Centered Operators Via Moore-Penrose Inverse and Aluthge Transformations

M. R. Jabbarzadeh ${ }^{\text {a }}$, M. Jafari Bakhshkandi ${ }^{\text {a }}$
${ }^{a}$ Faculty of Mathematical Sciences, University of Tabriz, P. O. Box: 5166615648, Tabriz, Iran

Abstract

In this paper, we obtain some characterizations of centered and binormal operators via MoorePenrose inverse and Aluthge transform.

1. Introduction and Preliminaries

Let $B(\mathcal{H})$ denote the C^{*}-algebra of all bounded linear operators on a complex Hilbert space \mathcal{H}. We write $\mathcal{N}(T)$ and $\mathcal{R}(T)$ for the null-space and the range of an operator $T \in B(\mathcal{H})$, respectively. Recall that for $T \in B(\mathcal{H})$, there is a unique factorization $T=U|T|$, where $\mathcal{N}(T)=\mathcal{N}(U)=\mathcal{N}(|T|), U$ is a partial isometry, i.e. $U U^{*} U=U$ and $|T|=\left(T^{*} T\right)^{1 / 2}$ is a positive operator. This factorization is called the polar decomposition of T. As a consequence, $U^{*} U|T|=|T|$. Also, it is a classical fact that the polar decomposition of T^{*} is $U^{*}|T|$, and so $U U^{*}\left|T^{*}\right|=\left|T^{*}\right|$.

In [8] Morrel and Muhly introduced the concept of a centered operator. An operator T on a Hilbert space \mathcal{H} is said to be centered if the doubly infinite sequence $\left\{T^{n} T^{* n}, T^{* m} T^{m}: n, m \geq 0\right\}$ consists of mutually commuting operators. It is shown in [4] that if $T=U|T|$ is an operator on \mathcal{H} such that for each $n \in \mathbb{N}, T^{n}$ has polar decomposition $U_{n}\left|T^{n}\right|$, then T is centered if and only if $U_{n}=U^{n}$ for each $n \in \mathbb{N}$.

Associated with $T \in B(\mathcal{H})$ there is a useful related operator $\widetilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$, called the Aluthge transform of T as it has been studied by Aluthge in [1]. Binormality of operators was defined by Campbell in [3]. An operator T is said to be binormal or weakly centered $[9]$, if $\left[|T|,\left|T^{*}\right|\right]=0$, where $[A, B]=A B-B A$ for operators A and B. Let $T \in B(\mathcal{H})$ have closed range. Then the Moore-Penrose inverse of T, denoted by T^{\dagger}, is the unique operator $T^{\dagger} \in B(\mathcal{H})$ which satisfies $T T^{\dagger} T=T, T^{\dagger} T T^{+}=T^{\dagger},\left(T T^{\dagger}\right)^{*}=T T^{+}=P_{\mathcal{R}(T)}$ and $\left(T^{+} T\right)^{*}=T^{+} T=P_{\mathcal{R}\left(T^{+}\right)}$, where the $P_{\mathcal{M}}$ means the orthogonal projection onto a closed subspace \mathcal{M}.

In this paper, we study the centered and binormal bounded linear operators on a Hilbert space \mathcal{H} via Moore-Penrose inverse and Aluthge transformation. The work is organized as follows. In section 2, firstly, we give the polar decomposition of T^{\dagger}, and then we show that T^{+}is centered if and only if T is centered. Secondly, we introduce the notion t-Aluthge transformation $\widetilde{T}^{(\dagger)}$ of T by setting $\widetilde{T}^{(\dagger)}=\left(\widetilde{T^{\dagger}}\right)^{\dagger}$. We show

[^0]that if T is a closed range binormal operator, then the *-Aluthge and t-Aluthge transformations (see [11]) coincide. Also, we show that the reverse order law holds for $|T|$ and $\left|T^{*}\right| ;$ i.e. $\left(|T|\left|T^{*}\right|\right)^{\dagger}=\left|T^{*}\right|^{\dagger}|T|^{\dagger}$, whenever T is a closed range binormal operator. Finally, we give the polar decomposition of powers of \widetilde{T} and then we find some conditions under which \widetilde{T} be centered. Also we show that if T is quasinormal operator, then \widetilde{T} is centered.

2. On Some Characterizations of T^{\dagger}

Let $C R(\mathcal{H})$ be the subset of all bounded linear operators on \mathcal{H} with closed range. In the following proposition we obtain the polar decomposition of T^{\dagger}. The following lemma is significant for amount of consideration for the next results and computations.

Lemma 2.1. Let $T \in C R(\mathcal{H})$. Then the following assertions hold.
(a) If $T \geq 0$, then $T^{\dagger} \geq 0, \mathcal{N}(T)=\mathcal{N}\left(T^{\frac{1}{2}}\right), T^{\frac{1}{2}} \in C R(\mathcal{H})$ and $\left(T^{\dagger}\right)^{\frac{1}{2}}=\left(T^{\frac{1}{2}}\right)^{\dagger}$.
(b) $\left|T^{\dagger}\right|=\left|T^{*}\right|^{\dagger}$.
(c) $\mathcal{R}(|T|)=\mathcal{R}\left(|T|^{\frac{1}{2}}\right)$ and $\mathcal{R}\left(\left|T^{\dagger}\right|\right)=\mathcal{R}\left(\left|T^{*}\right|\right)=\mathcal{R}\left(\left|T^{*}\right|^{\frac{1}{2}}\right)$.
(d) If $T=T^{*}$, then $T P_{\mathcal{R}(T)}=T$.
(e) $\left|T^{\dagger}\right|^{\frac{1}{2}}=\left(\left|T^{*}\right|^{\frac{1}{2}}\right)^{\dagger},\left|T^{\dagger}\right|^{\frac{1}{2}} P_{\mathcal{R}\left(\left|T^{*}\right|\right)}=\left|T^{\dagger}\right|^{\frac{1}{2}}$ and $\left|T^{\dagger}\right|^{\frac{1}{2}}\left|T^{*}\right|^{\frac{1}{2}}=P_{\mathcal{R}\left(\left|T^{+}\right|\right)}$.

