Weak Solutions for a Second Order Impulsive Boundary Value Problem

Keyu Zhang ${ }^{\text {a }}$, Jiafa Xu ${ }^{\text {b }}$, Donal O'Regan ${ }^{\text {c }}$
${ }^{a}$ School of Mathematics, Qilu Normal University, Jinan 250013, China.
${ }^{b}$ School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China.
${ }^{\text {c }}$ School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland.

Abstract

In this paper we use topological degree theory and critical point theory to investigate the existence of weak solutions for the second order impulsive boundary value problem $\left\{\begin{array}{l}-x^{\prime \prime}(t)-\lambda x(t)=f(t), t \neq t_{j}, t \in(0, \pi), \\ \Delta x^{\prime}\left(t_{j}\right)=x^{\prime}\left(t_{j}^{+}\right)-x^{\prime}\left(t_{j}^{-}\right)=I_{j}\left(x\left(t_{j}\right)\right), j=1,2, \ldots, p, \\ x(0)=x(\pi)=0,\end{array}\right.$

where λ is a positive parameter, $0=t_{0}<t_{1}<t_{2}<\cdots<t_{p}<t_{p+1}=\pi, f \in L^{2}(0, \pi)$ is a given function and $I_{j} \in C(\mathbb{R}, \mathbb{R})$ for $j=1,2, \ldots, p$.

1. Introduction

Consider the second order impulsive boundary value problem

$$
\left\{\begin{array}{l}
-x^{\prime \prime}(t)-\lambda x(t)=f(t), t \neq t_{j}, t \in(0, \pi) \tag{1}\\
\Delta x^{\prime}\left(t_{j}\right)=x^{\prime}\left(t_{j}^{+}\right)-x^{\prime}\left(t_{j}^{-}\right)=I_{j}\left(x\left(t_{j}\right)\right), j=1,2, \ldots, p \\
x(0)=x(\pi)=0
\end{array}\right.
$$

where λ is a positive parameter, $0=t_{0}<t_{1}<t_{2}<\cdots<t_{p}<t_{p+1}=\pi, f \in L^{2}(0, \pi)$ is a given function and $I_{j} \in C(\mathbb{R}, \mathbb{R})$ for $j=1,2, \ldots, p$.

Variational methods and critical point theory were used by many authors to study the existence and subsequent qualitative properties of solutions for differential equations; see for example [1-9] and the references therein.

[^0]In [1], Zhang and Dai studied impulsive differential equations with periodic boundary conditions

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(t)+c u(t)=\lambda f(t, u(t)), t \neq t_{j}, \text { a.e. } t \in[0, T] \tag{2}\\
\Delta u^{\prime}\left(t_{j}\right)=I_{j}\left(u\left(t_{j}\right)\right), j=1,2, \ldots, p-1 \\
u(0)=u(T)=0, u^{\prime}\left(0^{+}\right)=u^{\prime}\left(T^{-}\right)
\end{array}\right.
$$

where the nonlinearity f and the impulsive functions I_{j} are superlinear. Using a \mathbf{Z}_{2} version of the mountain pass theorem, the authors obtained some existence results on infinitely many solutions for (2).

In [2], Xu et al. studied the p-Laplacian Dirichlet boundary value problem with impulses

$$
\left\{\begin{array}{l}
-\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}=f(t, u), \text { in } \Omega \tag{3}\\
\Delta\left|u^{\prime}\left(t_{j}\right)\right|^{p-2} u^{\prime}\left(t_{j}\right)=I_{j}\left(u\left(t_{j}\right)\right), j=1,2, \ldots, n \\
u(0)=u(1)=0
\end{array}\right.
$$

where $\Omega=(0,1) \backslash\left\{t_{1}, \ldots, t_{n}\right\}$. Using $\left(\mathrm{S}_{+}\right)$-type topological degree theory the existence of a weak solution for (3) for the nonresonance case was obtained.

In [3], P. Drábek and M. Langerová studied the Dirichlet boundary value problem for the one-dimensional p-Laplacian

$$
\left\{\begin{array}{l}
-\left(\left|u^{\prime}(x)\right|^{p-2} u^{\prime}(x)\right)^{\prime}-\lambda|u(x)|^{p-2} u(x)=f(x), \text { for a.e. } x \in(0,1), \tag{4}\\
\Delta_{p} u^{\prime}\left(x_{j}\right)=I_{j}\left(u\left(x_{j}\right)\right), j=1,2, \ldots, r, \\
u(0)=u(1)=0
\end{array}\right.
$$

Using a linking theorem, the authors obtained the existence of a solution for (4) for the resonance case using the Landesman-Lazer condition (for example [3,(5),(6)], [7,(2.1)], [8,(16)]).

In this paper we use topological degree theory and critical point theory to investigate the existence of weak solutions for (1). We assume the following condition for f and I_{j} :
(H) $f \in L^{2}(0, \pi)$ is a given function and for $j=1,2, \ldots, p, I_{j} \in C(\mathbb{R}, \mathbb{R})$ are strictly decreasing, and have finite limits $\lim _{s \rightarrow \infty} I_{j}(s)$ (which we call $\left.I_{j}(\infty)\right), \lim _{s \rightarrow-\infty} I_{j}(s)$ (which we call $I_{j}(-\infty)$) such that

$$
I_{j}(+\infty)<I_{j}(s)<I_{j}(-\infty), \forall s \in \mathbb{R}, j=1,2, \ldots, p
$$

In the future it would be of interest to continue this line of research and discuss qualitative properties of weak solutions of (1).

