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Abstract. In this paper, we establish some optimal inequalities for the squared mean curvature in terms
warping functions of a C−totally real doubly warped product submanifold of a locally conformal almost
cosymplectic manifold with a pointwise ϕ−sectional curvature c. The equality case in the statement of
inequalities is also considered. Moreover, some applications of obtained results are derived.
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1. Introduction

The idea of warped product manifolds was first introduced by Bishop and O’Neill (cf. [5]) to study
manifolds of negative curvature. Later on, doubly warped product manifolds studied by Unal [29]. They
defined these manifolds as follows:

Definition 1.1. Let M1 and M2 be two Riemannian manifolds of dimensions n1 and n2 endowed with Riemannian
matrics 11and 12 such that f1 : M1 → (0,∞) and f2 : M2 → (0,∞) be positive differentiable functions on M1 and
M2, respectively. Thus, the doubly warped product M = f2 M1 × f1 M2 is defined to be the product manifold M1 ×M2
with equipped metric 1 = f 2

2 11 + f 2
1 12. Moreover, If we consider γ1 : M1 ×M2 →M1 and γ2 : M1 ×M2 →M2 are

the natural projections on M1 and M2, respectively then the metric 1 on doubly warped product is defined as

1(X,Y) = ( f2 ◦ γ2)2 11(γ1?X, γ1?Y) + ( f1 ◦ γ1)212(γ2?X, γ2?Y) (1.1)

2010 Mathematics Subject Classification. Primary 53C40; Secondary 53C42, 53B25, 58Z05, 58J60
Keywords. Curvatures, doubly warped products, C− totally real immersions, locally conformal almost cosymplectic manifold
Received: 14 May 2016; Accepted: 19 August 2016
Communicated by Mića Stanković
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for any vector fields X,Y tangent to M, where ? is the symbol for the tangent maps. Thus, the functions f1 and f2 are
called warping functions on M. If both f1 = 1 and f2 = 1, then M is called a simply Riemannian product manifold. If
either f1 = 1 or f2 = 1, then M is called a (single) warped product manifold. If f1 , 1 and f2 , 1, then M is called a
non-trivial doubly warped product manifold. Let M = f2 M1 × f1 M2 be a non-trivial doubly warped product manifold
of an arbitrary Riemannian manifold M̃. Then

∇XZ = ∇ZX = (Z ln f2)X + (X ln f1)Z, (1.2)

∇XY = ∇1
XY −

f22

f12 11(X,Y)(ln f2), (1.3)

for any vector fields X,Y ∈ Γ(TM1) and Z ∈ Γ(TM2). Further, ∇1 and ∇2 are Levi-Citvita connections of the induced
metrics on Riemannian manifolds M1 and M2, respectively.

The following well-known result of Chen in [8] obtained a sharp relationship between the squared
norm of mean curvature and the warping function f of warped product M × f M2 isometrically immersed
into a real space form.

Theorem 1.2. [8]. Let x : M1 × f M2 be an isometrically immersion of an n-dimensional warped product into a
2m-dimensional real space form M̃(c) with constant sectional curvature c. Then

∆ f
f
≤

n2

4n2
||H||2 + n1.c

where ni = dimMi, i = 1, 2 and ∆ is the Lapalcian operator of M1. Moreover, the equality holds in the above inequality
if and only if x is mixed totally geodesic and n1H1 = n2H2 such that H1 and H2 are partial mean curvature.

Motivated by Chen’s result several inequalities have been obtained by many geometers for warped
products and doubly warped products in different setting of the ambient manifolds [9, 18, 24, 25, 30, 34, 35].
In this paper, we study to C−totally real doubly warped product isometrically immersed into a locally
conformal almost cosymplectic manifold. The inequalities which we obtain in this paper are very fascinating
because we derive upper bound and lower bound for warping functions in terms of mean curvature, scalar
curvature and pointwise constant ϕ−sectional curvature c. The obtained results generalise some other
inequalities as special cases..

