Filomat 31:20 (2017), 6441–6448 https://doi.org/10.2298/FIL1720441J

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Centered Operators Via Moore-Penrose Inverse and Aluthge Transformations

M. R. Jabbarzadeh^a, M. Jafari Bakhshkandi^a

^aFaculty of Mathematical Sciences, University of Tabriz, P. O. Box: 5166615648, Tabriz, Iran

Abstract. In this paper, we obtain some characterizations of centered and binormal operators via Moore-Penrose inverse and Aluthge transform.

1. Introduction and Preliminaries

Let $B(\mathcal{H})$ denote the C^* -algebra of all bounded linear operators on a complex Hilbert space \mathcal{H} . We write $\mathcal{N}(T)$ and $\mathcal{R}(T)$ for the null-space and the range of an operator $T \in B(\mathcal{H})$, respectively. Recall that for $T \in B(\mathcal{H})$, there is a unique factorization T = U|T|, where $\mathcal{N}(T) = \mathcal{N}(U) = \mathcal{N}(|T|)$, U is a partial isometry, i.e. $UU^*U = U$ and $|T| = (T^*T)^{1/2}$ is a positive operator. This factorization is called the polar decomposition of T. As a consequence, $U^*U|T| = |T|$. Also, it is a classical fact that the polar decomposition of T^* is $U^*|T|$, and so $UU^*|T^*| = |T^*|$.

In [8] Morrel and Muhly introduced the concept of a centered operator. An operator T on a Hilbert space \mathcal{H} is said to be centered if the doubly infinite sequence $\{T^nT^{*n}, T^{*m}T^m : n, m \ge 0\}$ consists of mutually commuting operators. It is shown in [4] that if T = U|T| is an operator on \mathcal{H} such that for each $n \in \mathbb{N}$, T^n has polar decomposition $U_n|T^n|$, then T is centered if and only if $U_n = U^n$ for each $n \in \mathbb{N}$.

Associated with $T \in B(\mathcal{H})$ there is a useful related operator $\widetilde{T} = |T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$, called the Aluthge transform of T as it has been studied by Aluthge in [1]. Binormality of operators was defined by Campbell in [3]. An operator T is said to be binormal or weakly centered [9], if $[|T|, |T^*|] = 0$, where [A, B] = AB - BA for operators A and B. Let $T \in B(\mathcal{H})$ have closed range. Then the Moore-Penrose inverse of T, denoted by T^+ , is the unique operator $T^+ \in B(\mathcal{H})$ which satisfies $TT^+T = T$, $T^+TT^+ = T^+$, $(TT^+)^* = TT^+ = P_{\mathcal{R}(T^+)}$, where the $P_{\mathcal{M}}$ means the orthogonal projection onto a closed subspace \mathcal{M} .

In this paper, we study the centered and binormal bounded linear operators on a Hilbert space \mathcal{H} via Moore-Penrose inverse and Aluthge transformation. The work is organized as follows. In section 2, firstly, we give the polar decomposition of T^+ , and then we show that T^+ is centered if and only if T is centered. Secondly, we introduce the notion \dagger -Aluthge transformation $\widetilde{T}^{(\dagger)}$ of T by setting $\widetilde{T}^{(\dagger)} = (\widetilde{T}^{\dagger})^{\dagger}$. We show

²⁰¹⁰ Mathematics Subject Classification. Primary 47B33; Secondary 47B38.

Keywords. Aluthge transform, Moore-Penrose inverse, binormal operator, centered operators.

Received: 05 May 2016; Revised: 04 July 2016; Accepted: 30 December 2016

Communicated by Dragana Cvetković Ilić

Email addresses: mjabbar@tabrizu.ac.ir (M. R. Jabbarzadeh), m_jafari@tabrizu.ac.ir (M. Jafari Bakhshkandi)

that if *T* is a closed range binormal operator, then the *-Aluthge and †-Aluthge transformations (see [11]) coincide. Also, we show that the reverse order law holds for |T| and $|T^*|$; i.e. $(|T||T^*|)^{\dagger} = |T^*|^{\dagger}|T|^{\dagger}$, whenever *T* is a closed range binormal operator. Finally, we give the polar decomposition of powers of \tilde{T} and then we find some conditions under which \tilde{T} be centered. Also we show that if *T* is quasinormal operator, then \tilde{T} is centered.

2. On Some Characterizations of T^{\dagger}

Let $CR(\mathcal{H})$ be the subset of all bounded linear operators on \mathcal{H} with closed range. In the following proposition we obtain the polar decomposition of T^{\dagger} . The following lemma is significant for amount of consideration for the next results and computations.

Lemma 2.1. Let $T \in CR(\mathcal{H})$. Then the following assertions hold.

(a) If $T \ge 0$, then $T^{\dagger} \ge 0$, $\mathcal{N}(T) = \mathcal{N}(T^{\frac{1}{2}})$, $T^{\frac{1}{2}} \in CR(\mathcal{H})$ and $(T^{\dagger})^{\frac{1}{2}} = (T^{\frac{1}{2}})^{\dagger}$. (b) $|T^{\dagger}| = |T^{*}|^{\dagger}$. (c) $\mathcal{R}(|T|) = \mathcal{R}(|T^{\frac{1}{2}})$ and $\mathcal{R}(|T^{\dagger}|) = \mathcal{R}(|T^{*}|) = \mathcal{R}(|T^{*}|^{\frac{1}{2}})$. (d) If $T = T^{*}$, then $TP_{\mathcal{R}(T)} = T$. (e) $|T^{\dagger}|^{\frac{1}{2}} = (|T^{*}|^{\frac{1}{2}})^{\dagger}$, $|T^{\dagger}|^{\frac{1}{2}}P_{\mathcal{R}(|T^{*}|)} = |T^{\dagger}|^{\frac{1}{2}}$ and $|T^{\dagger}|^{\frac{1}{2}}|T^{*}|^{\frac{1}{2}} = P_{\mathcal{R}(|T^{\dagger}|)}$.