Proof. (a) Let $f \in \mathcal{H}$. Then $\left\langle T^{\dagger} f, f\right\rangle=\left\langle T^{\dagger} T T^{\dagger} f, f\right\rangle=\left\langle T T^{\dagger} f, T^{\dagger} f\right\rangle \geq 0$, and so $\left\langle T^{\dagger} f, f\right\rangle \geq 0$. Also from $\langle T f, f\rangle=\left\langle T^{\frac{1}{2}} f, T^{\frac{1}{2}} f\right\rangle=\left\|T^{\frac{1}{2}} f\right\|$ we deduce that $T^{\frac{1}{2}} f=0$ if and only if $T f=0$. Now, from this and the inequality $\|T f\|=\left\|T^{\frac{1}{2}}\left(T^{\frac{1}{2}} f\right)\right\| \leq\left\|T^{\frac{1}{2}}\right\|\left\|T^{\frac{1}{2}} f\right\|$, we conclude that the range of $T^{\frac{1}{2}}$ is also closed. Finally, Since for each $n \in \mathbb{N},\left(T^{n}\right)^{\dagger}=\left(T^{\dagger}\right)^{n}$, we have $\left(T^{\frac{1}{2}}\right)^{\dagger}\left(T^{\frac{1}{2}}\right)^{\dagger}=\left(\left(T^{\frac{1}{2}}\right)^{\dagger}\right)^{2}=\left(\left(T^{\frac{1}{2}}\right)^{2}\right)^{\dagger}=T^{\dagger}=\left(\left(T^{\dagger}\right)^{\frac{1}{2}}\right)^{2}$.
(b) It is sufficient to show that $\left(T T^{*}\right)^{\dagger}=\left(T^{*}\right)^{\dagger} T^{\dagger}$. Since $\mathcal{R}\left(T^{\dagger}\right)=\mathcal{R}\left(T^{*}\right)$, so $T T^{*}\left(T^{*}\right)^{\dagger} T^{\dagger} T T^{*}=T P_{\mathcal{R}\left(T^{*}\right)} P_{\mathcal{R}\left(T^{*}\right)} T^{*}=$ $T T^{*}$ and

$$
\left(T^{*}\right)^{\dagger} T^{\dagger} T T^{*}\left(T^{*}\right)^{\dagger} T^{\dagger}=\left(T^{*}\right)^{\dagger} P_{\mathcal{R}\left(T^{*}\right)} P_{\mathcal{R}\left(T^{*}\right)} T^{\dagger}=\left(T^{*}\right)^{\dagger} T^{\dagger}
$$

Hence, $\left|T^{\dagger}\right|=\left(\left(T^{*}\right)^{\dagger} T^{\dagger}\right)^{\frac{1}{2}}=\left(\left(T T^{*}\right)^{\dagger}\right)^{\frac{1}{2}}=\left(\left(T T^{*}\right)^{\frac{1}{2}}\right)^{\dagger}=\left|T^{*}\right|^{\dagger}$.
(c) By part (a), $\mathcal{N}\left(\left|T^{*}\right|\right)=\mathcal{N}\left(\left|T^{*}\right|^{\frac{1}{2}}\right)$. Hence it follows that $\left.\overline{\mathcal{R}\left(\left|T^{*}\right|\right)}=\overline{\mathcal{R}\left(\left|T^{*}\right|^{\frac{1}{2}}\right.}\right)$. By hypotheses $\mathcal{R}\left(T T^{*}\right), \mathcal{R}\left(\left|T^{*}\right|\right)$ and so $R\left(\left|T^{*}\right|^{\frac{1}{2}}\right)$ are closed. Thus $R\left(\left|T^{*}\right|\right)=R\left(\left|T^{*}\right|^{\frac{1}{2}}\right)$. The equality $\mathcal{R}\left(\left|T^{\dagger}\right|\right)=\mathcal{R}\left(\left|T^{*}\right|\right)$ follows from (b).
(d) Since $\mathcal{N}(T)=\mathcal{N}\left(T^{*}\right)=\mathcal{R}(T)^{\perp}$, hence $\mathcal{H}=\mathcal{R}(T) \oplus \mathcal{R}(T)^{\perp}$. So for each $f \in \mathcal{H}$ there exists a unique $g \in \mathcal{R}(T)$ and a unique $h \in \mathcal{R}(T)^{\perp}$ such that $f=g+h$. It follows that $T P_{R(T)}(f)=T(g)=T(g+h)=T(f)$.
(e) It follows from the previous parts.

Proposition 2.2. Let $U|T|$ be the polar decomposition of an operator $T \in C R(\mathcal{H})$. Then $T^{+}=U^{*}\left|T^{*}\right|^{\dagger}=U^{*}\left|T^{\dagger}\right|$ is the polar decomposition for T^{\dagger} and hence the Aluthge transformation of T^{\dagger} is $\left|T^{\dagger}\right|^{\frac{1}{2}} U^{*}\left|T^{\dagger}\right|^{\frac{1}{2}}$.

Proof. Put $S=\left|T^{*}\right|^{\dagger} U$. Since $\mathcal{R}(U)=\mathcal{R}(T)=\mathcal{R}\left(\left|T^{*}\right|\right)$ and $\mathcal{R}\left(\left|T^{*}\right|\right)^{\perp}=\mathcal{N}\left(\left|T^{*}\right|\right)$, so $\mathcal{R}(S)=\mathcal{R}(U)=\mathcal{R}\left(\left|T^{*}\right|\right)$. Moreover, we have

$$
\begin{aligned}
T^{*} S T^{*} & =U^{*}\left|T^{*}\right|\left(\left|T^{*}\right|^{\dagger} U\right) U^{*}\left|T^{*}\right| \\
& =U^{*}\left|T^{*}\right|\left|T^{*}\right|^{\dagger}\left|T^{*}\right| \\
& =U^{*}\left|T^{*}\right|=T^{*},
\end{aligned}
$$

$$
\begin{aligned}
S T^{*} S & =\left|T^{*}\right|^{\dagger}\left(U U U^{*}\left|T^{*}\right|\right)\left|T^{*}\right|^{\dagger} U \\
& =\left|T^{*}\right|^{\dagger}\left|T^{*}\right|\left|T^{*}\right|^{\dagger} U \\
& =\left|T^{*}\right|^{\dagger} U=S,
\end{aligned}
$$