2. Preliminaries

A (2m + 1)-dimensional smooth manifold M̃ is called locally conformal almost cosymplectic manifold, if it is
consisting an endomorphism ϕ of its tangent bundle TM̃ , a structure vector field ξ and a 1-form η which
satisfies the following:

ϕ2 = −I + η ⊕ ξ, η(ξ) = 1, ηoϕ = 0, (2.1)

1(ϕU, ϕV) = 1(U,V) − η(U)η(V), η(U) = 1(U, ξ), (2.2)

(∇̃Uϕ)V = ϑ{1(ϕU,V) − η(V)ϕU}, (2.3)

∇̃Uξ = ϑ{U − η(U)ξ}, (2.4)

for any U,V tangent to M̃ and ω = ϑη (see [26]). Let us we consider that the function ϑ = 0 and ϑ = 1, then
M̃ becomes cosympelctic manifold and Kenmotsu manifold, respectively (see [14, 34]). An almost contact
metric manifold M̃, a plane section σ in TpM̃ of M̃ is said to be a ϕ − section if σ ⊥ ξ and ϕ(σ) = σ. The
sectional curvature K̃(σ) does not depend on the choice of the ϕ−scetion σ of TpM̃ at each point p ∈ M̃, then
M̃ is called a manifold with pointwise constant ϕ − sectional curvature. In this case for any p ∈ M̃ and for
ϕ−scetion σ of TpM̃, the fuction c defined by c(p) = K̃(p) is said to be ϕ − sectional curvature of M̃. That is, for
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a locally conformal almost cosymplectic manifold M̃ of dimension ≥ 5 with pointwise ϕ−sectional curvature
c, its curvature tensor R̃ is defined as

R̃(X,Y,Z,W) =
c − 3ϑ2

4
{1(X,W)1(Y,Z) − 1(X,Z)1(Y,W)}

+
c + ϑ2

4
{1(X, ϕW)1(Y, ϕZ) − 1(X, ϕZ)1(Y, ϕW)

−21(X, ϕY)1(Z, ϕW)}

− {
c + ϑ2

4
+ ϑ′}{1(X,W)η(Y)η(Z) − 1(X,Z)η(X)η(W)

+1(Y,Z)η(X)η(W)1(Y,W)(X)η(Z)}, (2.5)

for any X,Y,Z,W are tangent to M̃(c), where ϑ is the conformal function such that ω = ϑη and ϑ′ = ξϑ.
Moreover, c is the function of constant ϕ−sectional curvature of M̃. If we consider the fuction ϑ = 0 and
ϑ = 1, then M̃(c) becomes cosympelctic space form and Kenmotsu space form, respectively (see [18, 34]).
Let us consider that M be a submanifold of an almost contact metric manifold M̃ with induced metric 1
and if ∇ and ∇⊥ are the induced connections on the tangent bundle TM and the normal bundle T⊥M of M,
respectively, then Gauss and Weingarten formulas are given by

(i) ∇̃UV = ∇UV + h(U,V), (ii) ∇̃UN = −ANU + ∇⊥UN, (2.6)

for each U,V ∈ Γ(TM) and N ∈ Γ(T⊥M), where h and AN are the second fundamental form and the shape
operator (corresponding to the normal vector field N) respectively for the immersion of M into M̃. They are
related as

1(h(U,V),N) = 1(ANU,V), (2.7)

where 1 denotes the Riemannian metric on M̃ as well as the metric induced on M. Now, for any U ∈ Γ(TM)
and N ∈ Γ(T⊥M), we have

(i) ϕU = TU + FU, (ii) ϕN = tN + f N, (2.8)

where TU (tN) and FU ( f N) are tangential and normal components of ϕU (ϕN), respectively. From (2.1)
and (2.5) (i), it is easy to observe that for each U,V ∈ Γ(TM), we have

(i) 1(TU,V) = −1(U,TV) (ii) ||T||2 =

n∑
i, j=1

12(Tei, e j). (2.9)

For a subamnifold M, the Gauss equation is:

R̃(U,V,Z,W) = R(U,V,Z,W) + 1(h(U,Z), h(V,W))

