

r−1∑
i=0

γnxvi
,

(ψmξn ↑ G)(by) =

r−1∑
i=0

ψm(byui
) =

r−1∑
i=0

λmyui
,

(ψmξn ↑ G)(byax) =

r−1∑
i=0

ψm(byui
)ξn(axvi

) =

r−1∑
i=0

λmyui
γnxvi

(ψmξn ↑ G)(ck) = 0 (k = 1, · · · , r − 1).

Since
ψmξn ↑ G = ψmuiξnvi ↑ G
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we get z =
(p−1)(q−1)

r irreducible characters of G. There still remains the question as to whether such characters
are distinct irreducible. Assume (u′i , v

′

i) be a coset representative of subgroup {(1, 1), (u, v), · · · , (ur−1, vr−1)} of
Z∗q ×Z

∗
p and η j = ψu′j

ξv′j
↑ G. According to Frobenius Reciprocity Theorem, for H = G′

= 〈ba〉we verify:

〈η j ↓ H, ψu′j u
iξv′j v

j〉H = 〈η j, ψu′j
ξv′j
↑ G〉G

= 〈η j, η j〉G.

Therefore, we can observe that

η j ↓ H = 〈η j, η j〉G(
r−1∑
i=0

ψu′j u
iξv′j v

i ) + χ

where χ = 0 or it is a character of H. Hence η j(1) ≥ r〈η j, η j〉G. Finally, η j(1) = r implies that 〈η j, η j〉G = 1 and
so η j is irreducible. On the other hand, for (u′j, v

′

j) ∈ Z
∗
q ×Z

∗
p, all ψu′j

ξv′j
’s are linearly independent and thus

all η j ↓ H (1 ≤ j ≤ (p−1)(q−1)
r ) are distinct. Consequently, the irreducible characters η1, · · · ηz are distinct. We

summarize the character table of G in the following theorem.

Theorem 3.2. Let p > q > r > 2 be prime numbers, l1 =
(p−1)(q−1)

r , l2 =
p−1

r , l3 =
q−1

r and ε = e
2πi

r . Then the group
G has l1 + l2 + l3 + r irreducible characters as reported in Table 3:

1 1 avi bui bu′i av′i ck

1 ≤ i ≤ l1 1 ≤ i ≤ l2 1 ≤ i ≤ l3 1 ≤ k ≤ r − 1
χn 1 1 1 1 εkn

0 ≤ n ≤ r − 1
ηs r E F G 0

1 ≤ s ≤ l3
θl r C r D 0

1 ≤ 1 ≤ l1
ϕm r r A B 0

1 ≤ m ≤ l2

Table 3. The character table of group G.

whereλ = e
2πi
q , u1, · · · ,ul1 are distinct coset representative of U = 〈u〉 inZ∗q, v1, · · · , vl2 are distinct coset representative

of V = 〈v〉 in Z∗p, (u′i , v
′

i) are coset representative of 〈(u, v)〉 in Z∗q ×Z∗p and

A =

r∑
j=1

λumuiu j
,B =

r∑
j=1

λumu′i u j
,C =

r∑
j=1

γvlviv j
,D =

r∑
j=1

γvlv
′

i v j
,

E =

r∑
j=1

γv′s viv j
,F =

r∑
j=1

λu′s uiu j
,G =

r∑
j=1

λu′s u′i u j
γv′s v′i v j

.

and 1 ≤ l ≤ l1, 1 ≤ m ≤ l2, 1 ≤ s ≤ l3, 1 ≤ n ≤ r − 1.

3.3. Spectrum of Cayley graphs via their character tables
In this section, we introduce one of the major applications of Tables 1-3: computing the spectrum of

Cayley graphs on groups of orders pqr. First, we compute the normal symmetric generating subset of G
and then, by applying Theorem 2.4, we compute the spectrum of Cay(G,S) in terms of minimal normal
symmetric generating subset S. Let l1 =