$$
\begin{aligned}
T^{*} S & =U^{*}\left|T^{*}\right|\left|T^{*}\right|^{\dagger} U \\
& =U^{*} P_{\mathcal{R}\left(T^{*}\right)} U \\
& =U^{*} U \\
& =P_{\mathcal{R}\left(T^{*}\right)},
\end{aligned}
$$

and

$$
\begin{aligned}
S T^{*} & =\left|T^{*}\right|^{\dagger} U U^{*}\left|T^{*}\right| \\
& =\left|T^{*}\right|^{\dagger} P_{\left.R\left(\mid T^{*}\right)\right)}\left|T^{*}\right| \\
& =\left|T^{*}\right|^{\dagger}\left|T^{*}\right| \\
& =P_{\mathcal{R}\left(\left|T^{*}\right|^{+}\right)}=P_{\mathcal{R}\left(\left|T^{*}\right|\right)}=P_{\mathcal{R}(S)}
\end{aligned}
$$

These equalities show that $\left(T^{\dagger}\right)^{*}=\left(T^{*}\right)^{\dagger}=S$, and hence $T^{\dagger}=S^{*}=U^{*}\left|T^{*}\right|^{\dagger}=U^{*}\left|T^{\dagger}\right|$ is the polar decomposition for T^{\dagger}. Thus, the Aluthge transformation of T^{\dagger} is $\left|T^{\dagger}\right|^{\frac{1}{2}} U^{*}\left|T^{\dagger}\right|^{\frac{1}{2}}$.
Corollary 2.3. Let $T \in C R(\mathcal{H})$. Then T^{+}is centered if and only if T is centered.
Proof. By Proposition 2.2, $U_{n}\left|T^{n}\right|$ is the polar decomposition of T^{n} if and only if $U_{n}^{*}\left|\left(T^{*}\right)^{n}\right|^{\dagger}$ is the polar decomposition of $\left(T^{\dagger}\right)^{n}$, for each $n \in \mathbb{N}$. Now, the desired conclusion follows from the Morrel-Muhly Theorem [8].
Proposition 2.4. Let $T=U|T| \in B(\mathcal{H})$ and $\left.|T|^{\frac{1}{2}}\left|T^{*}\right|^{\frac{1}{2}}=\left.V| | T\right|^{\frac{1}{2}}\left|T^{*}\right|^{\frac{1}{2}} \right\rvert\,$ be the polar decompositions. Suppose that $\widetilde{T} \in C R(\mathcal{H})$, then $\widetilde{T}^{\dagger}=U^{*} V^{*}\left|\widetilde{T}^{\dagger}\right|=U^{*}\left(\left.\left|T^{*}\right|^{\frac{1}{2}}|T|^{\frac{1}{2}} \right\rvert\,\right)^{\dagger}$ is the polar decomposition.
Proof. It is sufficient to show that $\widetilde{T}=V U|\widetilde{T}|$ is the polar decomposition. This has been proved in [7, Theorem 2.1]. Here we give a new proof. Since $U|T|^{\frac{1}{2}}=\left|T^{*}\right|^{\frac{1}{2}} U$, we obtain $(\widetilde{T})^{*}=|T|^{\frac{1}{2}} U^{*}|T|^{\frac{1}{2}}=U^{*}\left|T^{*}\right|^{\frac{1}{2}}|T|^{\frac{1}{2}}=$ $\left.\left.U^{*} V^{*}| | T^{*}\right|^{\frac{1}{2}}|T|^{\frac{1}{2}} \right\rvert\,$. But $\|\left.\left. T^{*}\right|^{\frac{1}{2}}|T|^{\frac{1}{2}}\right|^{2}=|T|^{\frac{1}{2}}\left|T^{*}\right||T|^{\frac{1}{2}}=\left(|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}\right)\left(|T|^{\frac{1}{2}} U^{*}|T|^{\frac{1}{2}}\right)=\left|(\widetilde{T})^{*}\right|^{2}$. Hence $(\widetilde{T})^{*}=U^{*} V^{*}\left|(\widetilde{T})^{*}\right|$. Also it is easy to check that $\left(U^{*} V^{*}\right)(V U)\left(U^{*} V^{*}\right)=U^{*} V^{*}$ and $\mathcal{N}\left((\widetilde{T})^{*}\right)=\mathcal{N}\left(U^{*} V^{*}\right)$. Hence $\widetilde{T}=V U|\widetilde{T}|$ is the polar decomposition. By using Proposition 2.2, we have that $\widetilde{T}^{\dagger}=U^{*} V^{*}\left|\widetilde{T}^{\dagger}\right|=U^{*}\left(\left.\left|T^{*}\right|^{\frac{1}{2}}|T|^{\frac{1}{2}} \right\rvert\,\right)^{\dagger}$ is the polar decomposition.
Theorem 2.5. If $T \in C R(\mathcal{H})$ is binormal, then $\widetilde{T}^{\dagger}=\left(|T|^{\dagger}\right)^{\frac{1}{2}} U^{*}\left(|T|^{\dagger}\right)^{\frac{1}{2}}$.
Proof. First, we note that by a modification of [5, Theorem 2] we obtain

$$
P_{\mathcal{N}(|T|)^{\perp}} P_{\mathcal{N}\left(\left|T^{*}\right|\right)^{\perp}}=P_{\mathcal{N}\left(\left|T^{*}\right|\right)^{\perp}} P_{\mathcal{N}(|T|)^{\perp}}
$$

Since for each $0 \leq A \in B(\mathcal{H}), \overline{\mathcal{R}(A)}=\mathcal{N}(A)^{\perp}$, this implies that

$$
P_{\mathcal{R}(|T|)} P_{\mathcal{R}\left(\left|T^{*}\right|\right)}=P_{\mathcal{R}\left(\left|T^{*}\right|\right)} P_{\mathcal{R}(|T|)}
$$