Proof. (a) Let $f \in \mathcal{H}$. Then $\langle T^{\dagger}f, f \rangle = \langle T^{\dagger}TT^{\dagger}f, f \rangle = \langle TT^{\dagger}f, T^{\dagger}f \rangle \ge 0$, and so $\langle T^{\dagger}f, f \rangle \ge 0$. Also from $\langle Tf, f \rangle = \langle T^{\frac{1}{2}}f, T^{\frac{1}{2}}f \rangle = ||T^{\frac{1}{2}}f||$ we deduce that $T^{\frac{1}{2}}f = 0$ if and only if Tf = 0. Now, from this and the inequality $||Tf|| = ||T^{\frac{1}{2}}(T^{\frac{1}{2}}f)|| \le ||T^{\frac{1}{2}}||||T^{\frac{1}{2}}f||$, we conclude that the range of $T^{\frac{1}{2}}$ is also closed. Finally, Since for each $n \in \mathbb{N}$, $(T^{n})^{\dagger} = (T^{\dagger})^{n}$, we have $(T^{\frac{1}{2}})^{\dagger} = ((T^{\frac{1}{2}})^{\dagger})^{2} = ((T^{\frac{1}{2}})^{2})^{\dagger} = T^{\dagger} = ((T^{\dagger})^{\frac{1}{2}})^{2}$.

(b) It is sufficient to show that $(TT^*)^{\dagger} = (T^*)^{\dagger}T^{\dagger}$. Since $\mathcal{R}(T^{\dagger}) = \mathcal{R}(T^*)$, so $TT^*(T^*)^{\dagger}T^{\dagger}TT^* = TP_{\mathcal{R}(T^*)}P_{\mathcal{R}(T^*)}T^* = TT^*$ and

$$(T^*)^{\dagger}T^{\dagger}TT^*(T^*)^{\dagger}T^{\dagger} = (T^*)^{\dagger}P_{\mathcal{R}(T^*)}P_{\mathcal{R}(T^*)}T^{\dagger} = (T^*)^{\dagger}T^{\dagger}.$$

Hence, $|T^{\dagger}| = ((T^{*})^{\dagger}T^{\dagger})^{\frac{1}{2}} = ((TT^{*})^{\dagger})^{\frac{1}{2}} = ((TT^{*})^{\frac{1}{2}})^{\dagger} = |T^{*}|^{\dagger}.$

(c) By part (a), $\mathcal{N}(|T^*|) = \mathcal{N}(|T^*|^{\frac{1}{2}})$. Hence it follows that $\overline{\mathcal{R}(|T^*|)} = \mathcal{R}(|T^*|^{\frac{1}{2}})$. By hypotheses $\mathcal{R}(TT^*)$, $\mathcal{R}(|T^*|)$ and so $\mathcal{R}(|T^*|^{\frac{1}{2}})$ are closed. Thus $\mathcal{R}(|T^*|) = \mathcal{R}(|T^*|^{\frac{1}{2}})$. The equality $\mathcal{R}(|T^*|) = \mathcal{R}(|T^*|)$ follows from (b).

(d) Since $\mathcal{N}(T) = \mathcal{N}(T^*) = \mathcal{R}(T)^{\perp}$, hence $\mathcal{H} = \mathcal{R}(T) \oplus \mathcal{R}(T)^{\perp}$. So for each $f \in \mathcal{H}$ there exists a unique $g \in \mathcal{R}(T)$ and a unique $h \in \mathcal{R}(T)^{\perp}$ such that f = g + h. It follows that $TP_{\mathcal{R}(T)}(f) = T(g) = T(g + h) = T(f)$.

(e) It follows from the previous parts. \Box

Proposition 2.2. Let U|T| be the polar decomposition of an operator $T \in CR(\mathcal{H})$. Then $T^{\dagger} = U^*|T^*|^{\dagger} = U^*|T^{\dagger}|$ is the polar decomposition for T^{\dagger} and hence the Aluthge transformation of T^{\dagger} is $|T^{\dagger}|^{\frac{1}{2}}U^*|T^{\dagger}|^{\frac{1}{2}}$.

