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Available at: http://www.pmf.ni.ac.rs/filomat

Entire Functions Sharing a Linear Polynomial
with Linear Differential Polynomials

Goutam Kumar Ghosha

aAssistant Professor, Department of Mathematics, Dr. Bhupendra Nath Dutta Smriti Mahavidyalaya, Hatgobindapur, Burdwan, W.B, India

Abstract. In the paper we study the uniqueness of entire functions sharing a linear polynomial with
linear differential polynomials generated by them. The results of the paper improves the corresponding
results of P. Li (Kodai Math J. 22: 446–457, 1999), Lahiri-Present author(G. K. Ghosh) (Analysis (Munich)31:
331–340,2011) and Lahiri-Mukherjee(Bull. Aust. Math. Soc. 85: 295–306, 2012).

1. Introduction, Definitions and Results

In the paper, by meromorphic functions we shall always mean meromorphic functions in the complex
planeC. We adopt the standard notations of the Nevanlinna theory of meromorphic functions as explained
in [1]. It will be convenient to let E denote any set of positive real numbers of finite linear measure, not
necessarily the same at each occurrence. For a non-constant meromorphic function h, we denote by T(r, h)
any quantity satisfying S(r, h) = o{T(r, h)}, as r→∞ and r < E.

Let f and 1 be two nonconstant meromorphic functions and let a be a small function of f . We denote by
E(a; f ) the set of a-pionts of f , where each point is counted according its multiplicity. We denote by E(a; f )
the reduced form of E(a; f ). We say that f , 1 share a CM, provided that E(a; f ) = E(a; 1), and we say that f
and 1 share a IM, provided that E(a; f ) = E(a; 1). In addition, we say that f and 1 share ∞ CM, if 1

f and 1
1

share 0 CM, and we say that f and 1 share∞ IM, if 1
f and 1

1
share 0 IM.

We require the following definitions.

Definition 1.1. A meromorphic function a = a(z) is called a small function of f if T(r, a) = S(r, f ).

Definition 1.2. Let f and g be two non-constant meromorphic functions defined in C. For a, b ∈ C ∪ {∞} we denote
by N(r, a; f | 1 , b)(N(r, a; f | 1 , b) the counting function (reduced counting function) of those a-points of f which
are not the b-points of g.

Definition 1.3. Let f and g be two non-constant meromorphic functions defined in C. For a, b ∈ C ∪ {∞} we denote
by N(r, a; f | 1 = b)(N(r, a; f | 1 = b) the counting function (reduced counting function) of those a-points of f which
are the b-points of g.
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In 1986 G. Jank, E. Mues and L. Volkman [2] considered the case when an entire function shared a single
value with its first two derivatives and proved the following result.

Theorem 1.4. [2] Let f be a nonconstant entire function and a(, 0) be a finite number. If E(a; f ) = E(a; f (1)) and
E(a; f ) ⊂ E(a; f (2)), then f ≡ f (1).

In fact, in Theorem 1.4 f and f (1) share the value a CM(counting multiplicities). Again considering f =
ewz + w − 1, where wm−1 = 1,w , 1 and m(≥ 3) is an integer and a = w, we can verify that the second
derivative in Theorem 1.4 can not be simply replaced by the mth derivative for m ≥ 3(see [9]) .

In 1995 H. Zhong[9] generalised Theorem 1.4 and proved the following theorem.

Theorem 1.5. [9] Let f be a non-constant entire function and a(, 0) be a finite complex number. If f and f (1) share
the value a CM and E(a; f ) ⊂ E(a; f (n)) ∩ E(a; f (n+1)) for n ≥ 1, then f ≡ f (n).

For A ⊂ C ∪ {∞}, we denote by NA(r, a; f )(NA(r, a; f )) the counting function (reduced counting function)
of those a-points of f which belong to A.

In 2011 I. Lahiri and Present author(G. K. Ghosh) [3] improved Theorem 1.5 in the following manner.

Theorem 1.6. [3] Let f be a nonconstant entire function and a, b be two nonzero finite constants. Suppose further
that A = E(a; f ) \ E(a; f (1)) and B = E(a; f (1)) \ {E(a; f (n)) ∩ E(b; f (n+1))} for n(≥ 1). If each common zero of f − a
and f (1)

− a has the same multiplicity and NA(r, a; f ) + NB(r, a; f (1)) = S(r, f ), then f = λe
bz
a + ab−a2

b or f = λe
bz
a + a,

where λ(, 0) is a constant.