Put $S=\left(|T|^{\dagger}\right)^{\frac{1}{2}} U^{*}\left(|T|^{\dagger}\right)^{\frac{1}{2}}$. Then we have

$$
\begin{aligned}
S \widetilde{S T} S & =\left(|T|^{\dagger}\right)^{\frac{1}{2}} U^{*}\left(|T|^{\dagger}\right)^{\frac{1}{2}}|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}\left(|T|^{\dagger} \frac{}{\frac{1}{2}}^{2} U^{*}\left(|T|^{\dagger}\right)^{\frac{1}{2}}\right. \\
& =\left(|T|^{\dagger}\right)^{\frac{1}{2}} U^{*} P_{\mathcal{R}(|T|)} U P_{\mathcal{R}(|T|)} U^{*}\left(|T|^{\dagger}\right)^{\frac{1}{2}} \\
& =\left(|T|^{\dagger}\right)^{\frac{1}{2}} U^{*} P_{\mathcal{R}(T \mid)} U U^{*}\left(|T|^{\dagger}\right)^{\frac{1}{2}} \\
& =\left(|T|^{\dagger}\right)^{\frac{1}{2}} U^{*} P_{\mathcal{R}(\mid T))} P_{\mathcal{R}\left(\left|T^{*}\right|\right)}\left(|T|^{\dagger}\right)^{\frac{1}{2}} \\
& =\left(|T|^{\dagger}\right)^{\frac{1}{2}} U^{*} P_{\mathcal{R}\left(\left|T^{*}\right|\right)} P_{\mathcal{R}(\mid T))}\left(|T|^{\dagger}\right)^{\frac{1}{2}} \\
& =\left(|T|^{\dagger}\right)^{\frac{1}{2}} U^{*}\left(|T|^{\dagger}\right)^{\frac{1}{2}}=S,
\end{aligned}
$$

$$
\begin{aligned}
\widetilde{T} S \widetilde{T} & =|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}\left(|T|^{\dagger}\right)^{\frac{1}{2}} U^{*}\left(|T|^{+\frac{1}{2}}|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}\right. \\
& =\left.\left|T T^{\frac{1}{2}} U P_{\mathcal{R}(T T)} U^{*} P_{\mathcal{R}(|T|} U\right| T\right|^{\frac{1}{2}} \\
& =|T|^{\frac{1}{2}} U U^{*} P_{\mathcal{R}(T T)} U|T|^{\frac{1}{2}} \\
& =|T|^{\frac{1}{2}} P_{\mathcal{R}\left(\left|T^{*}\right|\right)} P_{\mathcal{R}(T T)} U|T|^{\frac{1}{2}} \\
& =|T|^{\frac{1}{2}} P_{\mathcal{R}(T T)} P_{\left.\mathcal{R}\left(\mid T^{*}\right)\right)} U|T|^{\frac{1}{2}} \\
& =|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}=\widetilde{T},
\end{aligned}
$$

and

$$
\begin{aligned}
S \widetilde{T} & =\left(|T|^{\dagger}\right)^{\frac{1}{2}} U^{*}\left(|T|^{\dagger}\right)^{\frac{1}{2}}|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}} \\
& =\left(|T|^{\dagger}\right)^{\frac{1}{2}} U^{*} P_{\mathcal{R}(T \mid)} U|T|^{\frac{1}{2}} \\
& =\left(|T|^{\dagger}\right)^{\frac{1}{2}} U^{*} P_{\mathcal{R}(\mid T)}\left|T^{*}\right| \frac{1}{2} U \\
& =\left(|T|^{\dagger}\right)^{\frac{1}{2}} U^{*} \left\lvert\, T^{*} \frac{1}{2} \frac{1}{2} P_{\mathcal{R}(|T|)} U\right. \\
& =\left(|T|^{\dagger}\right)^{\frac{1}{2}}|T|^{\frac{1}{2}} U^{*} P_{\mathcal{R}(T T)} U \\
& =P_{\mathcal{R}(|T|)} U^{*} P_{\mathcal{R}(|T|)} U=U^{*} P_{\mathcal{R}(T T)} U .
\end{aligned}
$$

By similar computation we have $\widetilde{T} S=P_{\mathcal{R}\left(\left|T^{*}\right|\right)} P_{\mathcal{R}(|T|)}$. Hence $\widetilde{T} S$ and \widetilde{T} are self-adjoint operators. From the uniqueness of Moore-Penrose inverse we have $\widetilde{T}^{\dagger}=S$.

In [11], Yamazaki introduce the notion of the *-Aluthge transform $\widetilde{T}^{(*)}$ of T by setting $\widetilde{T}^{(*)}=\left|T^{*}\right|^{\frac{1}{2}} U\left|T^{*}\right|^{\frac{1}{2}}$. With the motivation of this definition we define t-Aluthge transformation of T by setting $\widetilde{T^{(\dagger)}}:=\left(\widetilde{T^{\dagger}}\right)^{\dagger}$. In the following theorem we show that if $T \in \mathrm{CR}(\mathcal{H})$ is binormal, then the $*$-Aluthge and t-Aluthge transformations coincide.

Theorem 2.6. If $T \in C R(\mathcal{H})$ is binormal, then $\widetilde{T}^{(\dagger)}=\left|T^{*}\right|^{\frac{1}{2}} U\left|T^{*}\right|^{\frac{1}{2}}=\widetilde{T}^{(*)}$.