2. Preliminary Results

Let us recall some basic concepts. In the Sobolev space $H:=H_{0}^{1}(0, \pi)$, consider the inner product

$$
\begin{equation*}
(x, y)=\int_{0}^{\pi} x^{\prime}(t) y^{\prime}(t) \mathrm{d} t, \forall x, y \in H \tag{5}
\end{equation*}
$$

Consequently, the corresponding norm is

$$
\begin{equation*}
\|x\|=\left(\int_{0}^{\pi}\left|x^{\prime}(t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}, \forall x \in H \tag{6}
\end{equation*}
$$

It is easy to prove that, if $\lambda>0$, the eigenvalue problem

$$
\left\{\begin{array}{l}
-x^{\prime \prime}(t)=\lambda x(t) \tag{7}\\
x(0)=x(\pi)=0
\end{array}\right.
$$

has nontrivial solutions, which can be written in the form $x(t)=c_{1} \cos \sqrt{\lambda} t+c_{2} \sin \sqrt{\lambda} t$, for some $c_{i} \in \mathbb{R}, i=$ 1,2 . Note that the boundary conditions, $x(0)=0$ implies $c_{1}=0$, and then $c_{2} \neq 0$. Hence, $x(\pi)=0$ implies $\sin \sqrt{\lambda} \pi=0$, and $\lambda=n^{2}, n=1,2, \ldots$.

Consequently, the eigenvalues of (7) are numbered by $1=\lambda_{1}<4=\lambda_{2}<\cdots<n^{2}=\lambda_{n}<\cdots \rightarrow$ $+\infty$ (counted with their multiplicities) and a corresponding system of eigenfunctions $\{\sin n t\}$ forms the completely orthogonal basis of H. Let $Y=\operatorname{span}\{\sin t\}, Z=Y^{\perp}$. Then $Z=\operatorname{span}\{\sin 2 t, \ldots, \sin n t, \ldots\}$ and

$$
\begin{equation*}
\int_{0}^{\pi}|z(t)|^{2} \mathrm{~d} t \leq \frac{1}{4} \int_{0}^{\pi}\left|z^{\prime}(t)\right|^{2} \mathrm{~d} t, \forall z \in \mathrm{Z} \tag{8}
\end{equation*}
$$

Next, we give a simple proof for this inequality. For $z \in Z$, there exist $a_{k} \in \mathbb{R}(k=2,3, \ldots)$ such that

$$
z(t)=\sum_{k=2}^{\infty} a_{k} \sin k t, \text { and } \int_{0}^{\pi}|z(t)|^{2} \mathrm{~d} t=\frac{\pi}{2} \sum_{k=2}^{\infty} a_{k}^{2}
$$

From this, we obtain that

$$
z^{\prime}(t)=\sum_{k=2}^{\infty} k a_{k} \cos k t, \text { and } \int_{0}^{\pi}\left|z^{\prime}(t)\right|^{2} \mathrm{~d} t=\frac{\pi}{2} \sum_{k=2}^{\infty} k^{2} a_{k}^{2}
$$

As a result,

$$
\int_{0}^{\pi}\left|z^{\prime}(t)\right|^{2} \mathrm{~d} t \geq 4 \times \frac{\pi}{2} \sum_{k=2}^{\infty} a_{k}^{2}=4 \int_{0}^{\pi}|z(t)|^{2} \mathrm{~d} t
$$

In what follows, we will establish the energy functional of (1). For any $y \in H$, multiplying (1) by y and integrating from 0 to π, we obtain

$$
\int_{0}^{\pi}-x^{\prime \prime}(t) y(t) \mathrm{d} t-\lambda \int_{0}^{\pi} x(t) y(t) \mathrm{d} t=\int_{0}^{\pi} f(t) y(t) \mathrm{d} t
$$

Note the impulsive effects, so we have

$$
\begin{aligned}
\int_{0}^{\pi}-x^{\prime \prime}(t) y(t) \mathrm{d} t & =\sum_{j=0}^{p} \int_{t_{j}}^{t_{j+1}}-x^{\prime \prime}(t) y(t) \mathrm{d} t=\sum_{j=0}^{p}\left[-\left.x^{\prime}(t) y(t)\right|_{t_{j}^{+}} ^{t_{j+1}^{-}}+\int_{t_{j}}^{t_{j+1}} x^{\prime}(t) y^{\prime}(t) \mathrm{d} t\right] \\
& =x^{\prime}(0) y(0)-x^{\prime}(\pi) y(\pi)+\sum_{j=1}^{p} \Delta x^{\prime}\left(t_{j}\right) y\left(t_{j}\right)+\int_{0}^{\pi} x^{\prime}(t) y^{\prime}(t) \mathrm{d} t \\
& =\sum_{j=1}^{p} I_{j}\left(x\left(t_{j}\right)\right) y\left(t_{j}\right)+\int_{0}^{\pi} x^{\prime}(t) y^{\prime}(t) \mathrm{d} t .
\end{aligned}
$$

Hence, we have

$$
\begin{equation*}
\sum_{j=1}^{p} I_{j}\left(x\left(t_{j}\right)\right) y\left(t_{j}\right)+\int_{0}^{\pi} x^{\prime}(t) y^{\prime}(t) \mathrm{d} t-\lambda \int_{0}^{\pi} x(t) y(t) \mathrm{d} t=\int_{0}^{\pi} f(t) y(t) \mathrm{d} t \tag{9}
\end{equation*}
$$

and the energy functional is

$$
\begin{equation*}
J(x)=\frac{1}{2} \int_{0}^{\pi}\left|x^{\prime}(t)\right|^{2} \mathrm{~d} t-\frac{\lambda}{2} \int_{0}^{\pi}|x(t)|^{2} \mathrm{~d} t+\sum_{j=1}^{p} \int_{0}^{x\left(t_{j}\right)} I_{j}(s) \mathrm{d} s-\int_{0}^{\pi} f(t) x(t) \mathrm{d} t, \forall x \in H \tag{10}
\end{equation*}
$$

Moreover

$$
\left(J^{\prime}(x), y\right)=\int_{0}^{\pi} x^{\prime}(t) y^{\prime}(t) \mathrm{d} t-\lambda \int_{0}^{\pi} x(t) y(t) \mathrm{d} t+\sum_{j=1}^{p} I_{j}\left(x\left(t_{j}\right)\right) y\left(t_{j}\right)-\int_{0}^{\pi} f(t) y(t) \mathrm{d} t, \forall x, y \in H
$$

For convenience, let $\int_{0}^{\sigma} I_{j}(s) \mathrm{d} s=G_{j}(\sigma)$ for $j=1,2, \ldots, p$.
Definition 2.1 If there exists $x \in H$ such that, for all $y \in H$,(9) is satisfied, then x is called a weak solution for (1).