p−1
r , l2 =

q−1
r , l3 =

(p−1)(q−1)
r and l = l1 + l2 + l3, then the non-trivial

symmetric subsets of G = G6 are

Ci = (avi )G
∪ (a−vi )G (1 ≤ i ≤ l1/2), Cl1+ j = (bu j )G

∪ (b−u j )G (1 ≤ j ≤ l2/2),

Cl1+l2+k = (bu′kav
′

k )G
∪ (b−u′kav

′

k )G, (1 ≤ k ≤ l3/2),

Cl+t = (ct)G
∪ (c−t)G (1 ≤ t ≤

r − 1
2

).
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Hence S ⊆
l⋃

i=1

Ci and so we have

λχn = 2r
l/2∑
i=1

δCi (S) + pq
(r−1)/2∑

i=0

δCl+i (S)(εni + ε−ni) (0 ≤ n ≤ r − 1),

λϕm = 2r
l1/2∑
i=1

δCi (S) +

l2/2∑
j=1

δCl1+ j (S)(A + Ā) +

l3/2∑
j=1

δCl1+l2+ j (S)(B + B̄) (1 ≤ m ≤ l2),

λθk =

l1/2∑
i=1

δCi (S)(C + C̄) + 2r
l2/2∑
j=1

δCl1+ j (S) +

l3/2∑
i=1

δCl1+l2+ j (S)(D + D̄) (1 ≤ k ≤ l1),

ληs =

l1/2∑
i=1

δCi (S)(E + Ē) +

l2/2∑
j=1

δCl1+ j (S)(F + F̄) +

l3/2∑
j=1

δCl1+l2+ j (S)(G + Ḡ),

where α = e
2π
p i, T = 〈r〉 and v1T, · · · , vtT are coset representatives in Z∗p.

Theorem 3.3. The minimal normal symmetric generating subset of groups G5+i (1 ≤ i ≤ r − 1) is S = cG
∪ (c−1)G.

Proof. By using Lemma 3.1, it is easy to see that (avi )G, (bui )G and (bu′i , av′i )G do not generate G6. We show
S = cG

∪ (c−1)G satisfies in conditions of the theorem. Since c, cb ∈ S, then b ∈ 〈S〉 and then a ∈ 〈S〉. This
implies that S is a generating set. On the other hand, S is the union of two conjugacy classes and so it is
normal. Also, c−1

∈ S implies that S is symmetric. This completes the proof.

Corollary 3.4. Let Γi = Cay(Gi,Si)(1 ≤ i ≤ r + 4) G1, · · · ,Gr+4 introduced in Section 1 and Si be a minimal normal
symmetric generating subset of Gi. Then

1. All eigenvalues of Γ1 are
{[ω j + ω− j]1

}

where ω = e
2π
pqr i and 0 ≤ j ≤ pqr − 1.

2. All eigenvalues of Γ2 are
{[ζi + p(α j + α− j)]1, [ζi]tq2

}

where t = (p − 1)/q, α = e
2πi
q , ζ = e

2πi
r , 0 ≤ j ≤ q − 1 and 0 ≤ i ≤ r − 1.

3. All eigenvalues of Γ3 are
{[ξi + p(α j + α− j)]1, [ξi]tr2

}

where t = (p − 1)/r, α = e
2πi

r , ξ = e
2πi
q , 0 ≤ j ≤ r − 1 and 0 ≤ i ≤ q − 1.

4. All eigenvalues of Γ4 are
{[p(α j + α− j)]1, [0]tr2q2

},

where t = (p − 1)/rq, α = e
2πi
rq and 0 ≤ j ≤ rq − 1.

5. All eigenvalues of Γ5 are
{[ςi + q(α j + α− j)]1, [ςi]tr2

}

where t = (q − 1)/r, α = e
2πi

r , ς = e
2πi
p , 0 ≤ j ≤ r − 1 and 0 ≤ i ≤ p − 1.

6. For 0 ≤ m ≤ (q − 1)/r, the spectrum of graphs Γ5+i(1 ≤ i ≤ r − 1) are as follows:

{[pq(εn + ε−n)]1, [0]tr2
},

where ε = e2πi/r, t =
pq−1

r and 0 ≤ n ≤ r − 1.
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Proof. Let Zpqr = 〈x〉 and S = {x, x−1
} where (o(x), pqr) = 1. Clearly, S is a minimal normal symmetric

generating subset and so Γ1 = Cay(Zpqr,S). One can easily prove that Γ1 � Cpqr where Cn denotes a cycle on
n vertices. This implies that the adjacency matrix of Γ1 is a circulant matrix with first row [0, 1, 0, · · · , 0, 1].
Now all eigenvalues of Γ1 can be computed directly from Eq.(2). By using Theorem 2.1 and Example 2.6, we
can compute eigenvalues of group Γ2, Γ3 and Γ5. By using Example 2.8, the eigenvalues of Γ4 is computed.
Finally, by using Proposition 2.2 and Theorems 2.4 and 3.2 all eigenvalues of Γ6 are as computed.

Corollary 3.5. Let p > q > r > 2 are prime numbers. There are infinite family of co-spectral Cayley graphs of order
pqr by the following spectrum

{pq(εn + ε−n)]1, [0]tr2
}

where ε = e2πi/r, t =
pq−1

r and 0 ≤ n ≤ r − 1.
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