Entire Functions Sharing a Linear Polynomial with Linear Differential Polynomials

Goutam Kumar Ghosh ${ }^{\text {a }}$
${ }^{a}$ Assistant Professor, Department of Mathematics, Dr. Bhupendra Nath Dutta Smriti Mahavidyalaya, Hatgobindapur, Burdwan, W.B, India

Abstract

In the paper we study the uniqueness of entire functions sharing a linear polynomial with linear differential polynomials generated by them. The results of the paper improves the corresponding results of P. Li (Kodai Math J. 22: 446-457, 1999), Lahiri-Present author(G. K. Ghosh) (Analysis (Munich)31: 331-340,2011) and Lahiri-Mukherjee(Bull. Aust. Math. Soc. 85: 295-306, 2012).

1. Introduction, Definitions and Results

In the paper, by meromorphic functions we shall always mean meromorphic functions in the complex plane \mathbb{C}. We adopt the standard notations of the Nevanlinna theory of meromorphic functions as explained in [1]. It will be convenient to let E denote any set of positive real numbers of finite linear measure, not necessarily the same at each occurrence. For a non-constant meromorphic function h, we denote by $T(r, h)$ any quantity satisfying $S(r, h)=o\{T(r, h)\}$, as $r \rightarrow \infty$ and $r \notin E$.

Let f and g be two nonconstant meromorphic functions and let a be a small function of f. We denote by $E(a ; f)$ the set of a-pionts of f, where each point is counted according its multiplicity. We denote by $\bar{E}(a ; f)$ the reduced form of $E(a ; f)$. We say that f, g share a CM, provided that $E(a ; f)=E(a ; g)$, and we say that f and g share $a \mathrm{IM}$, provided that $\bar{E}(a ; f)=\bar{E}(a ; g)$. In addition, we say that f and g share $\infty \mathrm{CM}$, if $\frac{1}{f}$ and $\frac{1}{g}$ share 0 CM , and we say that f and g share $\infty \mathrm{IM}$, if $\frac{1}{f}$ and $\frac{1}{g}$ share 0 IM .

We require the following definitions.
Definition 1.1. A meromorphic function $a=a(z)$ is called a small function of fif $T(r, a)=S(r, f)$.
Definition 1.2. Let f and g be two non-constant meromorphic functions defined in \mathbb{C}. For $a, b \in \mathbb{C} \cup\{\infty\}$ we denote by $N(r, a ; f \mid g \neq b)(\bar{N}(r, a ; f \mid g \neq b)$ the counting function (reduced counting function) of those a-points of f which are not the b-points of g.

Definition 1.3. Let f and g be two non-constant meromorphic functions defined in \mathbb{C}. For $a, b \in \mathbb{C} \cup\{\infty\}$ we denote by $N(r, a ; f \mid g=b)(\bar{N}(r, a ; f \mid g=b)$ the counting function (reduced counting function) of those a-points of f which are the b-points of g.

[^0]In 1986 G. Jank, E. Mues and L. Volkman [2] considered the case when an entire function shared a single value with its first two derivatives and proved the following result.

Theorem 1.4. [2] Let f be a nonconstant entire function and $a(\neq 0)$ be a finite number. If $\bar{E}(a ; f)=\bar{E}\left(a ; f^{(1)}\right)$ and $\bar{E}(a ; f) \subset \bar{E}\left(a ; f^{(2)}\right)$, then $f \equiv f^{(1)}$.
In fact, in Theorem $1.4 f$ and $f^{(1)}$ share the value $a \mathrm{CM}$ (counting multiplicities). Again considering $f=$ $e^{w z}+w-1$, where $w^{m-1}=1, w \neq 1$ and $m(\geq 3)$ is an integer and $a=w$, we can verify that the second derivative in Theorem 1.4 can not be simply replaced by the $m^{\text {th }}$ derivative for $m \geq 3$ (see [9]) .

In 1995 H . Zhong[9] generalised Theorem 1.4 and proved the following theorem.
Theorem 1.5. [9] Let f be a non-constant entire function and $a(\neq 0)$ be a finite complex number. If f and $f^{(1)}$ share the value $a C M$ and $\bar{E}(a ; f) \subset \bar{E}\left(a ; f^{(n)}\right) \cap \bar{E}\left(a ; f^{(n+1)}\right)$ for $n \geq 1$, then $f \equiv f^{(n)}$.

For $A \subset \mathbb{C} \cup\{\infty\}$, we denote by $N_{A}(r, a ; f)\left(\bar{N}_{A}(r, a ; f)\right)$ the counting function (reduced counting function) of those a-points of f which belong to A.

In 2011 I. Lahiri and Present author(G. K. Ghosh) [3] improved Theorem 1.5 in the following manner.
Theorem 1.6. [3] Let f be a nonconstant entire function and a, b be two nonzero finite constants. Suppose further that $A=\bar{E}(a ; f) \backslash \bar{E}\left(a ; f^{(1)}\right)$ and $B=\bar{E}\left(a ; f^{(1)}\right) \backslash\left\{\bar{E}\left(a ; f^{(n)}\right) \cap \bar{E}\left(b ; f^{(n+1)}\right)\right\}$ for $n(\geq 1)$. If each common zero of $f-a$ and $f^{(1)}-a$ has the same multiplicity and $N_{A}(r, a ; f)+N_{B}\left(r, a ; f^{(1)}\right)=S(r, f)$, then $f=\lambda e^{\frac{b z}{a}}+\frac{a b-a^{2}}{b}$ or $f=\lambda e^{\frac{b z}{a}}+a$, where $\lambda(\neq 0)$ is a constant.

In 1999 P . Li [6] improved Theorem 1.5 by considering a linear differential polynomial instead of the derivative. The result of P. Li may be stated as follows:

Theorem 1.7. [6] Let fbe nonconstant entire function and $L=a_{1} f^{(1)}+a_{2} f^{(2)}+\cdots+a_{n} f^{(n)}$, where $a_{1}, a_{2}, \cdots, a_{n}(\neq 0)$ are constants. If $\bar{E}(a ; f)=\bar{E}\left(a ; f^{(1)}\right)$ and $\bar{E}(a ; f) \subset \bar{E}(a ; L) \cap \bar{E}\left(a ; L^{(1)}\right)$, then $f \equiv f^{(1)} \equiv L$.