Note from the form of J^{\prime}, the solutions of problem (1) are the corresponding critical points of J. From(H), J is of class C^{1}.

Lemma 2.2(see $[9,10])$ Let $X=Y \bigoplus Z$ be a Banach space with Z is closed in X and $\operatorname{dim} Y<\infty$. For $\rho>0$, define $\mathcal{M}=\{u \in Y:\|u\| \leq \rho\}, \mathcal{M}_{0}=\{u \in Y:\|u\|=\rho\}$. Let $J \in C^{1}(X, \mathbb{R})$ be such that $b=\inf _{u \in Z} J(u)>a=\max _{u \in \mathcal{M}_{0}} J(u)$. If J satisfies the $(\mathrm{PS})_{c}$ condition with $c=\inf _{\gamma \in \Gamma} \max _{u \in \mathcal{M}} J(\gamma(u))$, where $\Gamma=\left\{\gamma \in C(\mathcal{M}, X):\left.\gamma\right|_{\mathcal{M}_{0}}=\mathrm{Id}\right\}$, then c is a critical value of J.

Lemma 2.3 Now $\|x\|_{\infty} \leq \sqrt{\pi}\|x\|, \forall x \in H$ where $\|x\|_{\infty}=\max _{t \in[0, \pi]}|x(t)|$.
Proof. For any $x \in H$ and $\tau \in[0, \pi]$, from the Hölder inequality we have

$$
|x(\tau)|=\left|\int_{0}^{\tau} x^{\prime}(t) \mathrm{d} t\right| \leq \int_{0}^{\pi}\left|x^{\prime}(t)\right| \mathrm{d} t \leq \sqrt{\pi}\left(\int_{0}^{\pi}\left|x^{\prime}(t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}
$$

Consequently, $\|x\|_{\infty} \leq \sqrt{\pi}\|x\|$.
To study the existence of solutions for (1) with the parameter $\lambda=\lambda_{n}=n^{2}$ for $n=1,2, \ldots$, we recall some basic concepts for operators of type (S) $)_{+}$(see [11-14]).

Definition 2.4 Let H be a reflexive real Banach space and H^{*} its dual. The operator $T: H \rightarrow H^{*}$ is said to satisfy the $(S)_{+}$condition if the assumptions $u_{n} \rightharpoonup u_{0}$ weakly in H and $\lim \sup _{n \rightarrow \infty}\left(T\left(u_{n}\right), u_{n}-u_{0}\right) \leq 0$ imply $u_{n} \rightarrow u_{0}$ strongly in H.

Definition 2.5 The operator $T: H \rightarrow H^{*}$ is said to be demicontinuous if T maps strongly convergent sequences in H to weakly convergent sequences in H^{*}.

Lemma 2.6 Let $T: H \rightarrow H^{*}$ satisfy the $(S)_{+}$condition and let $K: H \rightarrow H^{*}$ be a compact operator. Then the sum $T+K: H \rightarrow H^{*}$ satisfies the $(S)_{+}$condition.

Lemma 2.7 Let $T: H \rightarrow H^{*}$ be a bounded and demicontinuous operator satisfying the $(S)_{+}$condition. Let $\mathcal{D} \subset H$ be an open, bounded and nonempty set with the boundary $\partial \mathcal{D}$ such that $T(u) \neq 0$ for $u \in \partial \mathcal{D}$. Then there exists an integer $\operatorname{deg}(T, \mathcal{D}, 0)$ such that
(1) $\operatorname{deg}(T, \mathcal{D}, 0) \neq 0$ implies that there exists an element $u_{0} \in \mathcal{D}$ such that $T\left(u_{0}\right)=0$.
(2) If \mathcal{D} is symmetric with respect to the origin and T satisfies $T(u)=-T(-u)$ for any $u \in \partial \mathcal{D}$, then $\operatorname{deg}(T, \mathcal{D}, 0)$ is an odd number.
(3) Let T_{λ} be a family of bounded and demicontinuous mappings which satisfy the $(S)_{+}$condition and which depend continuously on a real parameter $\lambda \in[0,1]$, and let $T_{\lambda}(u) \neq 0$ for any $u \in \partial \mathcal{D}$ and $\lambda \in[0,1]$. Then $\operatorname{deg}\left(T_{\lambda}, \mathcal{D}, 0\right)$ is constant with respect to $\lambda \in[0,1]$.

3. The Existence of Weak Solutions for (1)

For the parameter $\lambda=\lambda_{1}=1$, we have the following theorem.
Theorem 3.1 Let (H) hold. Then (1) has at least one weak solution if and only if

$$
\begin{equation*}
\sum_{j=1}^{p} I_{j}(+\infty) \sin t_{j}<\int_{0}^{\pi} f(t) \sin t \mathrm{~d} t<\sum_{j=1}^{p} I_{j}(-\infty) \sin t_{j} \tag{11}
\end{equation*}
$$

Proof. We first prove that J is weakly coercive on Z. From (H) we have $I_{j}(s)$ is bounded for all $s \in \mathbb{R}$, $j=1,2, \ldots, p$. Therefore, there exist $M_{j}>0(j=1,2, \ldots, p)$ such that

$$
\begin{equation*}
\left|I_{j}(s)\right| \leq M_{j}, j=1,2, \ldots, p \tag{12}
\end{equation*}
$$

