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Abstract. In this paper, we obtain some characterizations of centered and binormal operators via Moore-
Penrose inverse and Aluthge transform.

1. Introduction and Preliminaries

Let B(H) denote the C∗-algebra of all bounded linear operators on a complex Hilbert space H . We
writeN(T) and R(T) for the null-space and the range of an operator T ∈ B(H), respectively. Recall that for
T ∈ B(H), there is a unique factorization T = U|T|, whereN(T) = N(U) = N(|T|), U is a partial isometry, i.e.
UU∗U = U and |T| = (T∗T)1/2 is a positive operator. This factorization is called the polar decomposition of
T. As a consequence, U∗U|T| = |T|. Also, it is a classical fact that the polar decomposition of T∗ is U∗|T|, and
so UU∗|T∗| = |T∗|.

In [8] Morrel and Muhly introduced the concept of a centered operator. An operator T on a Hilbert
spaceH is said to be centered if the doubly infinite sequence {TnT∗n,T∗mTm : n,m ≥ 0} consists of mutually
commuting operators. It is shown in [4] that if T = U|T| is an operator on H such that for each n ∈ N, Tn

has polar decomposition Un|Tn
|, then T is centered if and only if Un = Un for each n ∈N.

Associated with T ∈ B(H) there is a useful related operator T̃ = |T|
1
2 U|T|

1
2 , called the Aluthge transform

of T as it has been studied by Aluthge in [1]. Binormality of operators was defined by Campbell in [3].
An operator T is said to be binormal or weakly centered [9], if [|T|, |T∗|] = 0, where [A,B] = AB − BA for
operators A and B. Let T ∈ B(H) have closed range. Then the Moore-Penrose inverse of T, denoted by
T†, is the unique operator T† ∈ B(H) which satisfies TT†T = T, T†TT† = T†, (TT†)∗ = TT† = PR(T) and
(T†T)∗ = T†T = PR(T†), where the PM means the orthogonal projection onto a closed subspaceM.

In this paper, we study the centered and binormal bounded linear operators on a Hilbert space H via
Moore-Penrose inverse and Aluthge transformation. The work is organized as follows. In section 2, firstly,
we give the polar decomposition of T†, and then we show that T† is centered if and only if T is centered.
Secondly, we introduce the notion †-Aluthge transformation T̃(†) of T by setting T̃(†) = (T̃†)†. We show

2010 Mathematics Subject Classification. Primary 47B33; Secondary 47B38.
Keywords. Aluthge transform, Moore-Penrose inverse, binormal operator, centered operators.
Received: 05 May 2016; Revised: 04 July 2016; Accepted: 30 December 2016
Communicated by Dragana Cvetković Ilić
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that if T is a closed range binormal operator, then the ∗-Aluthge and †-Aluthge transformations (see [11])
coincide. Also, we show that the reverse order law holds for |T| and |T∗|; i.e. (|T||T∗|)† = |T∗|†|T|†, whenever
T is a closed range binormal operator. Finally, we give the polar decomposition of powers of T̃ and then
we find some conditions under which T̃ be centered. Also we show that if T is quasinormal operator, then
T̃ is centered.

2. On Some Characterizations of T†

Let CR(H) be the subset of all bounded linear operators on H with closed range. In the following
proposition we obtain the polar decomposition of T†. The following lemma is significant for amount of
consideration for the next results and computations.

Lemma 2.1. Let T ∈ CR(H). Then the following assertions hold.

(a) If T ≥ 0, then T† ≥ 0,N(T) = N(T
1
2 ), T

1
2 ∈ CR(H) and (T†)

1
2 = (T

1
2 )†.

(b) |T†| = |T∗|†.
(c) R(|T|) = R(|T|

1
2 ) and R(|T†|) = R(|T∗|) = R(|T∗|

1
2 ).

(d) If T = T∗, then TPR(T) = T.
(e) |T†|

1
2 = (|T∗|

1
2 )†, |T†|

1
2 PR(|T∗ |) = |T†|

1
2 and |T†|

1
2 |T∗|

1
2 = PR(|T† |).