In the same paper $\mathrm{P} . \mathrm{Li}[6]$ also proved the following result.
Theorem 1.8. [6] Let f be a non-constant entirefunction and $L=a_{1} f^{(1)}+a_{2} f^{(2)}+\cdots+a_{n} f^{(n)}$, where $a_{1}, a_{2}, \ldots, a_{n}(\neq 0)$ are constants. If $\bar{E}(a ; f)=\bar{E}(a ; L), \bar{E}(a ; f) \subset \bar{E}\left(a ; f^{(1)}\right) \cap \bar{E}\left(a ; L^{(1)}\right)$ and $\sum_{k=1}^{n} 2^{k} a_{k} \neq 0$ or $\sum_{k=1}^{n} a_{k} \neq-1$, then $f \equiv f^{(1)} \equiv L$.

In 2011 I. Lahiri and G. K. Ghosh [4] improved Theorem 1.8 by replacing the nature of sharing in the following manner.

Theorem 1.9. [4] Let f be a non-constant entire function in \mathbb{C}, a be a finite nonzero complex number and $L=$ $a_{1} f^{(1)}+a_{2} f^{(2)}+\cdots+a_{n} f^{(n)}$, where $a_{1}, a_{2}, \ldots, a_{n}(\neq 0)$ are constants.

Further suppose that $E_{1)}(a ; f) \subset E\left(a ; f^{(1)}\right)$ and $N_{A}(r, a ; f)+N_{B}(r, a ; L)=S(r, f)$, where $A=E(a ; f) \backslash E(a ; L)$ and $B=E(a ; L) \backslash\left\{E\left(a ; f^{(1)}\right) \cap E\left(a ; L^{(1)}\right)\right\}$. Then one of the following cases holds:
(i) $f=a+\alpha e^{z}$ and $L=\alpha e^{z}$, where α is a nonzero constant;
(ii) $f=L=\alpha e^{z}$, where α is a nonzero constant;
(iii) $f=a+\frac{\alpha^{2}}{a} e^{2 z}-\alpha e^{z}$ and $L=\alpha e^{z}$, where $\sum_{k=1}^{n} 2^{k} a_{k}=0, \sum_{k=1}^{n} a_{k}=-1$ and α is a nonzero constant.

In the same paper I. Lahiri and G. K. Ghosh also proved the following result.
Theorem 1.10. [4] Let f be a nonconstant entire function in \mathbb{C}, a be a finite nonzero complex number and $L=$ $a_{1} f^{(1)}+a_{2} f^{(2)}+\cdots+a_{n} f^{(n)}$, where $a_{1}, a_{2}, \ldots, a_{n}(\neq 0)$ are constants. Further let $N_{A}(r, a ; f)+N_{B}(r, a ; L)=S(r, f)$, where $A=E(a ; f) \backslash E(a ; L)$ and $B=E(a ; L) \backslash\left\{E\left(a ; f^{(1)}\right) \cap E\left(a ; L^{(1)}\right)\right\}$. If $f \not \equiv L$ then one of the following holds:
(i) $f=a+\alpha e^{z}$ and $L=\alpha e^{z}$, where α is a nonzero constant;
(ii) $f=a+\frac{\alpha^{2}}{a} e^{2 z}-\alpha e^{z}$ and $L=\alpha e^{z}$, where $\sum_{k=1}^{n} 2^{k} a_{k}=0, \sum_{k=1}^{n} a_{k}=-1$ and α is a nonzero constant.

In 2012 I. Lahiri and R. Mukherjee [5] improved Theorem 1.7 in the following manner.
Theorem 1.11. [5] Let f be a non-constant entire function in \mathbb{C}, a be a finite nonzero complex number and $L=$ $a_{1} f^{(1)}+a_{2} f^{(2)}+\cdots+a_{n} f^{(n)}$,where $a_{1}, a_{2}, \ldots, a_{n}(\neq 0)$ are constants.

Suppose further that:
(i) $N_{A}(r, a ; f)+N_{B}\left(r, a ; f^{(1)}\right)=S(r, f)$, where $A=\bar{E}(a ; f) \backslash \bar{E}\left(a ; f^{(1)}\right)$ and $B=\bar{E}\left(a ; f^{(1)}\right) \backslash\left\{\bar{E}(a ; L) \cap \bar{E}\left(a ; L^{(1)}\right)\right\}$;
(ii) $\bar{E}_{1)}(a ; f) \subset \bar{E}\left(a ; f^{(1)}\right) \cap \bar{E}\left(a ; L^{(1)}\right)$; and
(iii) $\bar{E}_{(2}(a ; f) \cap \bar{E}\left(0 ; L^{(1)}\right)=\emptyset$.

Then $L=\alpha e^{z}$ and $f=\alpha e^{z}$ or $f=a+\alpha e^{z}$, where $\alpha(\neq 0)$ is a constant.
In the paper we consider the situation when a nonconstant entire function f share a linear polynomial $a(z)=\alpha z+\beta, \alpha(\neq 0)$ and β are constants, with their linear differential polynomial $L, L^{(1)}$.

We now state the main result of the paper.
Theorem 1.12. Let f be a nonconstant entire function in $\mathbb{C}, a=\alpha z+\beta(\not \equiv f)$, where $\alpha(\neq 0)$ and β are constants, and $L=a_{2} f^{(2)}+a_{3} f^{(3)}+\cdots+a_{n} f^{(n)}$,where $a_{2}, a_{3}, \ldots, a_{n}(\neq 0)$ are constants.

Further suppose that
(i) $N_{A}(r, a ; f)+N_{B}(r, a ; L)=S(r, f)$, where $A=\bar{E}(a ; f) \backslash \bar{E}(a ; L)$ and $B=\bar{E}(a ; L) \backslash\left\{\bar{E}\left(a ; f^{(1)}\right) \cap \bar{E}\left(a ; f^{(2)}\right) \cap \bar{E}\left(a ; L^{(1)}\right)\right\}$;
(ii) $\bar{E}_{1)}(a ; f) \subset \bar{E}\left(a ; f^{(1)}\right)$; and
(iii) $\bar{N}_{(2}(r, a ; f)=S(r, f)$.

Then $f=L=c e^{z}$, or $f=a+c e^{z}$ and $L=L^{(1)}=c e^{z}$ and $\sum_{k=2}^{n} a_{k}=1$, where $c(\neq 0)$ is a constant.
In the next theorem we see the possible form of an entire function if we drop the hypothesis $\bar{E}_{1)}(a ; f) \subset$ $\bar{E}\left(a ; f^{(1)}\right)$. In fact the Case 2. of the proof of Theorem 1.12 suggests the following theorem.