Now for $z \in Z, f \in L^{2}(0, \pi)$ and (8) enable us to obtain

$$
\begin{aligned}
J(z) & =\frac{1}{2} \int_{0}^{\pi}\left|z^{\prime}(t)\right|^{2} \mathrm{~d} t-\frac{1}{2} \int_{0}^{\pi}|z(t)|^{2} \mathrm{~d} t+\sum_{j=1}^{p} \int_{0}^{z\left(t_{j}\right)} I_{j}(s) \mathrm{d} s-\int_{0}^{\pi} f(t) z(t) \mathrm{d} t \\
& \geq \frac{3}{8}\|z\|^{2}-\sqrt{\pi}\|z\| \sum_{j=1}^{p} M_{j}-\frac{1}{2}\|f\|_{L^{2}}\|z\|
\end{aligned}
$$

and thus $J(z) \rightarrow \infty$ as $\|z\| \rightarrow \infty, z \in Z$. The weak sequential lower semi-continuity of $\|\cdot\|$ implies J is weakly sequentially lower semi-continuous on Z, so there exists $z_{0} \in Z$ such that

$$
\begin{equation*}
-\infty<J\left(z_{0}\right)=\min _{z \in Z} J(z) \tag{13}
\end{equation*}
$$

For $y \in Y$ and we let $y=\rho \sin t$. Then

$$
\begin{aligned}
J(\rho \sin t) & =\frac{\rho^{2}}{2} \int_{0}^{\pi} \cos ^{2} t \mathrm{~d} t-\frac{\rho^{2}}{2} \int_{0}^{\pi} \sin ^{2} t \mathrm{~d} t+\sum_{j=1}^{p} \int_{0}^{\rho \sin t_{j}} I_{j}(s) \mathrm{d} s-\rho \int_{0}^{\pi} f(t) \sin t \mathrm{~d} t \\
& =\sum_{j=1}^{p} G_{j}\left(\rho \sin t_{j}\right)-\rho \int_{0}^{\pi} f(t) \sin t \mathrm{~d} t
\end{aligned}
$$

From L'Hospital's Rule, we have

$$
\lim _{\rho \rightarrow \pm \infty} \frac{G_{j}\left(\rho \sin t_{j}\right)}{\rho}=\lim _{\rho \rightarrow \pm \infty} I_{j}\left(\rho \sin t_{j}\right) \sin t_{j}=I_{j}(\pm \infty) \sin t_{j}
$$

Consequently, from the Lebesgue dominated convergence theorem and (11) we have

$$
\lim _{\rho \rightarrow \pm \infty} J(\rho \sin t)=\lim _{\rho \rightarrow \pm \infty} \rho\left[\sum_{j=1}^{p} \frac{G_{j}\left(\rho \sin t_{j}\right)}{\rho}-\int_{0}^{\pi} f(t) \sin t \mathrm{~d} t\right] \rightarrow-\infty
$$

Taking ρ_{0} large enough we then have $J\left(\pm \rho_{0} \sin t\right)<J\left(z_{0}\right)$, where z_{0} is defined in (13). As a result, the assumptions of Lemma 2.2 are satisfied with $\mathcal{M}=\left\{\rho \sin t: \rho \in\left[-\rho_{0}, \rho_{0}\right]\right\}, \mathcal{M}_{0}=\left\{-\rho_{0} \sin t, \rho_{0} \sin t\right\}$.

It remains to prove that J satisfies the (PS) $)_{c}$ condition. Let $\left\{x_{n}\right\}$ be a (PS $)_{c}$ sequence, i.e., there exists $c>0$ such that

$$
\begin{equation*}
\left|J\left(x_{n}\right)\right| \leq c, \forall n \in \mathbb{N}, \tag{14}
\end{equation*}
$$

and there exists a strictly decreasing sequence $\left\{\epsilon_{n}\right\}, \lim _{n \rightarrow \infty} \epsilon_{n}=0$, such that

$$
\begin{equation*}
\left|\left(J^{\prime}\left(x_{n}\right), y\right)\right| \leq \epsilon_{n}\|y\|, \forall n \in \mathbb{N}, y \in H \tag{15}
\end{equation*}
$$

Suppose for contradiction that $\left\|x_{n}\right\| \rightarrow \infty$. Put $v_{n}=\frac{x_{n}}{\left\|x_{n}\right\|}$. Then $\left\{v_{n}\right\}$ is bounded in H and so there exists a subsequence (without loss of generality suppose its the whole sequence) which converges to a function v_{0} weakly in H and strongly in $L^{2}(0, \pi)$ and $C[0, \pi]$.

Dividing (10) with $x=x_{n}$ by $\left\|x_{n}\right\|^{2}$, so we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left[\frac{1}{2}-\frac{1}{2} \int_{0}^{\pi}\left|v_{n}(t)\right|^{2} \mathrm{~d} t+\frac{1}{\left\|x_{n}\right\|^{2}} \sum_{j=1}^{p} \int_{0}^{x_{n}\left(t_{j}\right)} I_{j}(s) \mathrm{d} s-\frac{1}{\left\|x_{n}\right\|^{2}} \int_{0}^{\pi} f(t) x_{n}(t) \mathrm{d} t\right] \leq 0 \tag{16}
\end{equation*}
$$

Now $f \in L^{2}(0, \pi)$, Lemma 2.3 and (12) enable us to obtain

$$
\left|\frac{1}{\left\|x_{n}\right\|^{2}} \int_{0}^{\pi} f(t) x_{n}(t) \mathrm{d} t\right| \leq \frac{\|f\|_{L^{2}}\left\|x_{n}\right\|_{L^{2}}}{\left\|x_{n}\right\|^{2}} \rightarrow 0,\left|\frac{1}{\left\|x_{n}\right\|^{2}} \sum_{j=1}^{p} \int_{0}^{x_{n}\left(t_{j}\right)} I_{j}(s) \mathrm{d} s\right| \leq \frac{\left\|x_{n}\right\|_{\infty} \sum_{j=1}^{p} M_{j}}{\left\|x_{n}\right\|^{2}} \rightarrow 0
$$