Proof. (a) Let f ∈ H . Then 〈T† f , f 〉 = 〈T†TT† f , f 〉 = 〈TT† f ,T† f 〉 ≥ 0, and so 〈T† f , f 〉 ≥ 0. Also from
〈T f , f 〉 = 〈T

1
2 f ,T

1
2 f 〉 = ‖T

1
2 f ‖ we deduce that T

1
2 f = 0 if and only if T f = 0. Now, from this and the

inequality ‖T f ‖ = ‖T
1
2 (T

1
2 f )‖ ≤ ‖T

1
2 ‖‖T

1
2 f ‖, we conclude that the range of T

1
2 is also closed. Finally, Since for

each n ∈N, (Tn)† = (T†)n, we have (T
1
2 )†(T

1
2 )† = ((T

1
2 )†)2 = ((T

1
2 )2)† = T† = ((T†)

1
2 )2.

(b) It is sufficient to show that (TT∗)† = (T∗)†T†. SinceR(T†) = R(T∗), so TT∗(T∗)†T†TT∗ = TPR(T∗)PR(T∗)T∗ =
TT∗ and

(T∗)†T†TT∗(T∗)†T† = (T∗)†PR(T∗)PR(T∗)T† = (T∗)†T†.

Hence, |T†| = ((T∗)†T†)
1
2 = ((TT∗)†)

1
2 = ((TT∗)

1
2 )† = |T∗|†.

(c) By part (a),N(|T∗|) = N(|T∗|
1
2 ). Hence it follows that R(|T∗|) = R(|T∗|

1
2 ). By hypotheses R(TT∗), R(|T∗|)

and so R(|T∗|
1
2 ) are closed. Thus R(|T∗|) = R(|T∗|

1
2 ). The equality R(|T†|) = R(|T∗|) follows from (b).

(d) Since N(T) = N(T∗) = R(T)⊥, hence H = R(T) ⊕ R(T)⊥. So for each f ∈ H there exists a unique
1 ∈ R(T) and a unique h ∈ R(T)⊥ such that f = 1 + h. It follows that TPR(T)( f ) = T(1) = T(1 + h) = T( f ).

(e) It follows from the previous parts.

Proposition 2.2. Let U|T| be the polar decomposition of an operator T ∈ CR(H). Then T† = U∗|T∗|† = U∗|T†| is the
polar decomposition for T† and hence the Aluthge transformation of T† is |T†|

1
2 U∗|T†|

1
2 .

Proof. Put S = |T∗|†U. Since R(U) = R(T) = R(|T∗|) and R(|T∗|)⊥ = N(|T∗|), so R(S) = R(U) = R(|T∗|).
Moreover, we have

T∗ST∗ = U∗|T∗|(|T∗|†U)U∗|T∗|

= U∗|T∗||T∗|†|T∗|
= U∗|T∗| = T∗,
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ST∗S = |T∗|†(UU∗|T∗|)|T∗|†U

= |T∗|†|T∗||T∗|†U

= |T∗|†U = S,

T∗S = U∗|T∗||T∗|†U
= U∗PR(|T∗)U
= U∗U
= PR(T∗),

and

ST∗ = |T∗|†UU∗|T∗|

= |T∗|†PR(|T∗ |)|T∗|

= |T∗|†|T∗|
= PR(|T∗ |†) = PR(|T∗ |) = PR(S).

These equalities show that (T†)∗ = (T∗)† = S, and hence T† = S∗ = U∗|T∗|† = U∗|T†| is the polar
decomposition for T†. Thus, the Aluthge transformation of T† is |T†|

1
2 U∗|T†|

1
2 .

Corollary 2.3. Let T ∈ CR(H). Then T† is centered if and only if T is centered.

Proof. By Proposition 2.2, Un|Tn
| is the polar decomposition of Tn if and only if U∗n|(T∗)n

|
† is the polar

decomposition of (T†)n, for each n ∈ N. Now, the desired conclusion follows from the Morrel-Muhly
Theorem [8].

Proposition 2.4. Let T = U|T| ∈ B(H) and |T|
1
2 |T∗|

1
2 = V||T|

1
2 |T∗|

1
2 | be the polar decompositions. Suppose that

T̃ ∈ CR(H), then T̃† = U∗V∗|T̃†| = U∗(|T∗|
1
2 |T|

1
2 |)† is the polar decomposition.