Theorem 1.13. Let f be a nonconstant entire function in $\mathbb{C}, a=\alpha z+\beta(\not \equiv f)$, where $\alpha(\neq 0)$ and β are constants, and $L=a_{2} f^{(2)}+a_{3} f^{(3)}+\cdots+a_{n} f^{(n)}$,where $a_{2}, a_{3}, \ldots, a_{n}(\neq 0)$ are constants. Further let $N_{A}(r, a ; f)+N_{B}(r, a ; L)=S(r, f)$ and $\bar{N}_{(2}(r, a ; f)=S(r, f)$, where $A=\bar{E}(a ; f) \backslash \bar{E}(a ; L)$ and $B=\bar{E}(a ; L) \backslash\left\{\bar{E}\left(a ; f^{(1)}\right) \cap \bar{E}\left(a ; f^{(2)}\right) \cap \bar{E}\left(a ; L^{(1)}\right)\right\}$. If $f \not \equiv L$ then $f=a+c e^{z}$ and $L=L^{(1)}=c e^{z}$ and $\sum_{k=2}^{n} a_{k}=1$, where $c(\neq 0)$ is a constant.

2. Lemmas

In this section we present some necessary lemmas.
Lemma 2.1. $\{p .47[1]\}$ Let f be a nonconstant meromorphic function and a_{1}, a_{2}, a_{3} be three distinct meromorphic functions satisfying $T\left(r, a_{\mu}\right)=S(r, f)$ for $\mu=1,2,3$. Then

$$
T(r, f) \leq \bar{N}\left(r, 0 ; f-a_{1}\right)+\bar{N}\left(r, 0 ; f-a_{2}\right)+\bar{N}\left(r, 0 ; f-a_{3}\right)+S(r, f)
$$

Lemma 2.2. $\left\{p .57\right.$ [1] \} Suppose that g is a nonconstant meromorphic function and $\Psi=\sum_{\mu=0}^{l} a_{\mu} g^{(\mu)}$ where a_{μ}^{\prime} s are meromorphic functions satisfying $T\left(r, a_{\mu}\right)=S(r, g)$ for $\mu=0,1,2, \cdots, l$. If Ψ is nonconstant, then

$$
T(r, g) \leq \bar{N}(r, \infty ; g)+N(r, 0 ; g)+\bar{N}(r, 1 ; \Psi)+S(r, g)
$$

Lemma 2.3. Let f be a transcendental meromorphic function and $a=\alpha z+\beta$, where $\alpha(\neq 0)$ and β are constants. Then for a positive integer n

$$
T(r, f) \leq \bar{N}(r, \infty ; f)+N(r, a ; f)+\bar{N}(r, a ; L)+S(r, f) .
$$

Proof: The lemma follows from Lemma 2.2 for $g=f-a, a_{0}=a_{1}=0$ and $\Psi=\frac{L}{a}$. This proves the lemma.
Lemma 2.4. $\left\{p .68\right.$ [1] \} Let f be meromorphic and transcendental function in \mathbb{C} and $f^{n} P=Q$, where P, Q are differential polynomials in f and the degree of Q is at most n. Then $m(r, P)=S(r, f)$.

Proof. [Proof of Theorem 1.12] First we verify that f can not be a polynomial. If f is a polynomial, then $T(r, f)=O(\log r)$. Since f is a polynomial so $f-a$ and $L-a$ have only finite number of zeros. If $A \neq \emptyset$ then A contains finite number of zeros of $f-a$. Then $N_{A}(r, a ; f)=O(\log r)$, similarly $N_{B}(r, a ; L)=O(\log r)$ so $N_{A}(r, a ; f)+N_{B}(r, a ; L)=O(\log r)$. But by the hypothesis $N_{A}(r, a ; f)+N_{B}(r, a ; L)=S(r, f)$. Therefore $\underline{T}(r, f)=O(\log r)=S(r, f)$, a contradiction. Hence $A=B=\emptyset$. Therefore $\bar{E}(a ; f) \subset \bar{E}(a ; L) \subset \bar{E}\left(a ; f^{(1)}\right) \cap$ $\bar{E}\left(a ; f^{(2)}\right) \cap \bar{E}\left(a ; L^{(1)}\right)$.

Let $f=A_{1} z+B_{1}$, where $A_{1}(\neq 0), B_{1}$ are constants. Then $f^{(1)}=A_{1}, f^{(2)}=0, L=a_{2} f^{(2)}+a_{3} f^{(3)}+\cdots+a_{n} f^{(n)}=$ $0=L^{(1)}$. Now $f-a=A_{1} z+B_{1}-\alpha z-\beta=0$, implies $z=\frac{\beta-B_{1}}{A_{1}-\alpha}$ is the only zero of $f-a, \frac{A_{1}-\beta}{\alpha}$ is the only zero of $f^{(1)}-a$ and $-\frac{\beta}{\alpha}$ is the only zero of $L-a$ and also since $\bar{E}(a ; L) \subset \bar{E}\left(a ; f^{(1)}\right)$ so, $\frac{A_{1}-\beta}{\alpha}=-\frac{\beta}{\alpha}$ implies $A_{1}=0$, which is a contradiction.

We denote by $N_{(2}(r, a ; f \mid L=a)$ the counting function (counted with multiplicities) of those multiple a-points of f which are a-points of L. We first note that

$$
\begin{aligned}
N_{(2}(r, a ; f) & \leq N_{A}(r, a ; f)+N_{(2}(r, a ; f \mid L=a) \\
& \leq n \bar{N}_{(2}(r, a ; f)+S(r, f) \\
& =S(r, f) .
\end{aligned}
$$

Now let f be a polynomial of degree greater than 1 . Since $N_{(2}(r, a ; f)=S(r, f)$, we see that $f-a$ has no multiple zero and so all the zeros of $f-a$ are distinct. Since $\bar{E}(a ; f) \subset \bar{E}\left(a ; f^{(1)}\right)$ and $\operatorname{deg}(f-a)=\operatorname{deg}\left(f^{(1)}-a\right)+1$, we arrive at a contradiction.
Therefore f is a transcendental entire function. Now we consider the following cases.
Case 1. Let $f \equiv L$. Then $f^{(1)} \equiv L^{(1)}$. Now

$$
\begin{align*}
m(r, a ; f) & =m\left(r, \frac{1}{f-a}\right) \\
& =m\left(r, \frac{f^{(1)}-a^{(1)}}{f-a} \cdot \frac{1}{f^{(1)}-a^{(1)}}\right) \\
& \leq m\left(r, \frac{1}{f^{(1)}-a^{(1)}}\right)+S(r, f) \\
& \leq m\left(r, \frac{a^{(1)}}{f^{(1)}-a^{(1)}}+1\right)+S(r, f) \\
& =m\left(r, \frac{L^{(1)}}{f^{(1)}-a^{(1)}}\right)+S(r, f) \\
& =S(r, f) . \tag{1}
\end{align*}
$$