Passing to the limit in (16), we have $\int_{0}^{\pi}\left|v_{0}(t)\right|^{2} \mathrm{~d} t \geq 1$. Using the weak lower semicontinuity of the norm, note $\lambda_{1}=1$, we have

$$
1 \leq \lambda_{1} \int_{0}^{\pi}\left|v_{0}(t)\right|^{2} \mathrm{~d} t \leq \int_{0}^{\pi}\left|v_{0}^{\prime}(t)\right|^{2} \mathrm{~d} t \leq \liminf _{n \rightarrow \infty} \int_{0}^{\pi}\left|v_{n}^{\prime}(t)\right|^{2} \mathrm{~d} t=1
$$

Thus $\left\|v_{0}\right\|=1$, and $\int_{0}^{\pi}\left|v_{0}^{\prime}(t)\right|^{2} \mathrm{~d} t=\lambda_{1} \int_{0}^{\pi}\left|v_{0}(t)\right|^{2} \mathrm{~d} t$. This implies that $v_{0}=\kappa \sin t$ with $\kappa \neq 0$. Choosing $y=v_{n}-v_{0}$ in (15), we obtain

$$
\begin{aligned}
& \mid \int_{0}^{\pi} v_{n}^{\prime}(t)\left(v_{n}^{\prime}(t)-v_{0}^{\prime}(t)\right) \mathrm{d} t-\int_{0}^{\pi} v_{n}(t)\left(v_{n}(t)-v_{0}(t)\right) \mathrm{d} t \\
& \left.\quad+\frac{1}{\left\|x_{n}\right\|} \sum_{j=1}^{p} I_{j}\left(x_{n}\left(t_{j}\right)\right)\left(v_{n}\left(t_{j}\right)-v_{0}\left(t_{j}\right)\right)-\frac{1}{\left\|x_{n}\right\|} \int_{0}^{\pi} f(t)\left(v_{n}(t)-v_{0}(t)\right) \mathrm{d} t \right\rvert\, \leq \epsilon_{n} \frac{\left\|v_{n}-v_{0}\right\|}{\left\|x_{n}\right\|}
\end{aligned}
$$

Since $v_{n} \rightarrow v_{0}$ in $L^{2}(0, \pi)$ and $C[0, \pi]$, by the hypotheses on f and I_{j}, we have

$$
\begin{aligned}
& \frac{1}{\left\|x_{n}\right\|} \sum_{j=1}^{p} I_{j}\left(x_{n}\left(t_{j}\right)\right)\left(v_{n}\left(t_{j}\right)-v_{0}\left(t_{j}\right)\right) \rightarrow 0, \frac{1}{\left\|x_{n}\right\|} \int_{0}^{\pi} f(t)\left(v_{n}(t)-v_{0}(t)\right) \mathrm{d} t \rightarrow 0 \\
& \int_{0}^{\pi} v_{n}(t)\left(v_{n}(t)-v_{0}(t)\right) \mathrm{d} t \rightarrow 0, \epsilon_{n} \frac{\left\|v_{n}-v_{0}\right\|}{\left\|x_{n}\right\|} \rightarrow 0
\end{aligned}
$$

Hence, we get

$$
\int_{0}^{\pi} v_{n}^{\prime}(t)\left(v_{n}^{\prime}(t)-v_{0}^{\prime}(t)\right) \mathrm{d} t \rightarrow 0
$$

Similarly, we can prove that

$$
\int_{0}^{\pi} v_{0}^{\prime}(t)\left(v_{n}^{\prime}(t)-v_{0}^{\prime}(t)\right) \mathrm{d} t \rightarrow 0
$$

As a result,

$$
0=\lim _{n \rightarrow \infty} \int_{0}^{\pi}\left|v_{n}^{\prime}(t)-v_{0}^{\prime}(t)\right|^{2} \mathrm{~d} t=\lim _{n \rightarrow \infty}\left\|v_{n}-v_{0}\right\|^{2} \geq 0
$$

which implies $\left\|v_{n}\right\| \rightarrow\left\|v_{0}\right\|$. The uniform convexity of H yields that v_{n} converges strongly to $v_{0}=\kappa \sin t$ in H.

Now we rewrite (14) and (15) with $y=x_{n}$ and obtain

$$
-2 c \leq \int_{0}^{\pi}\left|x_{n}^{\prime}(t)\right|^{2} \mathrm{~d} t-\int_{0}^{\pi}\left|x_{n}(t)\right|^{2} \mathrm{~d} t+2 \sum_{j=1}^{p} \int_{0}^{x_{n}\left(t_{j}\right)} I_{j}(s) \mathrm{d} s-2 \int_{0}^{\pi} f(t) x_{n}(t) \mathrm{d} t \leq 2 c
$$

and

$$
-\epsilon_{n}\left\|x_{n}\right\| \leq-\int_{0}^{\pi}\left|x_{n}^{\prime}(t)\right|^{2} \mathrm{~d} t+\int_{0}^{\pi}\left|x_{n}(t)\right|^{2} \mathrm{~d} t-\sum_{j=1}^{p} I_{j}\left(x_{n}\left(t_{j}\right)\right) x_{n}\left(t_{j}\right)+\int_{0}^{\pi} f(t) x_{n}(t) \mathrm{d} t \leq \epsilon_{n}\left\|x_{n}\right\|
$$