Proof. Since T is binormal, then we have

$$
\begin{aligned}
\widetilde{T}^{(*)} \widetilde{T}^{+} \widetilde{T}^{(*)} & =\left(\left|T^{\dagger}\right|^{\frac{1}{2}}\right)^{\dagger} U\left(\left|T^{\dagger}\right|^{\frac{1}{2}}\right)^{\dagger}\left|T^{\dagger}\right|^{\frac{1}{2}} U^{*}\left|T^{\dagger}\right|^{\frac{1}{2}}\left(\left|T^{\dagger}\right|^{\frac{1}{2}}\right)^{\dagger} U\left(\left|T^{\dagger}\right|^{\frac{1}{2}}\right)^{\dagger} \\
& =\left|T^{*}\right|^{\frac{1}{2}} U\left|T^{*}\right|^{\frac{1}{2}}\left|T^{\dagger}\right|^{\frac{1}{2}} U^{*}\left|T^{\dagger}\right|^{\frac{1}{2}}\left|T^{*}\right|^{\frac{1}{2}} U\left|T^{*}\right|^{\frac{1}{2}} \\
& =\left|T^{*}\right|^{\frac{1}{2}} U P_{\mathcal{R}\left(\mid T^{*}\right)} U^{*} P_{\mathcal{R}\left(\left|T^{*}\right|\right)} U\left|T^{*}\right|^{\frac{1}{2}} \\
& =\left|T^{*}\right|^{\frac{1}{2}} U P_{\mathcal{R}\left(\left|T^{*}\right|\right)} U^{*} U\left|T^{*}\right|^{\frac{1}{2}} \\
& =\left|T^{*}\right|^{\frac{1}{2}} U P_{\mathcal{R}\left(\left|T^{*}\right|\right)} P_{\mathcal{R}(|T|)}\left|T^{*}\right|^{\frac{1}{2}} \\
& =\left|T^{*}\right|^{\frac{1}{2}} U P_{\mathcal{R}(|T|)} P_{\mathcal{R}\left(\left|T^{*}\right|\right)\left|T^{*}\right|^{\frac{1}{2}}} \\
& =\left|T^{*}\right| \frac{1}{2} \\
& P_{\mathcal{R}(\mid T))}\left|T^{*}\right|^{\frac{1}{2}} \\
& =\left|T^{*}\right|^{\frac{1}{2}} U\left|T^{*}\right|^{\frac{1}{2}}=\widetilde{T}^{(*)},
\end{aligned}
$$

and

$$
\begin{aligned}
\widetilde{T^{\dagger}} \widetilde{T}^{(*)} T^{\dagger} & =\left|T^{\dagger}\right|^{\frac{1}{2}} U^{*}\left|T^{\dagger}\right|^{\frac{1}{2}}\left(\left|T^{\dagger}\right|^{\frac{1}{2}}\right)^{\dagger} U\left(\left|T^{\dagger}\right|^{\frac{1}{2}}\right)^{\dagger}\left|T^{\dagger}\right|^{\frac{1}{2}} U^{*}\left|T^{\dagger}\right|^{\frac{1}{2}} \\
& =\left|T^{\dagger}\right|^{\frac{1}{2}} U^{*} P_{\mathcal{R}\left(\mid T^{*}\right)} U P_{\mathcal{R}\left(\left|T^{*}\right|\right)} U^{*}\left|T^{\dagger}\right|^{\frac{1}{2}} \\
& =\left|T^{\dagger}\right|^{\frac{1}{2}} U^{*} U P_{\mathcal{R}\left(| |^{*} \mid\right)} U^{*}\left|T^{\dagger}\right|^{\frac{1}{2}} \\
& =\left|T^{\dagger}\right|^{\frac{1}{2}} P_{\mathcal{R}(|T|)} P_{\mathcal{R}\left(\left|T^{*}\right|\right)} U^{*}\left|T^{\dagger}\right|^{\frac{1}{2}} \\
& =\left|T^{\dagger}\right|^{\frac{1}{2}} P_{\mathcal{R}\left(\mid T^{* *}\right)} P_{\mathcal{R}(\mid T))} U^{*}\left|T^{\dagger}\right|^{\frac{1}{2}} \\
& =\left|T^{\dagger}\right|^{\frac{1}{2}} P_{\mathcal{R}\left(\mid T^{*}\right)} U^{*}\left|T^{\dagger}\right|^{\frac{1}{2}} \\
& =\left|T^{\dagger}\right|^{\frac{1}{2}} U^{*}\left|T^{\dagger}\right|^{\frac{1}{2}}=\widetilde{T^{\dagger}} .
\end{aligned}
$$

By similar computations we have $\widetilde{T^{\dagger}} \widetilde{T}^{(*)}=P_{\mathcal{R}(|T|)} P_{\mathcal{R}\left(\left|T^{*}\right|\right)}$ and $\widetilde{T^{(*)}} \widetilde{T^{\dagger}}=U P_{\mathcal{R}\left(\mid T^{*}\right)} U^{*}$. Hence $\widetilde{T^{\dagger}} \widetilde{T}^{(*)}$ and $\widetilde{T}^{(*)} \widetilde{T^{\dagger}}$ are self-adjoint operators. Thus, $\widetilde{T}^{(\dagger)}=\left(\widetilde{T}^{\dagger}\right)^{\dagger}=\widetilde{T}^{(*)}$.

The so-called reverse order law, which is one of the most important properties of the Moore-Penrose inverse that has been deeply studied, states that under which condition the equation ($\left.T_{1} T_{2}\right)^{\dagger}=T_{2}^{\dagger} T_{1}^{\dagger}$ holds (see [6]). In the following theorem we show that the reverse order law holds for $|T|$ and $\left|T^{*}\right|$ whenever $T \in \mathrm{CR}(\mathcal{H})$ is binormal.

Lemma 2.7. Let $T \in C R(\mathcal{H})$ be a binormal operator. Then $\left(|T|\left|T^{*}\right|\right)^{\dagger}=\left|T^{*}\right|^{\dagger}|T|^{\dagger}$.
Proof. Since T is a binormal operator, so by a modification of [5, Theorem 2], $P_{\left.\mathcal{R}\left(\mid T^{*}\right)\right)} P_{\mathcal{R}(|T|)}=P_{\mathcal{R}(\mid T))} P_{\left.\mathcal{R}\left(\mid T^{*}\right)\right)}$. Put $S=\left|T^{*}\right|^{\dagger}|T|^{\dagger}$. Then we have,

$$
\begin{aligned}
|T|\left|T^{*}\right| S|T|\left|T^{*}\right| & =|T| P_{\mathcal{R}\left(\mid T^{*}\right)} P_{\mathcal{R}(|T|)}\left|T^{*}\right| \\
& =|T| P_{\mathcal{R}(T \mid)} P_{\left.\mathcal{R}\left(\mid T^{*}\right)\right)}\left|T^{*}\right| \\
& =|T|\left|T^{*}\right|,
\end{aligned}
$$

$$
\begin{aligned}
S|T|\left|T^{*}\right| S & =\left|T^{*}\right|^{\dagger} P_{\mathcal{R}(|T|)} P_{\mathcal{R}\left(T^{*}\right) \mid}| |^{\dagger} \\
& =\left|T^{*}\right|^{\dagger} P_{\mathcal{R}\left(\left|T^{*}\right|\right)} P_{\mathcal{R}(T T))}| |^{\dagger} \\
& =S,
\end{aligned}
$$