We now define λ to be

$$
\begin{equation*}
\lambda=\frac{f^{(1)}-a}{f-a} . \tag{2}
\end{equation*}
$$

From the hypotheses we see that λ has no simple pole and

$$
\begin{aligned}
N(r, \lambda) & \leq N_{A}(r, a ; f)+N_{B}(r, a ; L)+S(r, f) \\
& =S(r, f)
\end{aligned}
$$

and from (1) we get

$$
\begin{aligned}
m(r, \lambda) & =m\left(r, \frac{f^{(1)}-a}{f-a}\right) \\
& =m\left(r, \frac{f^{(1)}-a^{(1)}}{f-a}+\frac{a^{(1)}-a}{f-a}\right)+S(r, f) \\
& \leq m\left(r, \frac{a^{(1)}-a}{f-a}\right)+S(r, f) \\
& =S(r, f)
\end{aligned}
$$

Hence $T(r, \lambda)=S(r, f)$. From (2) we get

$$
\begin{equation*}
f^{(1)}=\lambda_{1} f+\mu_{1}, \tag{3}
\end{equation*}
$$

where $\lambda_{1}=\lambda$ and $\mu_{1}=a(1-\lambda)$.
We repeat the above argument ($k-1$)-times by differentiating (3) we get

$$
\begin{equation*}
f^{(k)}=\lambda_{k} f+\mu_{k}(k=1,2, \ldots), \tag{4}
\end{equation*}
$$

where λ_{k} and μ_{k} are meromorphic functions satisfying $\lambda_{k}=\lambda_{k-1}^{(1)}+\lambda_{1} \lambda_{k-1}$ and $\mu_{k}=\mu_{k-1}^{(1)}+\mu_{1} \lambda_{k-1}$ for $k=2,3, \ldots$. Also we note that $T\left(r, \lambda_{k}\right)+T\left(r, \mu_{k}\right)=S(r, f)$ for $k=1,2, \ldots$.

Now

$$
\begin{equation*}
L=\sum_{k=2}^{n} a_{k} f^{(k)}=\left(\sum_{k=2}^{n} a_{k} \lambda_{k}\right) f+\sum_{k=2}^{n} a_{k} \mu_{k}=\xi f+\eta, \text { say. } \tag{5}
\end{equation*}
$$

Clearly $T(r, \xi)+T(r, \eta)=S(r, f)$. Differentiating (5) we get

$$
\begin{equation*}
L^{(1)}=\xi f^{(1)}+\xi^{(1)} f+\eta^{(1)} \tag{6}
\end{equation*}
$$

Let z_{0} be a simple zero of $f-a$ such that $z_{0} \notin A \cup B \cup C$ where $C=\left\{z: a(z)-a^{(1)}(z)=0\right\}$. Then from (5) and (6) we get $a\left(z_{0}\right) \xi\left(z_{0}\right)+\eta\left(z_{0}\right)=a\left(z_{0}\right)$ and $a\left(z_{0}\right) \xi\left(z_{0}\right)+a\left(z_{0}\right) \xi^{(1)}\left(z_{0}\right)+\eta^{(1)}\left(z_{0}\right)=a\left(z_{0}\right)$. First suppose that $a \xi+\eta \not \equiv a$. Since every multiple zero of $f-a$ must belong to $A \cup B \cup C$ then we get

$$
\begin{aligned}
N(r, a ; f) & \leq N_{A}(r, a ; f)+N_{B}(r, a ; L)+N(r, a ; a \xi+\eta) \\
& =S(r, f)
\end{aligned}
$$

which is impossible because we have from (1) $m(r, a ; f)=S(r, f)$. Hence

$$
\begin{equation*}
a \xi+\eta \equiv a \tag{7}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
a \xi+a \xi^{(1)}+\eta^{(1)} \equiv a . \tag{8}
\end{equation*}
$$

Differentiating (7) and then subtract (8) we get $a-a^{(1)}=\xi\left(a-a^{(1)}\right)$. Since $a \not \equiv a^{(1)}$ we get $\xi \equiv 1$ and $\eta \equiv 0$. Then from (5) we get $f \equiv L$.

By actual calculation we see that $\lambda_{2}=\lambda^{2}+\lambda^{(1)}$ and $\lambda_{3}=\lambda^{3}+3 \lambda \lambda^{(1)}+\lambda^{(2)}$. In general, we now verify that

$$
\begin{equation*}
\lambda_{k}=\lambda^{k}+P_{k-1}[\lambda] \tag{9}
\end{equation*}
$$

where $P_{k-1}[\lambda]$ is a differential polynomial in λ with constant coefficients having degree at most $k-1$ and weight at most k. Also we note that each term of $P_{k-1}[\lambda]$ contains some derivative of λ.

Let (9) be true. Then

$$
\begin{aligned}
\lambda_{k+1} & =\lambda_{k}^{(1)}+\lambda_{1} \lambda_{k} \\
& =\left(\lambda^{k}+P_{k-1}[\lambda]\right)^{(1)}+\lambda\left(\lambda^{k}+P_{k-1}[\lambda]\right) \\
& =\lambda^{k+1}+k \lambda^{k-1} \lambda^{(1)}+\left(P_{k-1}[\lambda]\right)^{(1)}+\lambda P_{k-1}[\lambda] \\
& =\lambda^{k+1}+P_{k}[\lambda]
\end{aligned}
$$

noting that differentiation does not increase the degree of a differential polynomial but increase its weight by 1 . So (9) is verified by mathematical induction.
Since $\sum_{k=2}^{n} a_{k} \lambda_{k}=\xi=1$, we get from (9)

$$
\begin{equation*}
\sum_{k=2}^{n} a_{k} \lambda^{k}+\sum_{k=2}^{n} a_{k} P_{k-1}[\lambda] \equiv 1 \tag{10}
\end{equation*}
$$

If z_{0} is a pole of λ with multiplicity $p(\geq 2)$, then z_{0} is a pole of $\sum_{k=2}^{n} a_{k} \lambda^{k}$ with multiplicity $n p$ and it is a pole of $\sum_{k=2}^{n} a_{k} P_{k-1}[\lambda]$ with multiplicity not exceeding $(n-1) p+1$. Since $n p>(n-1) p+1$, it follows that z_{0} is a pole of the left hand side of (10) with multiplicity $n p$, which is impossible. So λ is an entire function. If λ is transcendental, from (10)we get by Lemma 2.4 that $m(r, \lambda)=S(r, \lambda)$ and if λ is a polynomial then following the proof of Lemma 2.4 we get $m(r, \lambda)=O(1)$. Therefore λ is a constant. Hence from (9) we obtain $\lambda_{k}=\lambda^{k}$ for $k=1,2, \ldots$.