Proof. Put $S = |T^*|^{\dagger} U$. Since $\mathcal{R}(U) = \mathcal{R}(T) = \mathcal{R}(|T^*|)$ and $\mathcal{R}(|T^*|)^{\perp} = \mathcal{N}(|T^*|)$, so $\mathcal{R}(S) = \mathcal{R}(U) = \mathcal{R}(|T^*|)$. Moreover, we have

 $T^*ST^* = U^*|T^*|(|T^*|^{\dagger}U)U^*|T^*|$ = U^*|T^*||T^*|^{\dagger}|T^*| = U^*|T^*| = T^*,

```
ST^*S = |T^*|^{\dagger} (UU^*|T^*|)|T^*|^{\dagger} U
= |T^*|^{\dagger}|T^*||T^*|^{\dagger} U
= |T^*|^{\dagger} U = S,
T^*S = U^*|T^*||T^*|^{\dagger} U
= U^*P_{\mathcal{R}(|T^*)} U
= U^* U
= P_{\mathcal{R}(T^*)},
```

and

$$\begin{split} ST^* &= |T^*|^{\dagger} UU^* |T^*| \\ &= |T^*|^{\dagger} P_{\mathcal{R}(|T^*|)} |T^*| \\ &= |T^*|^{\dagger} |T^*| \\ &= P_{\mathcal{R}(|T^*|^{\dagger})} = P_{\mathcal{R}(|T^*|)} = P_{\mathcal{R}(S)}. \end{split}$$

These equalities show that $(T^{\dagger})^* = (T^*)^{\dagger} = S$, and hence $T^{\dagger} = S^* = U^*|T^*|^{\dagger} = U^*|T^{\dagger}|$ is the polar decomposition for T^{\dagger} . Thus, the Aluthge transformation of T^{\dagger} is $|T^{\dagger}|^{\frac{1}{2}}U^*|T^{\dagger}|^{\frac{1}{2}}$. \Box

Corollary 2.3. Let $T \in CR(\mathcal{H})$. Then T^{\dagger} is centered if and only if T is centered.

Proof. By Proposition 2.2, $U_n|T^n|$ is the polar decomposition of T^n if and only if $U_n^*|(T^*)^n|^{\dagger}$ is the polar decomposition of $(T^{\dagger})^n$, for each $n \in \mathbb{N}$. Now, the desired conclusion follows from the Morrel-Muhly Theorem [8]. \Box

Proposition 2.4. Let $T = U|T| \in B(\mathcal{H})$ and $|T|^{\frac{1}{2}}|T^*|^{\frac{1}{2}} = V||T|^{\frac{1}{2}}|T^*|^{\frac{1}{2}}|$ be the polar decompositions. Suppose that $\widetilde{T} \in CR(\mathcal{H})$, then $\widetilde{T}^{\dagger} = U^*V^*|\widetilde{T}^{\dagger}| = U^*(|T^*|^{\frac{1}{2}}|T|^{\frac{1}{2}})^{\dagger}$ is the polar decomposition.

Proof. It is sufficient to show that $\widetilde{T} = VU|\widetilde{T}|$ is the polar decomposition. This has been proved in [7, Theorem 2.1]. Here we give a new proof. Since $U|T|^{\frac{1}{2}} = |T^*|^{\frac{1}{2}}U$, we obtain $(\widetilde{T})^* = |T|^{\frac{1}{2}}U^*|T|^{\frac{1}{2}} = U^*|T^*|^{\frac{1}{2}}|T|^{\frac{1}{2}} = U^*V^*||T^*|^{\frac{1}{2}}|T|^{\frac{1}{2}}|^2 = |T|^{\frac{1}{2}}|T^*||T|^{\frac{1}{2}} = (|T|^{\frac{1}{2}}U||T|^{\frac{1}{2}})(|T|^{\frac{1}{2}}U^*||T|^{\frac{1}{2}}) = |(\widetilde{T})^*|^2$. Hence $(\widetilde{T})^* = U^*V^*|(\widetilde{T})^*|$. Also it is easy to check that $(U^*V^*)(VU)(U^*V^*) = U^*V^*$ and $\mathcal{N}((\widetilde{T})^*) = \mathcal{N}(U^*V^*)$. Hence $\widetilde{T} = VU|\widetilde{T}|$ is the polar decomposition. By using Proposition 2.2, we have that $\widetilde{T}^* = U^*V^*|\widetilde{T}^*| = U^*(|T^*|^{\frac{1}{2}}|T|^{\frac{1}{2}}|)^{\frac{1}{2}}$ is the polar decomposition. \Box

Theorem 2.5. If $T \in CR(\mathcal{H})$ is binormal, then $\widetilde{T}^{\dagger} = (|T|^{\dagger})^{\frac{1}{2}} U^* (|T|^{\dagger})^{\frac{1}{2}}$.

Proof. First, we note that by a modification of [5, Theorem 2] we obtain

 $P_{\mathcal{N}(|T|)^{\perp}}P_{\mathcal{N}(|T^*|)^{\perp}} = P_{\mathcal{N}(|T^*|)^{\perp}}P_{\mathcal{N}(|T|)^{\perp}}.$

Since for each $0 \le A \in B(\mathcal{H})$, $\overline{\mathcal{R}(A)} = \mathcal{N}(A)^{\perp}$, this implies that

 $P_{\mathcal{R}(|T|)}P_{\mathcal{R}(|T^*|)} = P_{\mathcal{R}(|T^*|)}P_{\mathcal{R}(|T|)}.$