$$
S|T|\left|T^{*}\right|=\left|T^{*}\right|^{\dagger} P_{\mathcal{R}(\mid T))}\left|T^{*}\right|
$$

$$
=\left|T^{*}\right|^{\dagger}\left|T^{*}\right| P_{\mathcal{R}(|T|)}
$$

$$
=P_{\mathcal{R}\left(\left|T^{*}\right|\right)} P_{\mathcal{R}(|T|),}
$$

and

$$
\begin{aligned}
\left|T \| T^{*}\right| S & =|T| P_{\left.\mathcal{R}\left(\mid T^{*}\right)\right)}|T|^{\dagger} \\
& =P_{\left.\mathcal{R}\left(\mid T^{*}\right)\right)}|T \| T|^{\dagger} \\
& =P_{\mathcal{R}\left(\left|T^{*}\right|\right)} P_{\mathcal{R}(|T|)} .
\end{aligned}
$$

Consequently, $\left(|T|\left|T^{*}\right|\right)^{\dagger}=S$.
Theorem 2.8. Let $T \in C R(\mathcal{H})$. Then T is binormal if and only if T^{\dagger} is so.

Proof. Suppose $T T^{*}$ commutes with $T^{*} T$. Then by Lemma 2.7, we have $\left|T^{*}\right|^{\dagger}|T|^{\dagger}=|T|^{\dagger}\left|T^{*}\right|^{\dagger}$. Since $|T|^{\dagger}=$ $\left|\left(T^{*}\right)^{\dagger}\right|=\left|\left(T^{\dagger}\right)^{*}\right|$, it follows that $\left|T^{\dagger}\left\|\left(T^{\dagger}\right)^{*}\left|=\left|\left(T^{\dagger}\right)^{*} \| T^{\dagger}\right|\right.\right.\right.$. Conversely, since $\mathcal{R}\left(T^{\dagger}\right)=\mathcal{R}\left(T^{*}\right)$ and $\left(T^{\dagger}\right)^{\dagger}=T$, then $T^{+} \in \mathrm{CR}(\mathcal{H})$ and so the converse also holds.

In [7], the authors obtained the polar decomposition of $\widetilde{T}=V U|\widetilde{T}|$, when $T=U|T|$ and $|T|^{\frac{1}{2}}\left|T^{*}\right|^{\frac{1}{2}}=$ $\left.\left.V\left||T|^{\frac{1}{2}}\right| T^{*}\right|^{\frac{1}{2}} \right\rvert\,$. In the following theorem we obtain the polar decomposition of the powers of \widetilde{T}.

Theorem 2.9. Let $n \in \mathbb{N}$ and $T \in B(\mathcal{H})$. Then $(\widetilde{T})^{n}=|T|^{\frac{1}{2}} T^{n-1} U|T|^{\frac{1}{2}}$. Moreover, $\left.i f|T|^{\frac{1}{2}} T^{n-1}\left|T^{*}\right|^{\frac{1}{2}}=\left.W_{n-1}| | T\right|^{\frac{1}{2}} T^{n-1}\left|T^{*}\right| \frac{1}{2} \right\rvert\,$ is the polar decomposition, then $(\widetilde{T})^{n}=W_{n-1} U\left|(\widetilde{T})^{n}\right|$ is the polar decomposition of $(\widetilde{T})^{n}$.

Proof. By direct computations we obtain that

Also, by the polar decomposition $\left.|T|^{\frac{1}{2}} T^{n-1}\left|T^{*}\right|^{\frac{1}{2}}=\left.W_{n-1}| | T\right|^{\frac{1}{2}} T^{n-1}\left|T^{*}\right|^{\frac{1}{2}} \right\rvert\,$ we get that

$$
\begin{aligned}
W_{n-1} U\left|(\widetilde{T})^{n}\right| & =W_{n-1} U\left|(\widetilde{T})^{n}\right| U U^{*} \\
& \left.=\left.W_{n-1}| | T\right|^{\frac{1}{2}} T^{n-1}\left|T^{*}\right|^{\frac{1}{2}} \right\rvert\, U \\
& =|T|^{\frac{1}{2}} T^{n-1}\left|T^{*}\right|^{\frac{1}{2}} U \\
& =|T|^{\frac{1}{2}} T^{n-1} U|T|^{\frac{1}{2}} U \\
& =(\widetilde{T})^{n} .
\end{aligned}
$$

Now, we show that the kernel condition $\mathcal{N}\left((\widetilde{T})^{n}\right)=\mathcal{N}\left(W_{n-1} U\right)$ holds. Let $f \in \mathcal{N}\left(W_{n-1} U\right)$. Since by hypothesis $\left.|T|^{\frac{1}{2}} T^{n-1}\left|T^{*}\right|^{\frac{1}{2}}=\left.W_{n-1}| | T\right|^{\frac{1}{2}} T^{n-1}\left|T^{*}\right|^{\frac{1}{2}} \right\rvert\,$ is the polar decomposition and $\mathcal{N}\left(W_{n-1}\right)=\mathcal{N}\left(|T|^{\frac{1}{2}} T^{n-1}\left|T^{*}\right|^{\frac{1}{2}}\right)$, we obtain that $(\widetilde{T})^{n}(f)=|T|^{\frac{1}{2}} T^{n-1}\left|T^{*}\right|^{\frac{1}{2}} U(f)=0$. Hence $\mathcal{N}\left(W_{n-1} U\right) \subseteq \mathcal{N}\left((\widetilde{T})^{n}\right)$. Let $f \in \mathcal{N}\left((\widetilde{T})^{n}\right)$. Then $|T|^{\frac{1}{2}} T^{n-1}\left|T^{*}\right|^{\frac{1}{2}} U(f)=0$, and so $W_{n-1} U(f)=0$. Consequently, $\left.\mathcal{N}(\widetilde{T})^{n}\right) \subseteq \mathcal{N}\left(W_{n-1} U\right)$.

Corollary 2.10. Let $n \in \mathbb{N}$ and $T \in B(\mathcal{H})$. Then \widetilde{T} is centered if and only if for each positive integer $n, W_{n-1} U=$ $\left(W_{0} U\right)^{n}$. In particular, if T is a centered operator, then \widetilde{T} is centered if and only if $W_{n-1} U=U^{n}$.