Since $\xi \equiv 1$, we see that $\sum_{k=2}^{n} a_{k} \lambda^{k} \equiv 1$. Also from (3) we obtain $f^{(1)}=\lambda f+a(1-\lambda)$ then $f^{(2)}=\lambda f^{(1)}+\alpha(1-\lambda)$ and $f^{(3)}=\lambda f^{(2)}$ and so $f^{(2)}=c e^{\lambda z}$, where $c(\neq 0)$ is a constant. Then $f^{(1)}=\frac{c e^{\lambda z}}{\lambda}+d$. Since $L \equiv f$ then also $L^{(1)} \equiv f^{(1)}$ implies
$L^{(1)}=a_{2} f^{(3)}+a_{3} f^{(4)}+\cdots+a_{n} f^{(n+1)}=c e^{\lambda z}\left(a_{2} \lambda+a_{3} \lambda^{2}+\cdots+a_{n} \lambda^{n-1}\right)=f^{(1)}=\frac{c e^{\lambda z}}{\lambda}+d$ then $d=0$ and $\sum_{k=2}^{n} a_{k} \lambda^{k}=1$. So $f^{(1)}=\frac{c e^{\lambda z}}{\lambda}$ then $f=\frac{c c^{\lambda z}}{\lambda^{2}}+d_{1}$. Since $m(r, a ; f)=S(r, f)$ then obviously $N(r, a ; f) \neq S(r, f)$. By hypothesis $N_{A}(r, a ; f)+N_{B}(r, a ; L)=S(r, f)$ so $E(a ; f) \cap E\left(a ; f^{(1)}\right) \neq \emptyset$. Hence from $f^{(1)}=\frac{c e^{\lambda z}}{\lambda}$ and $f=\frac{c e^{\lambda z}}{\lambda^{2}}+d_{1}$ we get $d_{1}=0$ and $\lambda=1$. Hence $L \equiv f \equiv c e^{z}$ and $\sum_{k=2}^{n} a_{k}=1$.
Case 2. Let $f \not \equiv L$.
Subcase 2.1. Let $L \equiv L^{(1)} \equiv f^{(1)}$. Then $L \equiv L^{(1)}$ implies $L=c e^{z}$. Hence $L \equiv L^{(1)} \equiv f^{(1)}=c e^{z}$ then $f=c e^{z}+d$, which implies f does not assume the values d and ∞, by Lemma 2.1 we get

$$
\begin{aligned}
T(r, f) & \leq \bar{N}(r, 0 ; f-a)+\bar{N}(r, 0 ; f-\infty)+\bar{N}(r, 0 ; f-d) \\
& \leq \bar{N}(r, a ; f)
\end{aligned}
$$

This implies $\bar{N}(r, a ; f) \neq S(r, f)$. Also since $N_{A}(r, a ; f)+N_{B}(r, a ; L)=S(r, f)$ and $f=c e^{z}+d=L+d$ we see that $\bar{E}(r, a ; f) \cap \bar{E}(r, a ; L) \neq \emptyset$ this implies $d=0$ and so $f \equiv L$, we arrive at a contradiction.
Subcase 2.2. Suppose that $L^{(1)} \not \equiv f^{(1)}$. Here we have to consider following subcases.
Subcase 2.2.1. Suppose $L \equiv L^{(1)}$ and $L \not \equiv f^{(1)}$. Then we have two possibilities either $L \equiv L^{(1)}$ and $L^{(1)} \equiv f^{(2)}$ or $L \equiv L^{(1)}$ and $L^{(1)} \not \equiv f^{(2)}$.

If we consider the possibility $L \equiv L^{(1)}$ and $L^{(1)} \equiv f^{(2)}$. Then $L \equiv L^{(1)}$ implies $L=c e^{z}$ (c is a non zero constant) and so $L^{(1)}=f^{(2)}=c e^{z}$ then $f^{(1)}=c e^{z}+\gamma$, and $f=c e^{z}+\gamma z+\delta$. Since $L \neq f^{(1)}$ obviously $\gamma \neq 0$.

If we consider $\gamma z+\delta \neq a$. Then by Lemma 2.1 we get

$$
\begin{align*}
T\left(r, c e^{z}\right) & \leq \bar{N}\left(r, 0 ; c e^{z}\right)+\bar{N}\left(r, \infty ; c e^{z}\right)+\bar{N}\left(r, a-\gamma z-\delta ; c e^{z}\right) \\
& =\bar{N}(r, a ; f)+S\left(r, c e^{z}\right) \tag{11}
\end{align*}
$$

Since $f=L^{(1)}+\gamma z+\delta$, we see that if z_{1} is a zero of $f-a$ such that $z_{1} \notin A \cup B$ then $\gamma z+\delta=0$. Therefore

$$
\begin{aligned}
\bar{N}(r, a ; f) & \leq N_{A}(r, a ; f)+N_{B}(r, a ; L)+N(r, 0 ; \gamma z+\delta) \\
& =S(r, f) .
\end{aligned}
$$

Which contradicts (11).
Next we consider $\gamma z+\delta \equiv a$, then $f=c e^{z}+a$ and so $f^{(1)}=c e^{z}+\alpha$ and $f^{(2)}=c e^{z}$.
Hence $L=\left(a_{2}+a_{3}+\cdots+a_{n}\right) c e^{z}=f^{(2)}=c e^{z}$ implies $\sum_{k=2}^{n} a_{k}=1$. Hence we get $L=L^{(1)}=c e^{z}$ and $f=a+c e^{z}$ where $c(\neq 0)$ is a constant and $\sum_{k=2}^{n} a_{k}=1$.