Summing and dividing by $\left\|x_{n}\right\|$, we have

$$
\begin{equation*}
\left|\frac{2}{\left\|x_{n}\right\|} \sum_{j=1}^{p} \int_{0}^{x_{n}\left(t_{j}\right)} I_{j}(s) \mathrm{d} s-\sum_{j=1}^{p} I_{j}\left(x_{n}\left(t_{j}\right)\right) v_{n}\left(t_{j}\right)-\int_{0}^{\pi} f(t) v_{n}(t) \mathrm{d} t\right| \leq \frac{2 c}{\left\|x_{n}\right\|}+\epsilon_{n} \tag{17}
\end{equation*}
$$

Note that $x_{n}\left(t_{j}\right)=v_{n}\left(t_{j}\right)\left\|x_{n}\right\|$ and $v_{n} \rightarrow \kappa \sin t$ with $\kappa \neq 0$. Hence, we have

$$
\frac{2}{\left\|x_{n}\right\|} \sum_{j=1}^{p} \int_{0}^{x_{n}\left(t_{j}\right)} I_{j}(s) \mathrm{d} s=2 \sum_{j=1}^{p} \frac{\int_{0}^{x_{n}\left(t_{j}\right)} I_{j}(s) \mathrm{d} s}{x_{n}\left(t_{j}\right)} v_{n}\left(t_{j}\right) \rightarrow 2 \sum_{j=1}^{p} I_{j}(\pm \infty) \kappa \sin t_{j}
$$

Passing to the limit in (17), we have

$$
\sum_{j=1}^{p} I_{j}(\pm \infty) \kappa \sin t_{j}=\int_{0}^{\pi} f(t) \kappa \sin t \mathrm{~d} t, \text { i.e., } \sum_{j=1}^{p} I_{j}(\pm \infty) \sin t_{j}=\int_{0}^{\pi} f(t) \sin t \mathrm{~d} t
$$

which contradicts (11), so $\left\{x_{n}\right\}$ is bounded in H. Consequently there exits a subsequence (without loss of generality suppose its the whole sequence) which converges to a function x weakly in H and strongly in $L^{2}(0, \pi)$ and $C[0, \pi]$. From the form of J^{\prime} we have

$$
\begin{aligned}
\left(J^{\prime}\left(x_{n}\right)-J^{\prime}(x), x_{n}-x\right) & =\int_{0}^{\pi}\left|x_{n}^{\prime}(t)-x^{\prime}(t)\right|^{2} \mathrm{~d} t \\
& -\int_{0}^{\pi}\left|x_{n}(t)-x(t)\right|^{2} \mathrm{~d} t+\sum_{j=1}^{p}\left(I_{j}\left(x_{n}\left(t_{j}\right)\right)-I_{j}\left(x\left(t_{j}\right)\right)\right)\left(x_{n}\left(t_{j}\right)-x\left(t_{j}\right)\right)
\end{aligned}
$$

Therefore, $\left\|x_{n}\right\| \rightarrow\|x\|$ from the fact that $\left(J^{\prime}\left(x_{n}\right)-J^{\prime}(x), x_{n}-x\right) \rightarrow 0,\left\|x_{n}-x\right\|_{L^{2}} \rightarrow 0, \sum_{j=1}^{p}\left(I_{j}\left(x_{n}\left(t_{j}\right)\right)-\right.$ $\left.I_{j}\left(x\left(t_{j}\right)\right)\right)\left(x_{n}\left(t_{j}\right)-x\left(t_{j}\right)\right) \rightarrow 0$. As a result, x_{n} converges strongly to x in H, so J satisfies the (PS) ${ }_{c}$ condition.

From Lemma 2.2, J has a positive critical value c, i.e., there exists $x \in H$ such that $J(x)=c>0$ and $J^{\prime}(x)=0$. Note that $J(0)=0$, so x is a nontrivial weak solution for (1).

Finally, we prove that (11) is also a necessary condition for the solvability of (1). Assume that $x \in H$ is a weak solution for (1), i.e., $\int_{0}^{\pi} x^{\prime}(t) y^{\prime}(t) \mathrm{d} t-\int_{0}^{\pi} x(t) y(t) \mathrm{d} t+\sum_{j=1}^{p} I_{j}\left(x\left(t_{j}\right)\right) y\left(t_{j}\right)=\int_{0}^{\pi} f(t) y(t) \mathrm{d} t, \forall y \in H$. Let $y=\sin t$. Then $\sum_{j=1}^{p} I_{j}\left(x\left(t_{j}\right)\right) \sin t_{j}=\int_{0}^{\pi} f(t) \sin t \mathrm{~d} t$. From (H) we obtain that (11) is satisfied. This completes the proof.

Let us define operators $J, S, G: H \rightarrow H^{*}$ and an element $f^{*} \in H$ by

$$
\begin{aligned}
& (J x, y)=\int_{0}^{\pi} x^{\prime}(t) y^{\prime}(t) \mathrm{d} t \\
& (S x, y)=\int_{0}^{\pi} x(t) y(t) \mathrm{d} t,(G x, y)=\sum_{j=1}^{p} I_{j}\left(x\left(t_{j}\right)\right) y\left(t_{j}\right),\left(f^{*}, y\right)=\int_{0}^{\pi} f(t) y(t) \mathrm{d} t
\end{aligned}
$$

From our inner product (5) and the compactness of $H \hookrightarrow L^{2}(0, \pi)$ and $H \hookrightarrow C[0, \pi]$, we have J is an identical operator and S, G, f^{*} are compact operators. Hence, we easily prove that J and $J-n^{2} S+G-f^{*}$ satisfy the $(S)_{+}$condition. For the parameter $\lambda=\lambda_{n}=n^{2}$ for $n=1,2, \ldots$, we have the following theorem.