Put $S = (|T|^{\dagger})^{\frac{1}{2}} U^* (|T|^{\dagger})^{\frac{1}{2}}$. Then we have

$$\begin{split} \widetilde{STS} &= (|T|^{\dagger})^{\frac{1}{2}} U^{*} (|T|^{\dagger})^{\frac{1}{2}} |T|^{\frac{1}{2}} U|T|^{\frac{1}{2}} (|T|^{\dagger})^{\frac{1}{2}} U^{*} (|T|^{\dagger})^{\frac{1}{2}} \\ &= (|T|^{\dagger})^{\frac{1}{2}} U^{*} P_{\mathcal{R}(|T|)} U P_{\mathcal{R}(|T|)} U^{*} (|T|^{\dagger})^{\frac{1}{2}} \\ &= (|T|^{\dagger})^{\frac{1}{2}} U^{*} P_{\mathcal{R}(|T|)} U U^{*} (|T|^{\dagger})^{\frac{1}{2}} \\ &= (|T|^{\dagger})^{\frac{1}{2}} U^{*} P_{\mathcal{R}(|T|)} P_{\mathcal{R}(|T^{*}|)} (|T|^{\dagger})^{\frac{1}{2}} \\ &= (|T|^{\dagger})^{\frac{1}{2}} U^{*} P_{\mathcal{R}(|T^{*}|)} P_{\mathcal{R}(|T|)} (|T|^{\dagger})^{\frac{1}{2}} \\ &= (|T|^{\dagger})^{\frac{1}{2}} U^{*} (|T|^{\dagger})^{\frac{1}{2}} = S, \end{split}$$

$$\begin{split} \widetilde{T}S\widetilde{T} &= |T|^{\frac{1}{2}} U|T|^{\frac{1}{2}} (|T|^{\dagger})^{\frac{1}{2}} U^* (|T|^{\dagger})^{\frac{1}{2}} |T|^{\frac{1}{2}} U|T|^{\frac{1}{2}} \\ &= |T|^{\frac{1}{2}} UP_{\mathcal{R}(|T|)} U^* P_{\mathcal{R}(|T|)} U|T|^{\frac{1}{2}} \\ &= |T|^{\frac{1}{2}} UU^* P_{\mathcal{R}(|T|)} U|T|^{\frac{1}{2}} \\ &= |T|^{\frac{1}{2}} P_{\mathcal{R}(|T^*|)} P_{\mathcal{R}(|T|)} U|T|^{\frac{1}{2}} \\ &= |T|^{\frac{1}{2}} P_{\mathcal{R}(|T|)} P_{\mathcal{R}(|T^*|)} U|T|^{\frac{1}{2}} \\ &= |T|^{\frac{1}{2}} U|T|^{\frac{1}{2}} = \widetilde{T}, \end{split}$$

and

$$\begin{split} S\widetilde{T} &= (|T|^{\dagger})^{\frac{1}{2}} U^{*} (|T|^{\dagger})^{\frac{1}{2}} |T|^{\frac{1}{2}} U|T|^{\frac{1}{2}} \\ &= (|T|^{\dagger})^{\frac{1}{2}} U^{*} P_{\mathcal{R}(|T|)} U|T|^{\frac{1}{2}} \\ &= (|T|^{\dagger})^{\frac{1}{2}} U^{*} P_{\mathcal{R}(|T|)} |T^{*}|^{\frac{1}{2}} U \\ &= (|T|^{\dagger})^{\frac{1}{2}} U^{*} |T^{*}|^{\frac{1}{2}} P_{\mathcal{R}(|T|)} U \\ &= (|T|^{\dagger})^{\frac{1}{2}} |T|^{\frac{1}{2}} U^{*} P_{\mathcal{R}(|T|)} U \\ &= P_{\mathcal{R}(|T|)} U^{*} P_{\mathcal{R}(|T|)} U = U^{*} P_{\mathcal{R}(|T|)} U. \end{split}$$

By similar computation we have $\widetilde{T}S = P_{\mathcal{R}(|T^*|)}P_{\mathcal{R}(|T|)}$. Hence $\widetilde{T}S$ and $S\widetilde{T}$ are self-adjoint operators. From the uniqueness of Moore-Penrose inverse we have $\widetilde{T}^{\dagger} = S$. \Box

In [11], Yamazaki introduce the notion of the *-Aluthge transform $\widetilde{T}^{(*)}$ of T by setting $\widetilde{T}^{(*)} = |T^*|^{\frac{1}{2}} U|T^*|^{\frac{1}{2}}$. With the motivation of this definition we define †-Aluthge transformation of T by setting $\widetilde{T}^{(\dagger)} := (\widetilde{T}^{\dagger})^{\dagger}$. In the following theorem we show that if $T \in CR(\mathcal{H})$ is binormal, then the *-Aluthge and †-Aluthge transformations coincide.

Theorem 2.6. If $T \in CR(\mathcal{H})$ is binormal, then $\widetilde{T}^{(\dagger)} = |T^*|^{\frac{1}{2}} U|T^*|^{\frac{1}{2}} = \widetilde{T}^{(*)}$.