Proof. It is sufficient to show that T̃ = VU|T̃| is the polar decomposition. This has been proved in [7,
Theorem 2.1]. Here we give a new proof. Since U|T|

1
2 = |T∗|

1
2 U, we obtain (T̃)∗ = |T|

1
2 U∗|T|

1
2 = U∗|T∗|

1
2 |T|

1
2 =

U∗V∗||T∗|
1
2 |T|

1
2 |. But ||T∗|

1
2 |T|

1
2 |

2 = |T|
1
2 |T∗||T|

1
2 = (|T|

1
2 U|T|

1
2 )(|T|

1
2 U∗|T|

1
2 ) = |(T̃)∗|2. Hence (T̃)∗ = U∗V∗|(T̃)∗|.

Also it is easy to check that (U∗V∗)(VU)(U∗V∗) = U∗V∗ and N((T̃)∗) = N(U∗V∗). Hence T̃ = VU|T̃| is the
polar decomposition. By using Proposition 2.2, we have that T̃† = U∗V∗|T̃†| = U∗(|T∗|

1
2 |T|

1
2 |)† is the polar

decomposition.

Theorem 2.5. If T ∈ CR(H) is binormal, then T̃† = (|T|†)
1
2 U∗(|T|†)

1
2 .

Proof. First, we note that by a modification of [5, Theorem 2] we obtain

PN(|T|)⊥PN(|T∗ |)⊥ = PN(|T∗ |)⊥PN(|T|)⊥ .

Since for each 0 ≤ A ∈ B(H), R(A) = N(A)⊥, this implies that

PR(|T|)PR(|T∗ |) = PR(|T∗ |)PR(|T|).

Put S = (|T|†)
1
2 U∗(|T|†)

1
2 . Then we have

ST̃S = (|T|†)
1
2 U∗(|T|†)

1
2 |T|

1
2 U|T|

1
2 (|T|†)

1
2 U∗(|T|†)

1
2

= (|T|†)
1
2 U∗PR(|T|)UPR(|T|)U∗(|T|†)

1
2

= (|T|†)
1
2 U∗PR(|T|)UU∗(|T|†)

1
2

= (|T|†)
1
2 U∗PR(|T|)PR(|T∗ |)(|T|†)

1
2

= (|T|†)
1
2 U∗PR(|T∗ |)PR(|T|)(|T|†)

1
2

= (|T|†)
1
2 U∗(|T|†)

1
2 = S,
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T̃ST̃ = |T|
1
2 U|T|

1
2 (|T|†)

1
2 U∗(|T|†)

1
2 |T|

1
2 U|T|

1
2

= |T|
1
2 UPR(|T|)U∗PR(|T|)U|T|

1
2

= |T|
1
2 UU∗PR(|T|)U|T|

1
2

= |T|
1
2 PR(|T∗ |)PR(|T|)U|T|

1
2

= |T|
1
2 PR(|T|)PR(|T∗ |)U|T|

1
2

= |T|
1
2 U|T|

1
2 = T̃,

and

ST̃ = (|T|†)
1
2 U∗(|T|†)

1
2 |T|

1
2 U|T|

1
2

= (|T|†)
1
2 U∗PR(|T|)U|T|

1
2

= (|T|†)
1
2 U∗PR(|T|)|T∗|

1
2 U

= (|T|†)
1
2 U∗|T∗|

1
2 PR(|T|)U

= (|T|†)
1
2 |T|

1
2 U∗PR(|T|)U

= PR(|T|)U∗PR(|T|)U = U∗PR(|T|)U.

By similar computation we have T̃S = PR(|T∗ |)PR(|T|). Hence T̃S and ST̃ are self-adjoint operators. From the
uniqueness of Moore-Penrose inverse we have T̃† = S.

In [11], Yamazaki introduce the notion of the ∗-Aluthge transform T̃(∗) of T by setting T̃(∗) = |T∗|
1
2 U|T∗|

1
2 .

With the motivation of this definition we define †-Aluthge transformation of T by setting T̃(†) := (T̃†)†.
In the following theorem we show that if T ∈ CR(H) is binormal, then the ∗-Aluthge and †-Aluthge
transformations coincide.

Theorem 2.6. If T ∈ CR(H) is binormal, then T̃(†) = |T∗|
1
2 U|T∗|

1
2 = T̃(∗).