− 1(h(U,W), h(V,Z)), (2.10)

for any U,V,Z,W ∈ Γ(TM), where R̃ and R are the curvature tensors on M̃ and M, respectively. The mean
curvature vector H for an orthonormal frame {e1, · · · , en} of tangent space TM on M is defined by

H =
1
n

trace(h) =
1
n

n∑
i=1

h(ei, ei), (2.11)

where n = dim M. Also, for any r ∈ {en+1, · · · , e2m+1}, we set

hr
i j = 1(h(ei, e j), er) and ||h||2 =

n∑
i, j=1

1(h(ei, e j), h(ei, e j)). (2.12)
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The scalar curvature ρ for a submanifold M of an almost contact manifold M̃ is given by

ρ =
∑

1≤i, j≤n

K(ei ∧ e j), (2.13)

where K(ei ∧ e j) is the sectional curvature of plane section spanned by ei and e j. Let Gr be a r-plane section
on TM and {e1, e2, · · · , er} any orthonormal basis of Gr. Then the scalar curvature ρ(Gr) of Gr is given by

ρ(Gr) =
∑

1≤i, j≤r

K(ei ∧ e j). (2.14)

A submanifold M of an almost contact metric manifold M̃ is said to be totally umbilical and totally geodesic
if h(U,V) = 1(U,V)H and h(U,V) = 0, respectively, for any U,V ∈ Γ(TM), where H is the mean curvature
vector of M. Furthermore, if H = 0, then M is minimal in M̃. On the oher hand, a submanifold M is called
totally real submanifold if T is identically zero, i.e. ϕU ∈ Γ(T⊥p M) for any U ∈ Γ(TpM) for each p ∈M.

Moreover, if the structure vector field ξ is normal to submanifold M, then M is said to be a C−totally
real submanifold [19] of an almost contact manifold.

Let φ : M = f2 M1 × f M2 → M̃ be isometric immersion of a doubly warped product f2 M1 × f M2 into a
Riemannian manifold of M̃ of constant sectional curvature c. Suppose that n1, n2 and n be the dimensions of
M1, M2 and M1 × f M2, respectively. Then for unit vector fields X and Z tangent to M1 and M2 respectively,
we have

K(X ∧ Z) = 1(∇Z∇XX − ∇X∇ZX,Z)

=
1
f1
{(∇1

XX) f1 − X2 f1} +
1
f2
{(∇2

ZZ) f2 − Z2 f2}. (2.15)

If we consider the local orthonormal frame {e1, e2, · · · , en) such that e1, e2, · · · , en1 tangent to M1 and
en1+1, · · · , en are tangent to M2, then the sectional curvatre in terms of general doubly warped product is
defined by ∑

1≤i≤n1

∑
n1+1≤ j≤n

K(ei ∧ e j) =
n2∆1 f1

f1
+

n1∆2 f2
f2

(2.16)

for each j = n1 + 1, · · · ,n. Now, we have the following useful lemma.

Lemma 2.1. [8]. Let a1, a2, · · · , an, an+1 be n + 1 (n ≥ 2) be real numbers such that

(
n∑

i=1

ai)2 = (n − 1)(
n∑

i=1

a2
i + an+1). (2.17)

Then 2a1a2 ≥ a3 with the equality holds if and only if a1 + a2 = a3 = · · · , an.

On the other hand, we analyze general doubly warped products in locally conformal almost cosym-
plectic manifold. That is, let M = f2 M1 × f1 M2 → M̃ be an isometric immersion from a doubly warped
product f2 M1 × f1 M2 into a locally conformal almost cosymplectic manifold M̃. Assume that ξ ∈ Γ(TM1)
and X ∈ Γ(TM2), thus, from (2.4), we obtain

∇̃Xξ = ϑ{X − η(X)ξ},

which implies by using (2.6) (i) and η(X) = 0, that

∇Xξ = ϑX, h(X, ξ) = 0.
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Using (1.3) in the first relation of above equation, we find

(X ln f2)ξ + (ξ ln f1)X = ϑX. (2.18)