Theorem 3.2 Let (H) hold. Then (1) has at least one weak solution if and only if

$$
\begin{align*}
& \sum_{j=1}^{p} I_{j}(+\infty)\left(\sin n t_{j}\right)^{+}-\sum_{j=1}^{p} I_{j}(-\infty)\left(\sin n t_{j}\right)^{-} \tag{18}\\
& <\int_{0}^{\pi} f(t) \sin n t \mathrm{~d} t<\sum_{j=1}^{p} I_{j}(-\infty)\left(\sin n t_{j}\right)^{+}-\sum_{j=1}^{p} I_{j}(+\infty)\left(\sin n t_{j}\right)^{-}
\end{align*}
$$

where $\left(\sin n t t_{j}\right)^{+}$and $\left(\sin n t_{j}\right)^{-}$, respectively denote the positive and negative parts of $\sin n t$ for $n=1,2, \ldots$.
Proof. Note that, according to the definitions of J, S, G, f^{*}, we only prove that there exits $x \in H$ such that $J x=$ $n^{2} S x-G x+f^{*}$. Fix $\delta \in(0,2 n+1)$ and define $\mathscr{H}:[0,1] \times H \rightarrow H^{*}$ by $\mathscr{H}(\tau, x)=J x-n^{2} S x-(1-\tau) \delta S x+\tau G x-\tau f^{*}$, for all $x \in H$ and $\tau \in[0,1]$. We now prove that there exists a large enough $R>0$ such that this homotopy is admissible with respect to the ball $Q(0, R) \subset H$. If the claim is false, for any $k \in \mathbb{N}$, there exist $\tau_{k} \in[0,1]$ and $x_{k} \in H,\left\|x_{k}\right\| \geq k$ such that $\mathscr{H}\left(\tau_{k}, x_{k}\right)=0$, i.e., $J x_{k}-n^{2} S x_{k}-\left(1-\tau_{k}\right) \delta S x_{k}+\tau_{k} G x_{k}-\tau f^{*}=0$, and thus

$$
\begin{align*}
& \int_{0}^{\pi} x_{k}^{\prime}(t) y^{\prime}(t) \mathrm{d} t-n^{2} \int_{0}^{\pi} x_{k}(t) y(t) \mathrm{d} t \\
& \quad-\left(1-\tau_{k}\right) \delta \int_{0}^{\pi} x_{k}(t) y(t) \mathrm{d} t+\tau_{k} \sum_{j=1}^{p} I_{j}\left(x_{k}\left(t_{j}\right)\right) y\left(t_{j}\right)-\tau_{k} \int_{0}^{\pi} f(t) y(t) \mathrm{d} t=0, \tag{19}
\end{align*}
$$

for all $y \in H$. Let $v_{k}=\frac{x_{k}}{\left\|x_{k}\right\|}$. Then $\left\|v_{k}\right\|=1$ and

$$
\begin{aligned}
& \int_{0}^{\pi} v_{k}^{\prime}(t) y^{\prime}(t) \mathrm{d} t-n^{2} \int_{0}^{\pi} v_{k}(t) y(t) \mathrm{d} t \\
& \quad-\left(1-\tau_{k}\right) \delta \int_{0}^{\pi} v_{k}(t) y(t) \mathrm{d} t+\frac{\tau_{k}}{\left\|x_{k}\right\|} \sum_{j=1}^{p} I_{j}\left(x_{k}\left(t_{j}\right)\right) y\left(t_{j}\right)-\frac{\tau_{k}}{\left\|x_{k}\right\|} \int_{0}^{\pi} f(t) y(t) \mathrm{d} t=0 .
\end{aligned}
$$

From (H) we have $\frac{\tau_{k}}{\left\|x_{k}\right\|} \sum_{j=1}^{p} I_{j}\left(x_{k}\left(t_{j}\right) y\left(t_{j}\right) \rightarrow 0\right.$, and $\frac{\tau_{k}}{\left\|x_{k}\right\|} \int_{0}^{\pi} f(t) y(t) \mathrm{d} t \rightarrow 0$, as $\left\|x_{k}\right\| \rightarrow \infty$. From the complete continuity of S, we obtain there is a $v \in H$ such that $v_{k} \rightarrow v$ in $H, \tau_{k} \rightarrow \tau \in[0,1]$ and

$$
\int_{0}^{\pi} v^{\prime}(t) y^{\prime}(t) \mathrm{d} t-n^{2} \int_{0}^{\pi} v(t) y(t) \mathrm{d} t-(1-\tau) \delta \int_{0}^{\pi} v(t) y(t) \mathrm{d} t=0 .
$$

We consider $\tau=1$ (since $n^{2}+(1-\tau) \delta$ isn't an eigenvalue of (7) if $\tau \neq 1$). Consequently, we have

$$
\int_{0}^{\pi} v^{\prime}(t) y^{\prime}(t) \mathrm{d} t-n^{2} \int_{0}^{\pi} v(t) y(t) \mathrm{d} t=0
$$

for all $y \in H$. As a result, we get $-v^{\prime \prime}(t)=n^{2} v(t), v \in H$ and $\|v\|=1$. From (7) we have $v(t)= \pm \sqrt{\frac{2}{n^{2} \pi}} \sin n t$. Let us suppose that $v(t)=\sqrt{\frac{2}{n^{2} \pi}} \sin n t$ (we proceed analogously for the case $v(t)=-\sqrt{\frac{2}{n^{2} \pi}} \sin n t$). Taking $y(t)=\sin n t$ in (19) and noting $0 \leq \tau_{k} \leq 1, \tau_{k} \rightarrow 1$, we have $\sum_{j=1}^{p} I_{j}\left(x_{k}\left(t_{j}\right)\right) \sin n t_{j}-\int_{0}^{\pi} f(t) \sin n t \mathrm{~d} t \geq$ 0 , i.e., $\lim \inf _{k \rightarrow \infty} \sum_{j=1}^{p} I_{j}\left(x_{k}\left(t_{j}\right)\right) \sin n t_{j} \leq \int_{0}^{\pi} f(t) \sin n t \mathrm{~d} t$. For k sufficiently large, Fatou's lemma yields that $\sum_{j=1}^{p} I_{j}(-\infty)\left(\sin n t_{j}\right)^{+}-\sum_{j=1}^{p} I_{j}(+\infty)\left(\sin n t_{j}\right)^{-} \leq \int_{0}^{\pi} f(t) \sin n t \mathrm{~d} t$, a contradiction with (18). This proves that the homotopy \mathscr{H} is admissible with respect to the ball $Q(0, R)$ if R is large enough. Hence, Lemma 2.7 (3) yields that

$$
\begin{equation*}
\operatorname{deg}\left(J-n^{2} S+G-f^{*}, Q(0, R), 0\right)=\operatorname{deg}\left(J-\left(n^{2}+\delta\right) S, Q(0, R), 0\right), \tag{20}
\end{equation*}
$$