Next we consider the possibility $L \equiv L^{(1)}$ and $L^{(1)} \not \equiv f^{(2)}$. Hence $L \not \equiv f^{(2)}$. Then by the hypothesis we get

$$
\begin{align*}
\bar{N}(r, a ; L) & \leq N_{B}(r, a ; L)+N\left(r, 1 ; \frac{L}{f^{(2)}}\right) \\
& \leq T\left(r, \frac{L}{f^{(2)}}\right)+S(r, f) \\
& =N\left(r, \frac{L}{f^{(2)}}\right)+S(r, f) \\
& \leq N\left(r, 0 ; f^{(2)}\right)+S(r, f) . \tag{12}
\end{align*}
$$

Again

$$
\begin{aligned}
m(r, a ; f) & =m\left(r, \frac{f^{(2)}}{f-a} \cdot \frac{1}{f(2)}\right) \\
& \leq m\left(r, 0 ; f^{(2)}\right)+S(r, f) \\
& =T\left(r, f^{(2)}\right)-N\left(r, 0 ; f^{(2)}\right)+S(r, f) \\
& =m\left(r, f^{(2)}\right)-N\left(r, 0 ; f^{(2)}\right)+S(r, f) \\
& \leq m(r, f)-N\left(r, 0 ; f^{(2)}\right)+S(r, f) \\
& =T(r, f)-N\left(r, 0 ; f^{(2)}\right)+S(r, f)
\end{aligned}
$$

and so

$$
\begin{equation*}
N\left(r, 0 ; f^{(2)}\right) \leq N(r, a ; f)+S(r, f) \tag{13}
\end{equation*}
$$

Hence from (12) and (13) we get

$$
\begin{equation*}
\bar{N}(r, a ; L) \leq N(r, a ; f)+S(r, f) \tag{14}
\end{equation*}
$$

which implies by Lemma 2.3 that

$$
\begin{equation*}
T(r, f) \leq 2 N(r, a ; f)+S(r, f) \tag{15}
\end{equation*}
$$

We put $\Phi=\frac{f^{(2)}-L}{f-a}$ and $\Psi=\frac{\left(a-a^{(1)}\right) f^{(2)}-a\left(f^{(1)}-a^{(1)}\right)}{f-a}$.
Then

$$
\begin{aligned}
N(r, \Phi) & \leq N_{A}(r, a ; f)+N_{B}(r, a ; L)+N_{(2}(r, a ; f)+S(r, f) \\
& =S(r, f)
\end{aligned}
$$

also $N(r, \Psi)=S(r, f)$, and $m(r, \Phi)=S(r, f), m(r, \Psi)=S(r, f)$. Therefore $T(r, \Phi)=S(r, f)$ and $T(r, \Psi)=S(r, f)$. Since $L \neq f^{(2)}$ so $\Phi \not \equiv 0$.
Let z_{2} be a simple zero of $f-a$ such that $z_{2} \notin A \cup B \cup C$ where $C=\left\{z: a(z)-a^{(1)}(z)=0\right\}$.
Then by Taylor's expansion in some neighbourhood of z_{2} we get

$$
\begin{aligned}
f-a & =(f-a)\left(z_{2}\right)+(f-a)^{(1)}\left(z_{2}\right)\left(z-z_{2}\right)+(f-a)^{(2)}\left(z_{2}\right) \frac{\left(z-z_{2}\right)^{2}}{2}+(f-a)^{(3)}\left(z_{2}\right) \frac{\left(z-z_{2}\right)^{3}}{6}+\ldots \\
& =\left(a\left(z_{2}\right)-a^{(1)}\left(z_{2}\right)\right)\left(z-z_{2}\right)+a\left(z_{2}\right) \frac{\left(z-z_{2}\right)^{2}}{2}+f^{(3)}\left(z_{2}\right) \frac{\left(z-z_{2}\right)^{3}}{6}+\ldots
\end{aligned}
$$

Now differentiating we obtain

$$
f^{(1)}-\alpha=a\left(z_{2}\right)-a^{(1)}\left(z_{2}\right)+a\left(z_{2}\right)\left(z-z_{2}\right)+f^{(3)}\left(z_{2}\right) \frac{\left(z-z_{2}\right)^{2}}{2}+\ldots
$$

and

$$
f^{(2)}=a\left(z_{2}\right)+f^{(3)}\left(z_{2}\right)\left(z-z_{2}\right)+\ldots
$$

Also,

$$
\begin{aligned}
L & =L\left(z_{2}\right)+L^{(1)}\left(z_{2}\right)\left(z-z_{2}\right)+L^{(2)}\left(z_{2}\right) \frac{\left(z-z_{2}\right)^{2}}{2}+\ldots \\
& =a\left(z_{2}\right)+a\left(z_{2}\right)\left(z-z_{2}\right)+L^{(2)}\left(z_{2}\right) \frac{\left(z-z_{2}\right)^{2}}{2}+\ldots
\end{aligned}
$$

Therefore in some neighbourhood of z_{2} we get

$$
\begin{aligned}
\Phi(z) & =\frac{a\left(z_{2}\right)+f^{(3)}\left(z_{2}\right)\left(z-z_{2}\right)-a\left(z_{2}\right)-a\left(z_{2}\right)\left(z-z_{2}\right)+O\left(z-z_{2}\right)^{2}}{\left(a\left(z_{2}\right)-\alpha\right)\left(z-z_{2}\right)+O\left(z-z_{2}\right)^{2}} \\
& =\frac{\left(f^{(3)}\left(z_{2}\right)-a\left(z_{2}\right)\right)\left(z-z_{2}\right)+O\left(z-z_{2}\right)^{2}}{\left(a\left(z_{2}\right)-\alpha\right)\left(z-z_{2}\right)+O\left(z-z_{2}\right)^{2}} \\
& =\frac{f^{(3)}\left(z_{2}\right)-a\left(z_{2}\right)+O\left(z-z_{2}\right)}{a\left(z_{2}\right)-\alpha+O\left(z-z_{2}\right)}
\end{aligned}
$$

Noting that $a\left(z_{2}\right)-\alpha \neq 0$, then

$$
\begin{equation*}
\Phi\left(z_{2}\right)=\frac{f^{(3)}\left(z_{2}\right)-a\left(z_{2}\right)}{a\left(z_{2}\right)-\alpha} \tag{16}
\end{equation*}
$$

Also in some neighbourhood of z_{2} we get

$$
\begin{aligned}
\Psi(z) & =\frac{\left\{a(z)-a^{(1)}(z)\right\}\left\{a\left(z_{2}\right)+f^{(3)}\left(z_{2}\right)\left(z-z_{2}\right)\right\}-a(z)\left\{a\left(z_{2}\right)-a^{(1)}\left(z_{2}\right)+a\left(z_{2}\right)\left(z-z_{2}\right)\right\}+O\left(z-z_{2}\right)^{2}}{\left(a\left(z_{2}\right)-\alpha\right)\left(z-z_{2}\right)+O\left(z-z_{2}\right)^{2}} \\
& =\frac{\alpha^{2}\left(z-z_{2}\right)\left\{(a(z)-\alpha) f^{(3)}\left(z_{2}\right)-a(z) a\left(z_{2}\right)\right\}\left(z-z_{2}\right)+O\left(z-z_{2}\right)^{2}}{\left(a\left(z_{2}\right)-\alpha\right)\left(z-z_{2}\right)+O\left(z-z_{2}\right)^{2}} \\
& =\frac{\alpha^{2}+(a(z)-\alpha) f^{(3)}\left(z_{2}\right)-a(z) a\left(z_{2}\right)+O\left(z-z_{2}\right)}{a\left(z_{2}\right)-\alpha+O\left(z-z_{2}\right)} .
\end{aligned}
$$