Now, taking the inner product with ξ in (2.18), we obtain X ln f2 = 0, i.e., f2 is constant on M2. Hence, there
is no doubly warped product in a locally conformal almost cosymplectic manifold, if ξ is tangent to M1.
Moreover, if ξ ∈ Γ(TM2) and Z ∈ Γ(TM1), then again from (2.4), we have

∇̃Zξ = ϑZ,

From (2.6) (i), we get
∇Zξ = ϑZ, h(Z, ξ) = 0. (2.19)

Again, using (1.3) in (2.19) and then taking the inner product with ξ, it is easy to see f1 is also constant
function on M1. Hence, in both the cases, any one of the warping function is constant. Thus, we conclude
that there do not exist doubly warped product submanifold in a locally conformal almost cosymplectic
manifold such that ξ is tangent to the submanifold. Therefore, we consider ξ is normal to submanifold
M and there is a non-trivial doubly warped product in a locally conformal almost cosymplectic manifold
which is called C−totally real doubly warped product. In the next section, we obtain some geometric
inequalities for such type doubly warped product immersions.

3. Main inequalities of C−totally real doubly warped products

Theorem 3.1. Let M̃(c) be a (2m + 1)−dimensional locally conformal almost cosymplectic manifold and φ : f2

M1 × f1 M2 → M̃(c) be an isometric immersion of an n-diminesional C−totally real doubly warped product into M̃(c)
such that c is pointwise constant ϕ−sectional curvature. Then

(i) The relation between warping functions and the squared norm of mean curvature is given by

n2∆1 f1
f1

+
n1∆2 f2

f2
≤

n2

4
||H||2 +

c − 3ϑ2

4
n1n2, (3.1)

where ni = dim Mi, i = 1, 2 and ∆i is the Laplacian operator on Mi, i − 1, 2.
(ii) The equality sign holds in the above inequality if and only if φ is mixed totally geodesic immersion and

n1.H1 = n2.H2, where H1 and H2 are the partial mean curvature vectors on M1 and M2, respectively.

Proof. Suppose that f2 M1 × f M2 be a C−totally real doubly warped product submanifold in a locally confor-
mal almost cosymplectic manifold M̃(c) with pointwise constant ϕ−sectional curvature c. Then from Gauss
equation (2.10) and (2.5), we derive

2ρ =
c − 3ϑ2

4
n(n − 1) + n2

||H||2 − ||h||2. (3.2)

Let us consider that

δ = 2ρ −
c − 3ϑ2

4
n(n − 1) −

n2

2
||H||2. (3.3)

Then from (3.2) and (3.3), it follows that

n2
||H||2 = 2(δ − ||h||2). (3.4)

Thus from the orthonormal frame field {e1, e2, · · · , en}, the above equation takes the form

( 2m+1∑
r=n+1

n∑
i=1

hr
ii

)2
= 2

(
δ +

2m+1∑
r=n+1

n∑
i=1

(hr
ii)

2 +

2m+1∑
r=n+1

n∑
i< j=1

(hr
i j)

2 +

2m+1∑
r=n+1

n∑
i, j=1

(hr
i j)

2
)
,
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which simplifies as

1
2

(
hn+1

11 +

n1∑
i=2

hn+1
ii +

n∑
t=n1+1

hn+1
tt

)2
= δ + (hn+1

11 )2 +

n1∑
i=2

(hn+1
ii )2 +

n∑
t=n1+1

(δn+1
tt )2

−

∑
2≤ j,l≤n1

hn+1
j j hn+1

ll −
∑

N1+1≤t,s≤n

hn+1
tt hn+1

ss

+

n∑
i< j=1

(hn+1
i j )2 +

2m+1∑
r=n+1

n∑
i, j=1

(hr
i j)

2. (3.5)

Assume that a1 = hn+1
11 , a2 =

∑n1
i=2 hn+1

ii and a3 =
∑n

t=n1+1 hn+1
tt . Then applying the Lemma 2 in (3.5), it is easily

seen that
δ
2

+

n∑
i< j=1

(hn+1
i j )2 +

1
2

2m+1∑
r=n+1

n∑
i, j=1

(hr
i j)