Proof. By the definition \widetilde{T} is centered if and only if for each positive integer $n, W_{n-1} U=\left(W_{0} U\right)^{n}$. If T is centered then T is binormal, and so $W_{0}=I$. Thus we conclude that \widetilde{T} is centered if and only if $W_{n-1} U=U^{n}$.

Lemma 2.11. Let $T=U|T| \in B(\mathcal{H})$ be a quasinormal operator. Then the following assertions hold.
(i) $|T|^{\frac{1}{2}} T=T|T|^{\frac{1}{2}}$.
(ii) $\left|T^{2}\right|=|T|^{2}$.
(iii) $|T|^{n} U|T|=U|T|^{n+1}$, for each $n \in \mathbb{N}$.
(iv) $\left|T^{*}\right|^{\frac{1}{2}}|T|^{\frac{3}{2}}=|T|^{\frac{3}{2}}\left|T^{*}\right|^{\frac{1}{2}}$.
(v) T is centered so the partial isometry part in T^{n} is U^{n}.
(vi) $\left(T^{n}\right)^{*} T^{n}=\left(T^{*} T\right)^{n}$ and hence $\left|T^{n}\right|=|T|^{n}$, for each $n \in \mathbb{N}$.

Proof. (i) From $|T|^{2} T=T^{*} T T=T T^{*} T=T|T|^{2}$, we deduce that $|T| T=T|T|$ and hence $|T|^{\frac{1}{2}} T=T|T|^{\frac{1}{2}}$.
(ii) Since $T^{*} T^{*} T T=T^{*} T T^{*} T$, so $\left(T^{*}\right)^{2} T^{2}=\left(T^{*} T\right)^{2}$ and hence $\left|T^{2}\right|^{2}=\left(|T|^{2}\right)^{2}$. Consequently, $\left|T^{2}\right|=|T|^{2}$.
(iii) For $n=2$ we have $|T|^{2} U|T|=|T||T| U|T|=|T| U|T|^{2}=U|T|^{3}$. Let for positive integer $n,|T|^{n} U|T|=$ $U|T|^{n+1}$. Then

$$
\begin{aligned}
|T|^{n+1} U|T| & =|T \| T T|^{n} U|T| \\
& =|T| U|T|^{n} \\
& =U|T|^{n+1} .
\end{aligned}
$$

(iv) Since $T^{*}|T|=|T| T^{*}$, so $T T^{*}|T|=T|T| T^{*}=|T| T T^{*}$. This means $\left|T^{*}\right|^{2}|T|=|T|\left|T^{*}\right|^{2}$ and hence $\left|T^{*}\right||T|=|T|\left|T^{*}\right|$. Therefore, $\left|T^{*}\right||T|^{3}=\left.|T|\left|T^{*}\right| T\right|^{2}=|T|^{3}\left|T^{*}\right|$ and so $\left|T^{*}\right|^{\frac{1}{2}}|T|^{\frac{3}{2}}=|T|^{\frac{3}{2}}\left|T^{*}\right|^{\frac{1}{2}}$.

Theorem 2.12. Let $T=U|T| \in B(\mathcal{H})$ be a quasinormal operator. Suppose that for each $n \in \mathbb{N},|T|^{\frac{1}{2}} T^{n}\left|T^{*}\right|^{\frac{1}{2}}=$ $\left.\left.W_{n}| | T\right|^{\frac{1}{2}} T^{n}\left|T^{*}\right|^{\frac{1}{2}} \right\rvert\,$ is the polar decomposition. Then $W_{n}=U^{n}$.

Proof. By using Lemma 2.11, we have

$$
\begin{aligned}
\left|T^{*}\right|^{\frac{1}{2}}\left(T^{n}\right)^{*}|T|^{\frac{1}{2}}|T|^{\frac{1}{2}} T^{n}\left|T^{*}\right|^{\frac{1}{2}} & =\left|T^{*}\right|^{\frac{1}{2}}\left(T^{n}\right)^{*}|T| T^{n}\left|T^{*}\right|^{\frac{1}{2}} \\
& =\left|T^{*}\right|^{\frac{1}{2}}\left(T^{n}\right)^{*} T^{n}|T|\left|T^{*}\right|^{\frac{1}{2}} \\
& =\left|T^{*}\right|^{\frac{1}{2}}\left(T^{*} T\right)^{n}|T|\left|T^{*}\right|^{\frac{1}{2}} \\
& =\left|T^{*}\right|^{\frac{1}{2}}|T|^{2 n+1}\left|T^{*}\right|^{\frac{1}{2}} \\
& =\left|T^{*}\right|^{\frac{1}{2}}|T|^{\frac{2 n+1}{2}}|T|^{\frac{2 n+1}{2}}\left|T^{*}\right|^{\frac{1}{2}} \\
& =\left(\left|T^{*}\right|^{\frac{1}{2}}|T|^{\frac{2 n+1}{2}}\right)^{2} .
\end{aligned}
$$

This implies that $\left.\left||T|^{\frac{1}{2}} T^{n}\right| T^{*} \frac{1}{2}\left|=|T|^{\frac{2 n+1}{2}}\right| T^{*}\right|^{\frac{1}{2}}$. Also we have $|T|^{\frac{1}{2}} T^{n}\left|T^{*}\right|^{\frac{1}{2}}=T^{n}|T|^{\frac{1}{2}}\left|T^{*}\right|^{\frac{1}{2}}=U^{n}|T|^{n}|T|^{\frac{1}{2}}\left|T^{*}\right|^{\frac{1}{2}}=$ $U^{n}|T|^{\frac{2 n+1}{2}}\left|T^{*}\right|^{\frac{1}{2}}$. Now, if $|T|^{\frac{1}{2}} T^{n}\left|T^{*}\right|^{\frac{1}{2}}=\left.\left.W_{n}| | T\right|^{\frac{1}{2}} T^{n}\left|T^{*}\right|^{\frac{1}{2}}\left|=W_{n}\right| T\right|^{\frac{2 n+1}{2}}\left|T^{*}\right|^{\frac{1}{2}}$ is the polar decomposition, then we obtain $W_{n}=U^{n}$.