Hence

$$
\begin{align*}
\Psi\left(z_{2}\right) & =\frac{\left(f^{(3)}\left(z_{2}\right)-a\left(z_{2}\right)-\alpha\right)\left(a\left(z_{2}\right)-\alpha\right)}{a\left(z_{2}\right)-\alpha} \\
& =f^{(3)}\left(z_{2}\right)-a\left(z_{2}\right)-\alpha \tag{17}
\end{align*}
$$

From (16) and (17) we get

$$
\left(a\left(z_{2}\right)-\alpha\right) \Phi\left(z_{2}\right)=\Psi\left(z_{2}\right)+a\left(z_{2}\right)+\alpha-a\left(z_{2}\right)
$$

implies

$$
\left(a\left(z_{2}\right)-\alpha\right) \Phi\left(z_{2}\right)-\Psi\left(z_{2}\right)-\alpha=0
$$

If

$$
(a-\alpha) \Phi-\Psi-\alpha \not \equiv 0
$$

then we get

$$
\begin{aligned}
N(r, a ; f) & \leq N_{A}(r, a ; f)+N_{B}(r, a ; L)+N_{(2}(r, a ; f)+N(r, 0 ;(a-\alpha) \Phi-\Psi-\alpha) \\
& =S(r, f),
\end{aligned}
$$

which contradicts (15).
Therefore

$$
\begin{equation*}
(a-\alpha) \Phi-\Psi-\alpha \equiv 0 \tag{18}
\end{equation*}
$$

First we suppose that $\Psi \equiv 0$. Then from (18) and the definitions of Φ and Ψ we get $(a-\alpha) \frac{f^{(2)}-L}{f-a}=\alpha$ and $(a-\alpha) f^{(2)}-a\left(f^{(1)}-\alpha\right)=0$ implies

$$
\begin{equation*}
(a-\alpha) f^{(2)}-(a-\alpha) L=\alpha(f-a) \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
(a-\alpha) f^{(2)}=a\left(f^{(1)}-\alpha\right) \tag{20}
\end{equation*}
$$

From (19) and (20) we get

$$
\begin{equation*}
a\left(f^{(1)}-\alpha\right)-(a-\alpha) L=\alpha(f-a) \tag{21}
\end{equation*}
$$

Differentiating (21) we get

$$
\begin{equation*}
a f^{(2)}+\alpha\left(f^{(1)}-\alpha\right)-\alpha L-(a-\alpha) L^{(1)}=\alpha\left(f^{(1)}-\alpha\right) \tag{22}
\end{equation*}
$$

Since $L \equiv L^{(1)}$ then from (22) we get $a f^{(2)}=a L$ implies $a\left(f^{(2)}-L\right)=0$, since $a \neq 0$ so $f^{(2)}-L \equiv 0$ and so $\Phi \equiv 0$, which is a contradiction.

Next we suppose that $\Psi \not \equiv 0$. Then from (18) and the definitions of Φ and Ψ we get

$$
(a-\alpha) \frac{f^{(2)}-L}{f-a}-\frac{(a-\alpha) f^{(2)}-a\left(f^{(1)}-\alpha\right)}{f-a}=\alpha
$$

this implies

$$
\begin{equation*}
-(a-\alpha) L+a\left(f^{(1)}-\alpha\right)=\alpha(f-a) \tag{23}
\end{equation*}
$$

Differentiating both sides of (23) and put $L \equiv L^{(1)}$ we get $a\left(L-f^{(2)}\right)=0$, since $a \neq 0$ so $f^{(2)}-L \equiv 0$ and so $\Phi \equiv 0$, which is a contradiction.

Subcase 2.2.2. Let $L \not \equiv L^{(1)}$ and $L^{(1)} \equiv f^{(1)}$.
Since $L \not \equiv L^{(1)}$. Then by hypothesis we get

$$
\begin{align*}
\bar{N}(r, a ; L) & \leq N_{B}(r, a ; L)+N\left(r, 1 ; \frac{L^{(1)}}{L}\right) \\
& \leq T\left(r, \frac{L^{(1)}}{L}\right)+S(r, f) \\
& =N\left(r, \frac{L^{(1)}}{L}\right)+S(r, f) \\
& \leq N(r, 0 ; L)+S(r, f) . \tag{24}
\end{align*}
$$

Again

$$
\begin{aligned}
m(r, a ; f) & =m\left(r, \frac{L}{f-a} \cdot \frac{1}{L}\right) \\
& \leq m(r, 0 ; L)+S(r, f) \\
& =T(r, L)-N(r, 0 ; L)+S(r, f) \\
& =m(r, L)-N(r, 0 ; L)+S(r, f) \\
& \leq m(r, f)-N(r, 0 ; L)+S(r, f) \\
& =T(r, f)-N(r, 0 ; L)+S(r, f)
\end{aligned}
$$

and so

$$
\begin{equation*}
N(r, 0 ; L) \leq N(r, a ; f)+S(r, f) \tag{25}
\end{equation*}
$$

Hence from (24) and (25) we get

$$
\bar{N}(r, a ; L) \leq N(r, a ; f)+S(r, f)
$$

which implies by Lemma 2.3 that

$$
\begin{equation*}
T(r, f) \leq 2 N(r, a ; f)+S(r, f) \tag{26}
\end{equation*}
$$