2
≤

∑
2≤ j,l≤n1

hn+1
j j hn+1

ll +
∑

n1+1≤t,s≤n

hn+1
tt hn+1

ss . (3.6)

The equality holds in (3.6) if and only if

n1∑
i=1

hn+1
ii =

n∑
t=n1+1

hn+1
tt . (3.7)

On the other hand, from (2.13) and (2.16), we find that

n2∆1 f1
f1

+
n1∆2 f2

f2
= ρ −

∑
1≤ j,k≤n1

K(ei ∧ ek) −
∑

n1+1≤t,s≤n

K(et ∧ es).

From (2.5) and (2.10), it follows that

n2∆1 f1
f1

+
n1∆2 f2

f2
= ρ −

c − 3ϑ2

8
n1(n1 − 1) −

2m+1∑
r=1

∑
2≤ j,k≤n1

(hr
j jh

r
kk − (hr

jk)2)

−
c − 3ϑ2

8
n2(n2 − 1) −

2m+1∑
r=1

∑
n1+1≤t,s≤n

(hr
tth

r
ss − (hr

ts)
2). (3.8)

Thus combining (3.6) and (3.8), it is easily seen that

n2∆1 f1
f1

+
n1∆2 f2

f2
≤ ρ −

c − 3ϑ2

8
n(n − 1) +

c − 3ϑ2

4
n1n2 −

δ
2
. (3.9)

Hence, from (3.3), the inequalities (3.9) reduce to

n2∆1 f1
f1

+
n1∆2 f2

f2
≤

n2

4
||H||2 +

c − 3ϑ2

4
n1n2 (3.10)

which is the inequality (3.1). On the other hand, the equality sign holds in (3.10) if and only if from (3.7),
we get n1H1 = n2H2. Moreover, from (3.6), we find that hr

i j = 0, for each 1 ≤ i ≤ n1, n1 + 1 ≤ j ≤ n and
n + 1 ≤ r ≤ 2m + 1, which means that φ is a mixed totally geodesic immersion. The converse part is
straightforward. Thus, the proof is complete.

Now, we have the following applications of Theorem 3.1
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Remark 3.1. If we substitute either f1 = 1 or f2 = 1 in Theorem 3.1, then Theorem 3 turns into C−totally real
warped product.

Corollary 3.1. Let M̃(c) be a (2m + 1)−dimensional locally conformal almost cosymplectic manifold and φ : M1 × f

M2 → M̃(c) be an isometric immersion of an n-diminesional C−totally real warped product into M̃(c) such that c is
pointwise constant ϕ−sectional curvature. Then

(i) The relation between warping function and the squared norm of mean curvature is given by

n2∆ f
f
≤

n2

4
||H||2 +

c − 3ϑ2

4
n1n2,

where ni = dim Mi, i = 1, 2 and ∆ is the Laplacian operator on M1.
(ii) The equality sign holds in the above inequality if and only if φ is mixed totally geodesic immersion and

n1H1 = n2H2, where H1 and H2 are the partial mean curvature vectors on M1 and M2, respectively.

Remark 3.2. If we put either f1 = 1 or f2 = 1 and ϑ = 0 in Theorem 3.1, then it is the same inequality of Theorem
3.2 in [34].

Remark 3.3. If we consider either f1 = 1 or f2 = 1 and ϑ = 1 in Theorem 3.1, then the Theorem 3.1 is exactly the
Lemma 3.1 of [18].

Corollary 3.2. Let φ : M = f2 M1 × f1 M2 → M̃(c) be an isometric immersion of an n-diminesional C−totally real
doubly warped product into a locally conformal almost cosympelctic manifold M̃(c) with c, a pointwise constant
ϕ−sectional curvature such that the warping functions are harmonics. Then, M is not a minimal submanifold of M̃
with inequality

ϑ >

√
c
3
.