Proof. Since *T* is binormal, then we have

$$\begin{split} \widetilde{T}^{(*)}\widetilde{T^{+}}\widetilde{T}^{(*)} &= (|T^{+}|^{\frac{1}{2}})^{+}U(|T^{+}|^{\frac{1}{2}})^{+}|T^{+}|^{\frac{1}{2}}U^{*}|T^{+}|^{\frac{1}{2}}(|T^{+}|^{\frac{1}{2}})^{+}U(|T^{+}|^{\frac{1}{2}})^{+}\\ &= |T^{*}|^{\frac{1}{2}}U|T^{*}|^{\frac{1}{2}}|T^{+}|^{\frac{1}{2}}U^{*}|T^{+}|^{\frac{1}{2}}|T^{*}|^{\frac{1}{2}}U|T^{*}|^{\frac{1}{2}}\\ &= |T^{*}|^{\frac{1}{2}}UP_{\mathcal{R}(|T^{*}|)}U^{*}U|T^{*}|^{\frac{1}{2}}\\ &= |T^{*}|^{\frac{1}{2}}UP_{\mathcal{R}(|T^{*}|)}P_{\mathcal{R}(|T|)}|T^{*}|^{\frac{1}{2}}\\ &= |T^{*}|^{\frac{1}{2}}UP_{\mathcal{R}(|T|)}P_{\mathcal{R}(|T^{*}|)}|T^{*}|^{\frac{1}{2}}\\ &= |T^{*}|^{\frac{1}{2}}UP_{\mathcal{R}(|T|)}P_{\mathcal{R}(|T^{*}|)}|T^{*}|^{\frac{1}{2}}\\ &= |T^{*}|^{\frac{1}{2}}U|T^{*}|^{\frac{1}{2}} = \widetilde{T}^{(*)}, \end{split}$$

and

$$\begin{split} \widetilde{T^{+}}\widetilde{T^{(*)}}\widetilde{T^{+}} &= |T^{+}|^{\frac{1}{2}}U^{*}|T^{+}|^{\frac{1}{2}}(|T^{+}|^{\frac{1}{2}})^{+}U(|T^{+}|^{\frac{1}{2}})^{+}|T^{+}|^{\frac{1}{2}}U^{*}|T^{+}|^{\frac{1}{2}} \\ &= |T^{+}|^{\frac{1}{2}}U^{*}P_{\mathcal{R}(|T^{*}|)}UP_{\mathcal{R}(|T^{*}|)}U^{*}|T^{+}|^{\frac{1}{2}} \\ &= |T^{+}|^{\frac{1}{2}}P_{\mathcal{R}(|T|)}P_{\mathcal{R}(|T^{*}|)}U^{*}|T^{+}|^{\frac{1}{2}} \\ &= |T^{+}|^{\frac{1}{2}}P_{\mathcal{R}(|T^{*}|)}P_{\mathcal{R}(|T|)}U^{*}|T^{+}|^{\frac{1}{2}} \\ &= |T^{+}|^{\frac{1}{2}}P_{\mathcal{R}(|T^{*}|)}U^{*}|T^{+}|^{\frac{1}{2}} \\ &= |T^{+}|^{\frac{1}{2}}P_{\mathcal{R}(|T^{*}|)}U^{*}|T^{+}|^{\frac{1}{2}} \\ &= |T^{+}|^{\frac{1}{2}}P_{\mathcal{R}(|T^{*}|)}U^{*}|T^{+}|^{\frac{1}{2}} \end{split}$$

By similar computations we have $\widetilde{T^{\dagger}}\widetilde{T^{(*)}} = P_{\mathcal{R}(|T^{\dagger}|)}P_{\mathcal{R}(|T^{*}|)}$ and $\widetilde{T^{(*)}}\widetilde{T^{\dagger}} = UP_{\mathcal{R}(|T^{*}|)}U^{*}$. Hence $\widetilde{T^{\dagger}}\widetilde{T^{(*)}}$ and $\widetilde{T^{(*)}}\widetilde{T^{\dagger}}$ are self-adjoint operators. Thus, $\widetilde{T^{(\dagger)}} = (\widetilde{T^{\dagger}})^{\dagger} = \widetilde{T^{(*)}}$. \Box

The so-called reverse order law, which is one of the most important properties of the Moore-Penrose inverse that has been deeply studied, states that under which condition the equation $(T_1T_2)^{\dagger} = T_2^{\dagger}T_1^{\dagger}$ holds (see [6]). In the following theorem we show that the reverse order law holds for |T| and $|T^*|$ whenever $T \in CR(\mathcal{H})$ is binormal.

Lemma 2.7. Let $T \in CR(\mathcal{H})$ be a binormal operator. Then $(|T||T^*|)^{\dagger} = |T^*|^{\dagger}|T|^{\dagger}$.

Proof. Since *T* is a binormal operator, so by a modification of [5, Theorem 2], $P_{\mathcal{R}(|T^*|)}P_{\mathcal{R}(|T|)} = P_{\mathcal{R}(|T|)}P_{\mathcal{R}(|T^*|)}$. Put $S = |T^*|^{\dagger}|T|^{\dagger}$. Then we have,

$$\begin{split} |T||T^*|S|T||T^*| &= |T|P_{\mathcal{R}(|T^*|)}P_{\mathcal{R}(|T|)}|T^*| \\ &= |T|P_{\mathcal{R}(|T|)}P_{\mathcal{R}(|T^*|)}|T^*| \\ &= |T||T^*|, \end{split}$$

 $S|T||T^*|S = |T^*|^{\dagger} P_{\mathcal{R}(|T|)} P_{\mathcal{R}(|T^*|)}|T|^{\dagger}$ = |T^*|^{\dagger} P_{\mathcal{R}(|T^*|)} P_{\mathcal{R}(|T|)}|T|^{\dagger} = S,

 $S|T||T^*| = |T^*|^{\dagger} P_{\mathcal{R}(|T|)}|T^*|$ = |T^*|^{\dagger}|T^*|P_{\mathcal{R}(|T|)} = P_{\mathcal{R}(|T^*|)}P_{\mathcal{R}(|T|)},

and

 $|T||T^*|S = |T|P_{\mathcal{R}(|T^*|)}|T|^+$ = $P_{\mathcal{R}(|T^*|)}|T||T|^+$ = $P_{\mathcal{R}(|T^*|)}P_{\mathcal{R}(|T|)}$.