Proof. Since T is binormal, then we have

T̃(∗)T̃†T̃(∗) = (|T†|
1
2 )†U(|T†|

1
2 )†|T†|

1
2 U∗|T†|

1
2 (|T†|

1
2 )†U(|T†|

1
2 )†

= |T∗|
1
2 U|T∗|

1
2 |T†|

1
2 U∗|T†|

1
2 |T∗|

1
2 U|T∗|

1
2

= |T∗|
1
2 UPR(|T∗ |)U∗PR(|T∗ |)U|T∗|

1
2

= |T∗|
1
2 UPR(|T∗ |)U∗U|T∗|

1
2

= |T∗|
1
2 UPR(|T∗ |)PR(|T|)|T∗|

1
2

= |T∗|
1
2 UPR(|T|)PR(|T∗ |)|T∗|

1
2

= |T∗|
1
2 UPR(|T|)|T∗|

1
2

= |T∗|
1
2 U|T∗|

1
2 = T̃(∗),
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and

T̃†T̃(∗)T̃† = |T†|
1
2 U∗|T†|

1
2 (|T†|

1
2 )†U(|T†|

1
2 )†|T†|

1
2 U∗|T†|

1
2

= |T†|
1
2 U∗PR(|T∗ |)UPR(|T∗ |)U∗|T†|

1
2

= |T†|
1
2 U∗UPR(|T∗ |)U∗|T†|

1
2

= |T†|
1
2 PR(|T|)PR(|T∗ |)U∗|T†|

1
2

= |T†|
1
2 PR(|T∗ |)PR(|T|)U∗|T†|

1
2

= |T†|
1
2 PR(|T∗ |)U∗|T†|

1
2

= |T†|
1
2 U∗|T†|

1
2 = T̃†.

By similar computations we have T̃†T̃(∗) = PR(|T|)PR(|T∗ |) and T̃(∗)T̃† = UPR(|T∗ |)U∗. Hence T̃†T̃(∗) and T̃(∗)T̃† are
self-adjoint operators. Thus, T̃(†) = (T̃†)† = T̃(∗).

The so-called reverse order law, which is one of the most important properties of the Moore-Penrose inverse
that has been deeply studied, states that under which condition the equation (T1T2)† = T†2T†1 holds (see [6]).
In the following theorem we show that the reverse order law holds for |T| and |T∗| whenever T ∈ CR(H) is
binormal.

Lemma 2.7. Let T ∈ CR(H) be a binormal operator. Then (|T||T∗|)† = |T∗|†|T|†.

Proof. Since T is a binormal operator, so by a modification of [5, Theorem 2], PR(|T∗ |)PR(|T|) = PR(|T|)PR(|T∗ |). Put
S = |T∗|†|T|†. Then we have,

|T||T∗|S|T||T∗| = |T|PR(|T∗ |)PR(|T|)|T∗|
= |T|PR(|T|)PR(|T∗ |)|T∗|
= |T||T∗|,

S|T||T∗|S = |T∗|†PR(|T|)PR(|T∗ |)|T|†

= |T∗|†PR(|T∗ |)PR(|T|)|T|†

= S,

S|T||T∗| = |T∗|†PR(|T|)|T∗|

= |T∗|†|T∗|PR(|T|)

= PR(|T∗ |)PR(|T|),

and

|T||T∗|S = |T|PR(|T∗ |)|T|†

= PR(|T∗ |)|T||T|†

= PR(|T∗ |)PR(|T|).

Consequently, (|T||T∗|)† = S.

Theorem 2.8. Let T ∈ CR(H). Then T is binormal if and only if T† is so.
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Proof. Suppose TT∗ commutes with T∗T. Then by Lemma 2.7, we have |T∗|†|T|† = |T|†|T∗|†. Since |T|† =
|(T∗)†| = |(T†)∗|, it follows that |T†||(T†)∗| = |(T†)∗||T†|. Conversely, since R(T†) = R(T∗) and (T†)† = T, then
T† ∈ CR(H) and so the converse also holds.

In [7], the authors obtained the polar decomposition of T̃ = VU|T̃|, when T = U|T| and |T|
1
2 |T∗|

1
2 =

V||T|
1
2 |T∗|

1
2 |. In the following theorem we obtain the polar decomposition of the powers of T̃.