Corollary 3.3. Let φ : M = f2 M1 × f1 M2 → M̃(c) be an isometric immersion of an n-diminesional C−totally real
doubly warped product into a locally conformal almost cosympelctic manifold M̃(c) with c, a pointwise constant
ϕ−sectional curvature. Suppose that the warping functions f1 and f2 of M are eigenfunctions of Laplacian on M1

and M2 with corresponding eigenvalues λ1 > 0 and λ2 > 0, respectively. Then M is not a minimal submanifold of M̃
with inequality

ϑ ≥

√
c
3
.

Corollary 3.4. Let φ : M = f2 M1 × f1 M2 → M̃(c) be an isometric immersion of an n-diminesional C−totally real
doubly warped product into a locally conformal almost cosympelctic manifold M̃(c) with c, a pointwise constant
ϕ−sectional curvature. Suppose that one of the warping function is harmonic and other one is eigenfunction of
Laplacian with corresponding eigenvalue λ > 0. Then M is not minimal in M̃ with inequality

ϑ ≥

√
c
3
.

Now, motivated by the Chen’s paper [9], we establish the following sharp relationship for the squared
norm of the mean curvature vector in terms of intrinsic invariants.

Theorem 3.2. Let M̃(c) be a (2m + 1)−dimensional locally conformal almost cosymplectic manifold and φ : M = f2

M1 × f1 M2 → M̃(c) be an isometric immersion of an n-diminesional C−totally real doubly warped product into M̃(c)
such that c is pointwise constant ϕ−sectional curvature. Then
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(i) (∆1 f1
n1 f1

)
+

(∆2 f2
n2 f2

)
≥ ρ −

n2(n − 2)
2(n − 1)

||H||2 −
(c − 3ϑ2

4

)
(n + 1)(n − 2), (3.11)

where ni = dim Mi, i = 1, 2 and ∆i is the Laplacian operator on Mi, i = 1, 2.
(ii) If the equality sign holds in (3.11), then equality sign in (3.23) holds automatically.

(iii) If n = 2, then equality sign in (3.11) holds identically.

Proof. Let us consider that f2 M1 × f M2 be a C−totally real doubly warped product in a locally conformal
almost cosymplectic manifold M̃(c) with pointwise constant ϕ−scetional curvature c. Then from Gauss
equation, we find

2ρ =
(c − 3ϑ2

4

)
n(n − 1) + n2

||H||2 − ||h||2. (3.12)

Now, we consider that

δ = 2ρ −
(c − 3ϑ2

4

)
(n + 1)(n − 2) −

n2(n − 2)
n − 1

||H||2. (3.13)

Then from (3.12) and (3.13), it follows that

n2
||H||2 = (n − 1)

[
||h||2 + δ −

(c − 3ϑ2

2

)]
. (3.14)

Let {e1, e2, · · · , en} be an orthonormal frame, the above equation takes the following form 2m+1∑
r=n+1

n∑
i=1

hr
ii


2

= (n − 1)

δ +

2m+1∑
r=n+1

n∑
i=1

(hr
ii)

2 +

2m+1∑
r=n+1

n∑
i< j=1

(hr
i j)

2 +

2m+1∑
r=n+2

n∑
i, j=1

(hr
i j)

2
−

(c − 3ϑ2

2

) ,
which implies thathn+1

11 +

n1∑
i=2

hn+1
ii +

n∑
t=n1+1

hn+1
tt


2

= δ + (hn+1
11 )2 +

n1∑
i=2

(hn+1
ii )2 +

n∑
t=n1+1

(hn+1
tt )2

−

∑
2≤ j,l≤n1

hn+1
j j hn+1

ll

−

∑
n1+1≤t,s≤n

hn+1
tt hn+1

ss +

n∑
i< j=1

(hn+1
i j )2 +

2m+1∑
r=n+1

n∑
i, j=1

(hr
i j)

2
−

(c − 3ϑ2

2

)
. (3.15)

Let us consider that a1 = hn+1
11 , a2 =

∑n1
i=2 hn+1

ii and a3 =
∑n

t=n1+1 hn+1
tt . Then from Lemma 2.1 and equation

(3.15), we get

δ
2
−

(c − 3ϑ2

2

)
+

n∑
i< j=1

(hn+1
i j )2 +

1
2

2m+1∑
r=n+1

n∑
i, j=1

(hr
i j)