Corollary 2.13. If $T \in B(\mathcal{H})$ is quasinormal, then \widetilde{T} is centered.
Example 2.14. Let (X, Σ, μ) be a σ-finite measure space and let $\varphi: X \rightarrow X$ be a measurable transformation such that $\mu \circ \varphi^{-1}$ is absolutely continuous with respect to μ. Put $h=d \mu \circ \varphi^{-1} / d \mu$. Let $C_{\varphi}: f \mapsto f \circ \varphi$ be a bounded composition operator on $L^{2}(\Sigma)$ with polar decomposition $C_{\varphi}=U\left|C_{\varphi}\right|$. It is easy to see that $U=M_{1 / \sqrt{h \circ \varphi}} C_{\varphi}$ and $\left|C_{\varphi}\right|=M_{\sqrt{h}}$. It follows that for each $f \in L^{2}(\Sigma)$,

$$
\widetilde{C_{\varphi}}(f)=\sqrt[4]{\frac{h}{h \circ \varphi}} f \circ \varphi
$$

Note that $h \circ \varphi>0$ almost everywhere. Now, if $C_{\varphi} \in C R\left(L^{2}(\Sigma)\right)$ then it is easy to check that

$$
C_{\varphi}^{+}(f)=\chi_{\sigma(h)} E(f) \circ \varphi^{-1}, \quad f \in L^{2}(\Sigma)
$$

where E is the conditional expectation operator with respect to $\varphi^{-1}(\Sigma)$. We can write $C_{\varphi}^{\dagger}=M_{\frac{x_{\sigma}(h)}{h}} C_{\varphi}^{*}$, where $C_{\varphi}^{*}(f)=h E(f) \circ \varphi^{-1}$. For more details on composition and conditional expectation operators see [2] and references
therein. Let $\left.\left|C_{\varphi}\right|^{\frac{1}{2}}\left|C_{\varphi}^{*}\right|^{\frac{1}{2}}=V \|\left. C_{\varphi}\right|^{\frac{1}{2}}\left|C_{\varphi}^{*}\right|^{\frac{1}{2}} \right\rvert\,$ be the polar decomposition of $\left|C_{\varphi}\right|^{\frac{1}{2}}\left|C_{\varphi}^{*}\right|^{\frac{1}{2}}$. Then straightforward calculations show that

$$
\begin{gathered}
V(f)=\frac{\sqrt[4]{h}}{\sqrt{E(\sqrt{h \circ \varphi})}} f \\
\left.\|\left. C_{\varphi}\right|^{\frac{1}{2}}\left|C_{\varphi}^{*}\right|^{\frac{1}{2}} \right\rvert\,(f)=\sqrt[4]{h \circ \varphi} \sqrt{E(\sqrt{h})} E(f)
\end{gathered}
$$

Hence by Proposition 2.4, $\left.\widetilde{C_{\varphi}}=V U \|\left. C_{\varphi}\right|^{\frac{1}{2}}\left|C_{\varphi}^{*}\right|^{\frac{1}{2}} \right\rvert\,$ is the polar decomposition of $\widetilde{C_{\varphi}}$. In [4], Embry-Wardrop and Lambert proved that the composition operator $C_{\varphi} \in B\left(L^{2}(\Sigma)\right)$ is centered if and only if h is Σ_{∞}-measurable, where $\Sigma_{\infty}=\cap_{n=1}^{\infty} \varphi^{-n}(\Sigma)$. Now, by this fact and Corollary 2.3, C_{φ}^{\dagger} is centered if and only if h is Σ_{∞}-measurable. Recall that C_{φ} is quasinormal if and only if $h=h \circ \varphi$ (see [10]). So for each $n \in \mathbb{N}, h=h \circ \varphi^{n}$ and so $h \in \Sigma_{\infty}$. In this case we have $\widetilde{C_{\varphi}}=C_{\varphi}$, and hence $\widetilde{C_{\varphi}}$ is centered.

Acknowledgment

The authors would like to acknowledge the valuable contribution of the referee regarding the improvement of the quality of the paper.

References

[1] A. Aluthge, On p-hyponormal operators for $0<p<1$, Integral Equations and Operator Theory 13 (1990), 307-315.
[2] C. Burnap, I. Jung and A. Lambert, Separating partial normality classes with composition operators, Journal of Operator Theory 53 (2005), 381-397.
[3] S. L. Campbell, Linear operators for which $T^{*} T$ and $T T^{*}$ commute, Proceedings of the American Mathematical Society 34 (1972), 177-180.
[4] M. Embry-Wardrop and A. Lambert, Measurable transformations and centred composition operators, Proceedings of the Royal Irish Academy. Section A 90 (1990), 165-172.
[5] T. Furuta, On the polar decomposition of an operator, Acta Scientiarum Mathematicarum (Szeged) 46 (1983), 261-268.
[6] T. N. E. Greville, Note on the generalized inverse of a matrix product, SIAM Review 8 (1966), 518-521.
[7] M. Ito, T. Yamazaki and M. Yanagida, On the polar decomposition of the Aluthge transformation and related results, Journal of Operator Theory 51 (2004), 303-319.
[8] B. B. Morrel and P. S. Muhly, Centered operators, Studia Mathematica 51 (1974), 251-263.
[9] V. Paulsen, C. Pearcy, S. Petrović, On centered and weakly centered operators, Journal of Functional Analysis 128 (1995), 87-101.
[10] R. K. Singh and B. S. Komal, Composition operators, Bulletin of the Australian Mathematical Society 18 (1978), 439-446.
[11] T. Yamazaki, Parallelisms between Aluthge transformation and powers of operators, Acta Scientiarum Mathematicarum(Szeged) 67 (2001), 809-820.

[^0]: 2010 Mathematics Subject Classification. Primary 47B33; Secondary 47B38.
 Keywords. Aluthge transform, Moore-Penrose inverse, binormal operator, centered operators.
 Received: 05 May 2016; Revised: 04 July 2016; Accepted: 30 December 2016
 Communicated by Dragana Cvetković Ilić
 Email addresses: mjabbar@tabrizu.ac.ir (M. R. Jabbarzadeh), m_jafari@tabrizu.ac.ir (M. Jafari Bakhshkandi)