Consequently, $(|T||T^*|)^{\dagger} = S$. \Box

Theorem 2.8. Let $T \in CR(\mathcal{H})$. Then T is binormal if and only if T^{\dagger} is so.

Proof. Suppose TT^* commutes with T^*T . Then by Lemma 2.7, we have $|T^*|^{\dagger}|T|^{\dagger} = |T|^{\dagger}|T^*|^{\dagger}$. Since $|T|^{\dagger} = |(T^*)^{\dagger}| = |(T^*)^*| = |(T^*)^*| = |(T^*)^*||T^*|$. Conversely, since $\mathcal{R}(T^*) = \mathcal{R}(T^*)$ and $(T^*)^{\dagger} = T$, then $T^{\dagger} \in CR(\mathcal{H})$ and so the converse also holds.

In [7], the authors obtained the polar decomposition of $\tilde{T} = VU|\tilde{T}|$, when T = U|T| and $|T|^{\frac{1}{2}}|T^*|^{\frac{1}{2}} = V||T|^{\frac{1}{2}}|T^*|^{\frac{1}{2}}|$. In the following theorem we obtain the polar decomposition of the powers of \tilde{T} .

Theorem 2.9. Let $n \in \mathbb{N}$ and $T \in B(\mathcal{H})$. Then $(\widetilde{T})^n = |T|^{\frac{1}{2}}T^{n-1}U|T|^{\frac{1}{2}}$. Moreover, if $|T|^{\frac{1}{2}}T^{n-1}|T^*|^{\frac{1}{2}} = W_{n-1}||T|^{\frac{1}{2}}T^{n-1}|T^*|^{\frac{1}{2}}|$ is the polar decomposition, then $(\widetilde{T})^n = W_{n-1}U|(\widetilde{T})^n|$ is the polar decomposition of $(\widetilde{T})^n$.

Proof. By direct computations we obtain that

$$\begin{split} U|(\widetilde{T})^{n}| &= U|(\widetilde{T})^{n}|U^{*}U \\ &= U(|T|^{\frac{1}{2}}U^{*}(T^{n-1})^{*}|T|T^{n-1}U|T|^{\frac{1}{2}})^{\frac{1}{2}}U^{*}U \\ &= (U|T|^{\frac{1}{2}}U^{*}(T^{n-1})^{*}|T|T^{n-1}U|T|^{\frac{1}{2}}U^{*})^{\frac{1}{2}}U \\ &= (|T^{*}|^{\frac{1}{2}}(T^{n-1})^{*}|T|T^{n-1}|T^{*}|^{\frac{1}{2}})^{\frac{1}{2}}U \\ &= (||T|^{\frac{1}{2}}T^{n-1}|T^{*}|^{\frac{1}{2}}|^{2})^{\frac{1}{2}} \\ &= ||T|^{\frac{1}{2}}T^{n-1}|T^{*}|^{\frac{1}{2}}|^{2}U. \end{split}$$

Also, by the polar decomposition $|T|^{\frac{1}{2}}T^{n-1}|T^*|^{\frac{1}{2}} = W_{n-1}||T|^{\frac{1}{2}}T^{n-1}|T^*|^{\frac{1}{2}}|$ we get that

$$W_{n-1}U|(\widetilde{T})^{n}| = W_{n-1}U|(\widetilde{T})^{n}|UU^{*}$$

= $W_{n-1}||T|^{\frac{1}{2}}T^{n-1}|T^{*}|^{\frac{1}{2}}|U$
= $|T|^{\frac{1}{2}}T^{n-1}|T^{*}|^{\frac{1}{2}}U$
= $|T|^{\frac{1}{2}}T^{n-1}U|T|^{\frac{1}{2}}U$
= $(\widetilde{T})^{n}$.

Now, we show that the kernel condition $\mathcal{N}((\widetilde{T})^n) = \mathcal{N}(W_{n-1}U)$ holds. Let $f \in \mathcal{N}(W_{n-1}U)$. Since by hypothesis $|T|^{\frac{1}{2}}T^{n-1}|T^*|^{\frac{1}{2}} = W_{n-1}||T|^{\frac{1}{2}}T^{n-1}|T^*|^{\frac{1}{2}}|$ is the polar decomposition and $\mathcal{N}(W_{n-1}) = \mathcal{N}(|T|^{\frac{1}{2}}T^{n-1}|T^*|^{\frac{1}{2}})$, we obtain that $(\widetilde{T})^n(f) = |T|^{\frac{1}{2}}T^{n-1}|T^*|^{\frac{1}{2}}U(f) = 0$. Hence $\mathcal{N}(W_{n-1}U) \subseteq \mathcal{N}((\widetilde{T})^n)$. Let $f \in \mathcal{N}((\widetilde{T})^n)$. Then $|T|^{\frac{1}{2}}T^{n-1}|T^*|^{\frac{1}{2}}U(f) = 0$. Consequently, $\mathcal{N}((\widetilde{T})^n) \subseteq \mathcal{N}(W_{n-1}U)$. \Box

Corollary 2.10. Let $n \in \mathbb{N}$ and $T \in B(\mathcal{H})$. Then \widetilde{T} is centered if and only if for each positive integer n, $W_{n-1}U = (W_0U)^n$. In particular, if T is a centered operator, then \widetilde{T} is centered if and only if $W_{n-1}U = U^n$.