2
≤

∑
2≤ j,l≤n1

hn+1
j j hn+1

ll +
∑

n1+1≤t,s≤n

hn+1
tt hn+1

ss . (3.16)

with equality holds in (3.16) if and only if

n1∑
i=1

hn+1
ii =

n∑
t=n1+1

hn+1
tt . (3.17)

On the other hand, from(3.16) and (2.13), we have

K(e1 ∧ en1+1) ≥
2m+1∑
r=n+1

∑
j∈P1n1+1

(hr
1 j)

2 +
1
2

2m+1∑
r=n+1

i, j∑
j∈P1n1+1

(hr
i j)

2 +

2m+1∑
r=n+1

∑
j∈P1n1+1

(hr
n1+1 j)

2
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+
1
2

2m+1∑
r=n+1

∑
i, j∈P1n1+1

(hr
i j)

2 +
1
2

2m+1∑
r=n+1

n1+1∑
i, j=1

(hr
i j)

2 +
δ
2
,

where P1n1+1 = {1, · · · ,n} − {1,n1 + 1}. Thus, it implies that

K(e1 ∧ en1+1) ≥
δ
2
, (3.18)

Since, M = f2 M1 × f1 M2 is a C−totally real doubly warped product submanifold, we have ∇XZ = ∇ZX =
(X ln f1)Z + (Z ln f2)X, for any unit vector fields X and Z tangent to M1 and M2, respectively. Then from
(2.15), (3.13) and (3.18), the scalar curvature derives as;

ρ ≤
1
f1
{(∇e1 e1) f1 − e2

1 f1} +
1
f2
{(∇e2 e2) f2 − e2

2 f2} +
n2(n − 2)
2(n − 1)

||H||2 +
(c − 3ϑ2

4

)
(n + 1)(n − 2). (3.19)

Let the equality holds in (3.19), then all leaving terms in (3.16) and (3.18), we obtain the follwing conditions,
i.e.,

hr
1 j = 0, hr

jn1+1 = 0, hr
i j = 0, where i , j, and r ∈ {n + 1, · · · , 2m + 1};

hr
1 j = hr

jn1+1 = hr
i j = 0, and hr

11 + hr
n1+1n1+1 = 0, i, j ∈ P1n1+1, r = n + 2, · · · , 2m + 1. (3.20)

Similarly, we extend the relation (3.19) as follows

ρ ≤
1
f1
{(∇eαeα) f1 − e2

α f1} +
1
f2
{(∇eβeβ) f2 − e2

β f2} +
n2(n − 2)
2(n − 1)

||H||2 +
(c − 3ϑ2

4

)
(n + 1)(n − 2), (3.21)

for any α = 1, · · · ,n1 and β = n1 + 1, · · · n. Taking the summing up α from 1 to n1 and up β from n1 + 1 to n2
repectively, we arrive at

n1.n2.ρ ≤
n2.∆1 f1

f1
+

n1.∆2 f2
f2

+
n2.n1.n2(n − 2)

2(n − 1)
||H||2 +

(c − 3ϑ2

4

)
n1.n2(n + 1)(n − 2). (3.22)

Similarly, the equality sign holds in (3.22) identically. Thus the equality sign in (3.19) holds for each
α ∈ {1, · · · ,n1} and β ∈ {n1 + 1, · · · ,n}. Then we get the following;

hr
α j = 0, hr

i j = 0, hr
i j = 0, where i , j, and r ∈ {n + 1, · · · , 2m + 1};

hr
α j = hr

i j = hr
i j = 0, and hr

αα + hr
ββ = 0, i, j ∈ P1n1+1, r = n + 2, · · · , 2m + 1. (3.23)

Moreover, If n = 2. Then n1 = n2 = 1. thus from (2.15), we get ρ = ∆1 f1 + ∆2 f2. Hence the equality in (3.11)
holds, which proves the theorem completely.

Now, we also have the following applications of Theorem 3.2.