Note that $\operatorname{deg}\left(J-\left(n^{2}+\delta\right) S, Q(0, R), 0\right)$ is an odd number by Lemma 2.7 (2). Hence $\operatorname{deg}\left(J-n^{2} S+G-\right.$ $\left.f^{*}, Q(0, R), 0\right) \neq 0$, and Lemma 2.7 (1) guarantees the existence of at least one weak solution of (1).

Finally, we prove that (18) is also a necessary condition for the solvability of (1). Assume that $x \in H$ is a weak solution for (1), i.e., $\int_{0}^{\pi} x^{\prime}(t) y^{\prime}(t) \mathrm{d} t-n^{2} \int_{0}^{\pi} x(t) y(t) \mathrm{d} t+\sum_{j=1}^{p} I_{j}\left(x\left(t_{j}\right)\right) y\left(t_{j}\right)=\int_{0}^{\pi} f(t) y(t) \mathrm{d} t, \forall y \in H$. Let $y=\sin n t$. Then $\sum_{j=1}^{p} I_{j}\left(x\left(t_{j}\right)\right) \sin n t_{j}=\int_{0}^{\pi} f(t) \sin n t \mathrm{~d} t$. From (H) we can easily obtain (18) holds true. This completes the proof.

Remark 3.3 If $n=1,(18)$ is the same as (11).

References

[1] D. Zhang, B. Dai, Infinitely many solutions for a class of nonlinear impulsive differential equations with periodic boundary conditions, Computers \& Mathematics with Applications 61 (2011) 3153-3160.
[2] J. Xu, Z. Wei, Y. Ding, Existence of weak solutions for p-Laplacian problem with impulsive effects, Taiwanese Journal of Mathematics 17 (2013) 501-515.
[3] P. Drábek, M. Langerová, Quasilinear boundary value problem with impulses: variational approach to resonance problem, Boundary Value Problems 2014, 64.
[4] P. Chen, X. Tang, Existence and multiplicity of solutions for second-order impulsive differential equations with Dirichlet problems, Applied Mathematics and Computation 218 (2012) 11775-11789.
[5] Z. Liu, H. Chen, T. Zhou, Variational methods to the second-order impulsive differential equation with Dirichlet boundary value problem, Computers \& Mathematics with Applications 61 (2011) 1687-1699.
[6] M. Giaquinta, L. Martinazzi, An introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs, Edizione della Normale, Pisa, 2005.
[7] J. Nieto, D. O'Regan, Variational approach to impulsive differential equations, Nonlinear Analysis: Real World Applications 10 (2009) 680-690.
[8] V. Bögelein, F. Duzaar, P. Marcellini, Existence of evolutionary variational solutions via the calculus of variations, Journal of Differential Equations 256 (2014) 3912-3942.
[9] M.A. Ragusa, A. Tachikawa, Partial regularity of the minimizers of quadratic functionals with VMO coefficients, Journal of the London Mathematical Society 72 (2005) 609-620.
[10] G. Afrouzi, M. Mirzapour, A. Hadjian, S. Shakeri, Existence of weak solutions for a semilinear problem with a nonlinear boundary condition, Bulletin of Mathematical Analysis and Applications 3 (2011) 109-114.
[11] J. Xu, W. Dong, D. O'Regan, Existence of weak solutions for a fourth-order Navier boundary value problem, Applied Mathematics Letters 37 (2014) 61-66.
[12] M. Willem, Minimax Theorems, Birkhäser, Boston, 1996.
[13] P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, In CBMS Regional Conference Series in Mathematics, Vo1.65. American Mathematical Society: Providence, RI, 1986.
[14] X. Shang, Multiplicity theorems for semipositone p-Laplacian problems, Electronic Journal of Differential Equations 58 (2011) 1-8.
[15] K. Lan, A variational inequality theory for demicontinuous S-contractive maps with applications to semilinear elliptic inequalities, Journal of Differential Equations 246 (2009) 909-928.
[16] F. Browder, Fixed point theory and nonlinear problem, Bulletin of the American Mathematical Society 9 (1983) 1-39.
[17] I. Skrypnik, Nonlinear Elliptic Boundary Value Problems, Teubner, Leipzig, 1986.
[18] Z. Bai, X. Dong, C. Yin, Existence results for impulsive nonlinear fractional differential equation with mixed boundary conditions, Boundary Value Problems 2016, 63.

[^0]: 2010 Mathematics Subject Classification. Primary 34B15; Secondary 34B18, 34B37
 Keywords. Second order boundary value problem, Impulsive, Topological degree theory, Critical point theory, Weak solution.
 Received: 30 April 2016; Accepted: 03 September 2016
 Communicated by Maria Alessandra RAGUSA
 Research supported by National Science Fund for Young Scholars of China(Grant No.11601048), Natural Science Foundation of Chongqing (Grant No.cstc2016jcyjA0181), the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJ1703050), Natural Science Foundation of Chongqing Normal University (Grant No.15XLB011).

 Email addresses: keyu_292@163.com (Keyu Zhang), xujiafa292@sina.com (Jiafa Xu), donal.oregan@nuigalway.ie (Donal O'Regan)