Proof. By the definition \widetilde{T} is centered if and only if for each positive integer n, $W_{n-1}U = (W_0U)^n$. If T is centered then T is binormal, and so $W_0 = I$. Thus we conclude that \widetilde{T} is centered if and only if $W_{n-1}U = U^n$. \Box

Lemma 2.11. Let $T = U|T| \in B(\mathcal{H})$ be a quasinormal operator. Then the following assertions hold.

 $\begin{array}{ll} (i) & |T|^{\frac{1}{2}}T = T|T|^{\frac{1}{2}}.\\ (ii) & |T^{2}| = |T|^{2}.\\ (iii) & |T|^{n}U|T| = U|T|^{n+1}, for each \ n \in \mathbb{N}.\\ (iv) & |T^{*}|^{\frac{1}{2}}|T|^{\frac{3}{2}} = |T|^{\frac{3}{2}}|T^{*}|^{\frac{1}{2}}.\\ (v) \ T \ is centered \ so \ the \ partial \ isometry \ part \ in \ T^{n} \ is \ U^{n}.\\ (vi) & (T^{n})^{*}T^{n} = (T^{*}T)^{n} \ and \ hence \ |T^{n}| = |T|^{n}, for \ each \ n \in \mathbb{N}. \end{array}$

Proof. (i) From $|T|^2 T = T^*T = TT^*T = T|T|^2$, we deduce that |T|T = T|T| and hence $|T|^{\frac{1}{2}}T = T|T|^{\frac{1}{2}}$.

(ii) Since $T^*T^*TT = T^*TT^*T$, so $(T^*)^2T^2 = (T^*T)^2$ and hence $|T^2|^2 = (|T|^2)^2$. Consequently, $|T^2| = |T|^2$.

(iii) For n = 2 we have $|T|^2 U|T| = |T||T|U|T| = |T|U|T|^2 = U|T|^3$. Let for positive integer n, $|T|^n U|T| = U|T|^{n+1}$. Then

 $|T|^{n+1}U|T| = |T||T|^nU|T|$ = |T|U|T|ⁿ = U|T|ⁿ⁺¹.

(iv) Since $T^*|T| = |T|T^*$, so $TT^*|T| = T|T|T^* = |T|TT^*$. This means $|T^*|^2|T| = |T||T^*|^2$ and hence $|T^*||T| = |T||T^*|$. Therefore, $|T^*||T|^3 = |T||T^*||T|^2 = |T|^3|T^*|$ and so $|T^*|^{\frac{1}{2}}|T|^{\frac{3}{2}} = |T|^{\frac{3}{2}}|T^*|^{\frac{1}{2}}$.

Theorem 2.12. Let $T = U|T| \in B(\mathcal{H})$ be a quasinormal operator. Suppose that for each $n \in \mathbb{N}$, $|T|^{\frac{1}{2}}T^{n}|T^{*}|^{\frac{1}{2}} = W_{n}||T|^{\frac{1}{2}}T^{n}|T^{*}|^{\frac{1}{2}}|$ is the polar decomposition. Then $W_{n} = U^{n}$.

Proof. By using Lemma 2.11, we have

$$\begin{split} |T^*|^{\frac{1}{2}}(T^n)^*|T|^{\frac{1}{2}}|T|^{\frac{1}{2}}T^n|T^*|^{\frac{1}{2}} &= |T^*|^{\frac{1}{2}}(T^n)^*|T|T^n|T^*|^{\frac{1}{2}} \\ &= |T^*|^{\frac{1}{2}}(T^n)^*T^n|T||T^*|^{\frac{1}{2}} \\ &= |T^*|^{\frac{1}{2}}(T^*T)^n|T||T^*|^{\frac{1}{2}} \\ &= |T^*|^{\frac{1}{2}}|T|^{2n+1}|T^*|^{\frac{1}{2}} \\ &= |T^*|^{\frac{1}{2}}|T|^{\frac{2n+1}{2}}|T^*|^{\frac{2n+1}{2}}|T^*|^{\frac{1}{2}} \\ &= (|T^*|^{\frac{1}{2}}|T|^{\frac{2n+1}{2}})^2. \end{split}$$

This implies that $||T|^{\frac{1}{2}}T^{n}|T^{*}|^{\frac{1}{2}}| = |T|^{\frac{2n+1}{2}}|T^{*}|^{\frac{1}{2}}$. Also we have $|T|^{\frac{1}{2}}T^{n}|T^{*}|^{\frac{1}{2}} = T^{n}|T|^{\frac{1}{2}}|T^{*}|^{\frac{1}{2}} = U^{n}|T|^{n}|T|^{\frac{1}{2}}|T^{*}|^{\frac{1}{2}} = U^{n}|T|^{\frac{1}{2}}|T^{*}|^{\frac{1}{2}} = W_{n}||T|^{\frac{1}{2}}T^{n}|T^{*}|^{\frac{1}{2}}|^{\frac{1}{2}} = W_{n}||T|^{\frac{1}{2}}T^{n}|T^{*}|^{\frac{1}{2}}|^{\frac{1}{2}} = W_{n}||T|^{\frac{2n+1}{2}}|T^{*}|^{\frac{1}{2}}|^{\frac{1}{2}}$ is the polar decomposition, then we obtain $W_{n} = U^{n}$. \Box

Corollary 2.13. If $T \in B(\mathcal{H})$ is quasinormal, then \widetilde{T} is centered.