Theorem 2.9. Let n ∈N and T ∈ B(H). Then (T̃)n = |T|
1
2 Tn−1U|T|

1
2 . Moreover, if |T|

1
2 Tn−1

|T∗|
1
2 = Wn−1||T|

1
2 Tn−1

|T∗|
1
2 |

is the polar decomposition, then (T̃)n = Wn−1U|(T̃)n
| is the polar decomposition of (T̃)n.

Proof. By direct computations we obtain that

U|(T̃)n
| = U|(T̃)n

|U∗U

= U(|T|
1
2 U∗(Tn−1)∗|T|Tn−1U|T|

1
2 )

1
2 U∗U

= (U|T|
1
2 U∗(Tn−1)∗|T|Tn−1U|T|

1
2 U∗)

1
2 U

= (|T∗|
1
2 (Tn−1)∗|T|Tn−1

|T∗|
1
2 )

1
2 U

= (||T|
1
2 Tn−1

|T∗|
1
2 |

2)
1
2

= ||T|
1
2 Tn−1

|T∗|
1
2 |U.

Also, by the polar decomposition |T|
1
2 Tn−1

|T∗|
1
2 = Wn−1||T|

1
2 Tn−1

|T∗|
1
2 |we get that

Wn−1U|(T̃)n
| = Wn−1U|(T̃)n

|UU∗

= Wn−1||T|
1
2 Tn−1

|T∗|
1
2 |U

= |T|
1
2 Tn−1

|T∗|
1
2 U

= |T|
1
2 Tn−1U|T|

1
2 U

= (T̃)n.

Now, we show that the kernel condition N((T̃)n) = N(Wn−1U) holds. Let f ∈ N(Wn−1U). Since by
hypothesis |T|

1
2 Tn−1

|T∗|
1
2 = Wn−1||T|

1
2 Tn−1

|T∗|
1
2 | is the polar decomposition and N(Wn−1) = N(|T|

1
2 Tn−1

|T∗|
1
2 ),

we obtain that (T̃)n( f ) = |T|
1
2 Tn−1

|T∗|
1
2 U( f ) = 0. Hence N(Wn−1U) ⊆ N((T̃)n). Let f ∈ N((T̃)n). Then

|T|
1
2 Tn−1

|T∗|
1
2 U( f ) = 0, and so Wn−1U( f ) = 0. Consequently,N((T̃)n) ⊆ N(Wn−1U).

Corollary 2.10. Let n ∈ N and T ∈ B(H). Then T̃ is centered if and only if for each positive integer n, Wn−1U =

(W0U)n. In particular, if T is a centered operator, then T̃ is centered if and only if Wn−1U = Un.

Proof. By the definition T̃ is centered if and only if for each positive integer n, Wn−1U = (W0U)n. If
T is centered then T is binormal, and so W0 = I. Thus we conclude that T̃ is centered if and only if
Wn−1U = Un.

Lemma 2.11. Let T = U|T| ∈ B(H) be a quasinormal operator. Then the following assertions hold.

(i) |T|
1
2 T = T|T|

1
2 .

(ii) |T2
| = |T|2.

(iii) |T|nU|T| = U|T|n+1, for each n ∈N.
(iv) |T∗|

1
2 |T|

3
2 = |T|

3
2 |T∗|

1
2 .

(v) T is centered so the partial isometry part in Tn is Un.
(vi) (Tn)∗Tn = (T∗T)n and hence |Tn

| = |T|n, for each n ∈N.
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Proof. (i) From |T|2T = T∗TT = TT∗T = T|T|2, we deduce that |T|T = T|T| and hence |T|
1
2 T = T|T|

1
2 .

(ii) Since T∗T∗TT = T∗TT∗T, so (T∗)2T2 = (T∗T)2 and hence |T2
|
2 = (|T|2)2. Consequently, |T2

| = |T|2.

(iii) For n = 2 we have |T|2U|T| = |T||T|U|T| = |T|U|T|2 = U|T|3. Let for positive integer n, |T|nU|T| =
U|T|n+1. Then

|T|n+1U|T| = |T||T|nU|T|
= |T|U|T|n

= U|T|n+1.

(iv) SinceT∗|T| = |T|T∗, so TT∗|T| = T|T|T∗ = |T|TT∗. This means |T∗|2|T| = |T||T∗|2 and hence |T∗||T| = |T||T∗|.
Therefore, |T∗||T|3 = |T||T∗||T|2 = |T|3|T∗| and so |T∗|

1
2 |T|

3
2 = |T|

3
2 |T∗|

1
2 .