Therefore $N(r, a ; f) \neq S(r, f)$. Also since $L^{(1)} \equiv f^{(1)}$. Then $L \equiv f+c$, where c is a constant. Also since $N(r, a ; f) \neq S(r, f)$ and by hypothesis we get $c=0$. Hence $L \equiv f$, which contradicts the initial supposition of Case 2.
Subcase 2.2.3. Let $L \not \equiv L^{(1)}$ and $L \equiv f^{(1)}$.
We put

$$
\tau=\frac{\left(a-a^{(1)}\right) L-a\left(f^{(1)}-a^{(1)}\right)}{f-a}
$$

Then

$$
\begin{aligned}
N(r, \tau) & \leq N_{A}(r, a ; f)+N_{B}(r, a ; L)+N_{(2}(r, a ; f)+S(r, f) \\
& =S(r, f),
\end{aligned}
$$

also $m(r, \tau)=S(r, f)$. Therefore $T(r, \tau)=S(r, f)$.
Let z_{4} be a simple zero of $f-a$ such that $z_{4} \notin A \cup B \cup C$ where $C=\left\{z: a(z)-a^{(1)}(z)=0\right\}$.
Then by Taylor's expansion in some neighbourhood of z_{4} we get

$$
\begin{aligned}
f-a & =(f-a)\left(z_{4}\right)+(f-a)^{(1)}\left(z_{4}\right)\left(z-z_{4}\right)+(f-a)^{(2)}\left(z_{4}\right) \frac{\left(z-z_{4}\right)^{2}}{2}+O\left(z-z_{4}\right)^{3} \\
& =\left(a\left(z_{4}\right)-\alpha\right)\left(z-z_{4}\right)+a\left(z_{4}\right) \frac{\left(z-z_{4}\right)^{2}}{2}+O\left(z-z_{4}\right)^{3}
\end{aligned}
$$

Now differentiating we obtain

$$
f^{(1)}-\alpha=\left(a\left(z_{4}\right)-\alpha\right)+a\left(z_{4}\right)\left(z-z_{4}\right)+\left(z-z_{4}\right)^{2}
$$

and

$$
\begin{aligned}
L & =L\left(z_{4}\right)+L^{(1)}\left(z_{4}\right)\left(z-z_{4}\right)+O\left(z-z_{4}\right)^{2} \\
& =a\left(z_{4}\right)+a\left(z_{4}\right)\left(z-z_{4}\right)+O\left(z-z_{4}\right)^{2}
\end{aligned}
$$

Therefore in some neighbourhood of z_{4} we get

$$
\begin{aligned}
\tau(z) & =\frac{\left\{a(z)-a^{(1)}(z)\right\}\left\{a\left(z_{4}\right)+a\left(z_{4}\right)\left(z-z_{4}\right)\right\}-a(z)\left\{a\left(z_{4}\right)-\alpha+a\left(z_{4}\right)\left(z-z_{4}\right)\right\}+O\left(z-z_{4}\right)^{2}}{\left(a\left(z_{4}\right)-\alpha\right)\left(z-z_{4}\right)+O\left(z-z_{4}\right)^{2}} \\
& =\frac{\alpha^{2}\left(z-z_{4}\right)-\alpha a\left(z_{4}\right)\left(z-z_{4}\right)+O\left(z-z_{4}\right)^{2}}{\left(z-z_{4}\right)\left(a\left(z_{4}\right)-\alpha+O\left(z-z_{4}\right)\right)} \\
& =\frac{-\alpha\left(a\left(z_{4}\right)-\alpha\right)+O\left(z-z_{4}\right)}{a\left(z_{4}\right)-\alpha+O\left(z-z_{4}\right)} \\
& =-\alpha+O\left(z-z_{4}\right) .
\end{aligned}
$$

Let $P=\tau+\alpha$. Then in some neighbourhood of z_{4} we get $P(z)=O\left(z-z_{4}\right)$.
First we suppose that $P(z) \not \equiv 0$. Since every multiple zero of $f-a$ must belongs to $A \cup B \cup C$, then we get

$$
\begin{aligned}
N(r, a ; f) & \leq N_{A}(r, a ; f)+N_{B}(r, a ; L)+N(r, 0 ; P) \\
& =S(r, f)
\end{aligned}
$$

Then from (26) we get $T(r, f)=S(r, f)$, a contradiction. Hence $P \equiv 0$ and so

$$
(a-\alpha) L-a\left(f^{(1)}-\alpha\right)+\alpha(f-a)=0
$$

Since $L \equiv f^{(1)}$ then we get

$$
(a-\alpha) f^{(1)}-a\left(f^{(1)}-\alpha\right)+\alpha(f-a)=0
$$

which implies $\alpha\left(f-f^{(1)}\right)=0$, since $\alpha \neq 0$ then $f \equiv f^{(1)}$. So $f=c e^{z}$ where $c(\neq 0)$ is a constant. Then $L=a_{2} f^{(2)}+a_{3} f^{(3)}+\cdots+a_{n} f^{(n)}=\left(a_{2}+a_{3}+\cdots+a_{n}\right) c e^{z}$ and $L^{(1)}=a_{2} f^{(3)}+a_{3} f^{(4)}+\cdots+a_{n} f^{(n+1)}=\left(a_{2}+a_{3}+\cdots+a_{n}\right) c e^{z}$. So $L \equiv L^{(1)}$ which is a contradiction. This completes the proof of the theorem.

Acknowledgement.

The author is thankful to the referee for his valuable suggestions towards the improvement of the paper.

References

[1] W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford, 1964.
[2] G. Jank, E. Mues , L. Volkman, Meromorphe Functionen, die mit ihrer ersten und zweiten Ableitung einen endlichen wert teilen, Complex Var. Theory Appl. 6 (1986) 51-71.
[3] I. Lahiri, G. K. Ghosh, Entire functions sharing values with their derivatives, Analysis (Munich) 31 (2011) 47-59.
[4] I. Lahiri, G. K. Ghosh, Entire functions sharing one value with linear differential polynomials, Analysis (Munich) 31 (2011) 331-340.
[5] I. Lahiri, R. Mukherjee, Uniqueness of entire functions sharing a value with linear differential polynomials, Bull. Aust. Math. Soc. 85 (2012) 295-306.
[6] P. Li, Entire functions that share one value with their linear differential polynomials, Kodai Math. J. 22 (1999) 446-457.
[7] C. C. Yang, On deficiencies of differential polynomials II, Math. Z. 125 (1972) 107-112.
[8] L. Z. Yang, Entire functions that share one value with their derivatives, Bull. Hong Kong Math. Soc. 2 (1998) 115-121.
[9] H. Zhong, Entire functions that share one value with their derivatives, Kodai Math. J. 18 (1995) 250-259.

[^0]: 2010 Mathematics Subject Classification. Primary 30D35
 Keywords. Entire function, Linear Differential Polynomial, Uniqueness
 Received: 09 May 2016; Revised: 06 August 2016; Accepted: 12 August 2017
 Communicated by Miodrag Mateljević
 Email address: g80g@rediffmail. com (Goutam Kumar Ghosh)