Example 2.14. Let (X, Σ, μ) be a σ -finite measure space and let $\varphi : X \to X$ be a measurable transformation such that $\mu \circ \varphi^{-1}$ is absolutely continuous with respect to μ . Put $h = d\mu \circ \varphi^{-1}/d\mu$. Let $C_{\varphi} : f \mapsto f \circ \varphi$ be a bounded composition operator on $L^2(\Sigma)$ with polar decomposition $C_{\varphi} = U|C_{\varphi}|$. It is easy to see that $U = M_{1/\sqrt{h \circ \varphi}}C_{\varphi}$ and $|C_{\varphi}| = M_{\sqrt{h}}$. It follows that for each $f \in L^2(\Sigma)$,

$$\widetilde{C_{\varphi}}(f) = \sqrt[4]{\frac{h}{h \circ \varphi}} f \circ \varphi.$$

Note that $h \circ \varphi > 0$ almost everywhere. Now, if $C_{\varphi} \in CR(L^2(\Sigma))$ then it is easy to check that

$$C^{\dagger}_{\varphi}(f) = \chi_{\sigma(h)} E(f) \circ \varphi^{-1}, \quad f \in L^{2}(\Sigma),$$

where *E* is the conditional expectation operator with respect to $\varphi^{-1}(\Sigma)$. We can write $C_{\varphi}^{\dagger} = M_{\frac{\chi_{\varphi}(h)}{h}}C_{\varphi}^{*}$, where $C_{\varphi}^{*}(f) = hE(f) \circ \varphi^{-1}$. For more details on composition and conditional expectation operators see [2] and references

therein. Let $|C_{\varphi}|^{\frac{1}{2}}|C_{\varphi}^{*}|^{\frac{1}{2}} = V||C_{\varphi}|^{\frac{1}{2}}|C_{\varphi}^{*}|^{\frac{1}{2}}|$ be the polar decomposition of $|C_{\varphi}|^{\frac{1}{2}}|C_{\varphi}^{*}|^{\frac{1}{2}}$. Then straightforward calculations show that

$$V(f) = \frac{\sqrt[4]{h}}{\sqrt{E(\sqrt{h \circ \varphi})}}f;$$
$$||C_{\varphi}|^{\frac{1}{2}}|C_{\varphi}^{*}|^{\frac{1}{2}}|(f) = \sqrt[4]{h \circ \varphi}\sqrt{E(\sqrt{h})}E(f).$$

Hence by Proposition 2.4, $\widetilde{C_{\varphi}} = VU ||C_{\varphi}|^{\frac{1}{2}} |C_{\varphi}^*|^{\frac{1}{2}}|$ is the polar decomposition of $\widetilde{C_{\varphi}}$. In [4], Embry-Wardrop and Lambert proved that the composition operator $C_{\varphi} \in B(L^2(\Sigma))$ is centered if and only if h is Σ_{∞} -measurable, where $\Sigma_{\infty} = \bigcap_{n=1}^{\infty} \varphi^{-n}(\Sigma)$. Now, by this fact and Corollary 2.3, C_{φ}^{\dagger} is centered if and only if h is Σ_{∞} -measurable. Recall that C_{φ} is quasinormal if and only if $h = h \circ \varphi$ (see [10]). So for each $n \in \mathbb{N}$, $h = h \circ \varphi^n$ and so $h \in \Sigma_{\infty}$. In this case we have $\widetilde{C_{\varphi}} = C_{\varphi}$, and hence $\widetilde{C_{\varphi}}$ is centered.

Acknowledgment

The authors would like to acknowledge the valuable contribution of the referee regarding the improvement of the quality of the paper.

References

- [1] A. Aluthge, On *p*-hyponormal operators for 0 , Integral Equations and Operator Theory 13 (1990), 307–315.
- [2] C. Burnap, I. Jung and A. Lambert, Separating partial normality classes with composition operators, Journal of Operator Theory 53 (2005), 381–397.
- [3] S. L. Campbell, Linear operators for which T*T and TT* commute, Proceedings of the American Mathematical Society 34 (1972), 177–180.
- M. Embry-Wardrop and A. Lambert, Measurable transformations and centred composition operators, Proceedings of the Royal Irish Academy. Section A 90 (1990), 165–172.
- [5] T. Furuta, On the polar decomposition of an operator, Acta Scientiarum Mathematicarum (Szeged) 46 (1983), 261–268.
- [6] T. N. E. Greville, Note on the generalized inverse of a matrix product, SIAM Review 8 (1966), 518–521.
- [7] M. Ito, T. Yamazaki and M. Yanagida, On the polar decomposition of the Aluthge transformation and related results, Journal of Operator Theory 51 (2004), 303–319.
- [8] B. B. Morrel and P. S. Muhly, Centered operators, Studia Mathematica 51 (1974), 251–263.
- [9] V. Paulsen, C. Pearcy, S. Petrović, On centered and weakly centered operators, Journal of Functional Analysis 128 (1995), 87-101.
- [10] R. K. Singh and B. S. Komal, Composition operators, Bulletin of the Australian Mathematical Society 18 (1978), 439–446.
- [11] T. Yamazaki, Parallelisms between Aluthge transformation and powers of operators, Acta Scientiarum Mathematicarum(Szeged) 67 (2001), 809–820.