Theorem 2.12. Let T = U|T| ∈ B(H) be a quasinormal operator. Suppose that for each n ∈ N, |T|
1
2 Tn
|T∗|

1
2 =

Wn||T|
1
2 Tn
|T∗|

1
2 | is the polar decomposition. Then Wn = Un.

Proof. By using Lemma 2.11, we have

|T∗|
1
2 (Tn)∗|T|

1
2 |T|

1
2 Tn
|T∗|

1
2 = |T∗|

1
2 (Tn)∗|T|Tn

|T∗|
1
2

= |T∗|
1
2 (Tn)∗Tn

|T||T∗|
1
2

= |T∗|
1
2 (T∗T)n

|T||T∗|
1
2

= |T∗|
1
2 |T|2n+1

|T∗|
1
2

= |T∗|
1
2 |T|

2n+1
2 |T|

2n+1
2 |T∗|

1
2

= (|T∗|
1
2 |T|

2n+1
2 )2.

This implies that ||T|
1
2 Tn
|T∗|

1
2 | = |T|

2n+1
2 |T∗|

1
2 . Also we have |T|

1
2 Tn
|T∗|

1
2 = Tn

|T|
1
2 |T∗|

1
2 = Un

|T|n|T|
1
2 |T∗|

1
2 =

Un
|T|

2n+1
2 |T∗|

1
2 . Now, if |T|

1
2 Tn
|T∗|

1
2 = Wn||T|

1
2 Tn
|T∗|

1
2 | = Wn|T|

2n+1
2 |T∗|

1
2 is the polar decomposition, then we

obtain Wn = Un.

Corollary 2.13. If T ∈ B(H) is quasinormal, then T̃ is centered.

Example 2.14. Let (X,Σ, µ) be a σ-finite measure space and let ϕ : X → X be a measurable transformation such
that µ ◦ ϕ−1 is absolutely continuous with respect to µ. Put h = dµ ◦ ϕ−1/dµ. Let Cϕ : f 7→ f ◦ ϕ be a bounded
composition operator on L2(Σ) with polar decomposition Cϕ = U|Cϕ|. It is easy to see that U = M

1/
√

h◦ϕ
Cϕ and

|Cϕ| = M√
h. It follows that for each f ∈ L2(Σ),

C̃ϕ( f ) = 4

√
h

h ◦ ϕ
f ◦ ϕ.

Note that h ◦ ϕ > 0 almost everywhere. Now, if Cϕ ∈ CR(L2(Σ)) then it is easy to check that

C†ϕ( f ) = χσ(h)E( f ) ◦ ϕ−1, f ∈ L2(Σ),

where E is the conditional expectation operator with respect to ϕ−1(Σ). We can write C†ϕ = M χσ (h)
h

C∗ϕ, where

C∗ϕ( f ) = hE( f ) ◦ ϕ−1. For more details on composition and conditional expectation operators see [2] and references
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therein. Let |Cϕ|
1
2 |C∗ϕ|

1
2 = V||Cϕ|

1
2 |C∗ϕ|

1
2 | be the polar decomposition of |Cϕ|

1
2 |C∗ϕ|

1
2 . Then straightforward calculations

show that

V( f ) =

4√
h√

E(
√

h ◦ ϕ)
f ;

||Cϕ|
1
2 |C∗ϕ|

1
2 |( f ) =

4
√

h ◦ ϕ
√

E(
√

h)E( f ).

Hence by Proposition 2.4, C̃ϕ = VU||Cϕ|
1
2 |C∗ϕ|

1
2 | is the polar decomposition of C̃ϕ. In [4], Embry-Wardrop and

Lambert proved that the composition operator Cϕ ∈ B(L2(Σ)) is centered if and only if h is Σ∞-measurable, where
Σ∞ = ∩∞n=1ϕ

−n(Σ). Now, by this fact and Corollary 2.3, C†ϕ is centered if and only if h is Σ∞-measurable. Recall that
Cϕ is quasinormal if and only if h = h ◦ ϕ (see [10]). So for each n ∈ N, h = h ◦ ϕn and so h ∈ Σ∞. In this case we
have C̃ϕ = Cϕ, and hence C̃ϕ is centered.
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