Remark 3.4. If either f1 = 1 or f2 = 1 in Theorem 3.2, then we get following corollary for a C−totally real warped
product.

Corollary 3.5. Let M̃(c) be a (2m + 1)−dimensional locally conformal almost cosymplectic manifold and φ : M =

M1 × f M2 → M̃(c) be an isometric immersion of an n-diminesional C−totally real warped product into M̃(c) such
that c is pointwise constant ϕ−sectional curvature. Then

(i) ( ∆ f
n1 f

)
≥ ρ −

n2(n − 2)
2(n − 1)

||H||2 −
(c − 3ϑ2

4

)
(n + 1)(n − 2), (3.24)

where ni = dim Mi, i = 1, 2 and ∆ is the Laplacian operator on M1.
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(ii) If the equality sign holds in (3.24), then equality sign in (3.23) holds automatically.
(iii) If n = 2, then equality sign in (3.11) holds identically.

We, also have the following special cases of Theorem 3.2.

Corollary 3.6. Let φ : M = f2 M1 × f1 M2 → M̃(c) be an n-dimensional C−totally real doubly warped product into
a locally conformal almost cosympelctic manifold M̃(c) with c, a pointwise constant ϕ−sectional curvature such that
the warping functions are harmonics. Then M is not minimal in M̃ with inequality

c >
4ρ

(n + 1)(n − 2)
+ 3ϑ2.

Corollary 3.7. Let φ : M = f2 M1 × f1 M2 → M̃(c) be an n-diminesional C−totally real doubly warped product into
a locally conformal almost cosympelctic manifold M̃(c) with c, a pointwise constant ϕ−sectional curvature. Suppose
that the warping functions f1 and f2 of M are the eigenfunctions of Laplacians on M1 and M2 with corresponding
eigenvalues λ1 > 0 and λ2 > 0, respectively. Then M is not minimal in M̃ with inequality

c ≥
4ρ

(n + 1)(n − 2)
+ 3ϑ2.

Corollary 3.8. Let φ : M = f2 M1 × f1 M2 → M̃(c) be an n-dimensional C−totally real doubly warped product into
a locally conformal almost cosympelctic manifold M̃(c) with c, a pointwise constant ϕ−sectional curvature. Suppose
that one of the warping function is harmonic and other one is eigenfunction of the Laplacian with corresponding
eigenvalue λ > 0. Then M is not minimal in M̃ with inequality

c ≥
4ρ

(n + 1)(n − 2)
+ 3ϑ2.

If we combine both Theorem 3.1 and Theorem 3.2, then we get the following result.

Theorem 3.3. Assume thatφ : M = f2 M1× f1 M2 → M̃(c) be an isometric immersion of an n-diminesional C−totally
real doubly warped product into a (2m + 1)-dimensional locally conformal almost cosymplectic manifold M̃(c) such
that c is pointwise constant ϕ−sectional curvature. Then

ρ −
n2(n − 2)
2(n − 1)

||H||2 −
(c − 3ϑ2

4

)
(n + 1)(n − 2) ≤

(∆1 f1
n1 f1

)
+

(∆2 f2
n2 f2

)
≤

n2

4n1n2
||H||2 +

(c − 3ϑ2

4

)
.

Remark 3.5. Theorem 3.3 represent an upper and lower bounds for warping functions of a C−totally real doubly
warped product.

Remark 3.6. If either f1 = 1 or f2 = 1 in Theorem 3.3, then we get following corollary for a C−totally real warped
product.

Corollary 3.9. Assume that φ : M = M1 × f M2 → M̃(c) be an isometric immersion of an n-diminesional C−totally
real doubly warped product into a (2m + 1)−dimensional locally conformal almost cosymplectic manifold M̃(c) such
that c is pointwise constant ϕ−sectional curvature. Then

ρ −
n2(n − 2)
2(n − 1)

||H||2 −
(c − 3ϑ2

4

)
(n + 1)(n − 2) ≤

( ∆ f
n1 f

)
≤

n2

4n1n2
||H||2 +

(c − 3ϑ2

4

)
.
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