In 1999 P. Li [6] improved Theorem 1.5 by considering a linear differential polynomial instead of the
derivative. The result of P. Li may be stated as follows:

Theorem 1.7. [6] Let f be nonconstant entire function and L = a1 f (1) +a2 f (2) + · · ·+an f (n),where a1, a2, · · · , an(, 0)
are constants. If E(a; f ) = E(a; f (1)) and E(a; f ) ⊂ E(a; L) ∩ E(a; L(1)), then f ≡ f (1)

≡ L .

In the same paper P. Li [6] also proved the following result.

Theorem 1.8. [6] Let f be a non-constant entire function and L = a1 f (1)+a2 f (2)+· · ·+an f (n), where a1, a2, . . . , an(, 0)

are constants. If E(a; f ) = E(a; L) , E(a; f ) ⊂ E(a; f (1)) ∩ E(a; L(1)) and
n∑

k=1
2kak , 0 or

n∑
k=1

ak , −1, then f ≡ f (1)
≡ L.

In 2011 I. Lahiri and G. K. Ghosh [4] improved Theorem 1.8 by replacing the nature of sharing in the
following manner.

Theorem 1.9. [4] Let f be a non-constant entire function in C, a be a finite nonzero complex number and L =
a1 f (1) + a2 f (2) + · · · + an f (n) ,where a1, a2, . . . , an(, 0) are constants.

Further suppose that E1)(a; f ) ⊂ E(a; f (1)) and NA(r, a; f ) + NB(r, a; L) = S(r, f ), where A = E(a; f ) \ E(a; L) and
B = E(a; L) \ {E(a; f (1)) ∩ E(a; L(1))}. Then one of the following cases holds:

(i) f = a + αez and L = αez, where α is a nonzero constant;
(ii) f = L = αez, where α is a nonzero constant;

(iii) f = a + α2

a e2z
− αez and L = αez, where

n∑
k=1

2kak = 0,
n∑

k=1
ak = −1 and α is a nonzero constant.

In the same paper I. Lahiri and G. K. Ghosh also proved the following result.

Theorem 1.10. [4] Let f be a nonconstant entire function in C, a be a finite nonzero complex number and L =
a1 f (1) + a2 f (2) + · · · + an f (n) ,where a1, a2, . . . , an(, 0)are constants. Further let NA(r, a; f ) + NB(r, a; L) = S(r, f ),
where A = E(a; f ) \ E(a; L) and B = E(a; L) \ {E(a; f (1)) ∩ E(a; L(1))}. If f . L then one of the following holds:

(i) f = a + αez and L = αez, where α is a nonzero constant;
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(ii) f = a + α2

a e2z
− αez and L = αez, where

n∑
k=1

2kak = 0,
n∑

k=1
ak = −1 and α is a nonzero constant.

In 2012 I. Lahiri and R. Mukherjee [5] improved Theorem 1.7 in the following manner.

Theorem 1.11. [5] Let f be a non-constant entire function in C, a be a finite nonzero complex number and L =
a1 f (1) + a2 f (2) + · · · + an f (n) ,where a1, a2, . . . , an(, 0) are constants.

Suppose further that:

(i) NA(r, a; f ) + NB(r, a; f (1)) = S(r, f ), where A = E(a; f ) \ E(a; f (1)) and B = E(a; f (1)) \ {E(a; L) ∩ E(a; L(1))};
(ii) E1)(a; f ) ⊂ E(a; f (1)) ∩ E(a; L(1)); and

(iii) E(2(a; f ) ∩ E(0; L(1)) = ∅.
Then L = αez and f = αez or f = a + αez, where α(, 0) is a constant.

In the paper we consider the situation when a nonconstant entire function f share a linear polynomial
a(z) = αz + β, α(, 0) and β are constants, with their linear differential polynomial L, L(1).

We now state the main result of the paper.

Theorem 1.12. Let f be a nonconstant entire function in C, a = αz + β(. f ), where α(, 0) and β are constants, and
L = a2 f (2) + a3 f (3) + · · · + an f (n) ,where a2, a3, . . . , an(, 0) are constants.

Further suppose that

(i) NA(r, a; f )+NB(r, a; L) = S(r, f ), where A = E(a; f )\E(a; L) and B = E(a; L)\{E(a; f (1))∩E(a; f (2))∩E(a; L(1))};
(ii) E1)(a; f ) ⊂ E(a; f (1)); and

(iii) N(2(r, a; f ) = S(r, f ).

Then f = L = cez, or f = a + cez and L = L(1) = cez and
n∑

k=2
ak = 1, where c(, 0) is a constant.

In the next theorem we see the possible form of an entire function if we drop the hypothesis E1)(a; f ) ⊂
E(a; f (1)). In fact the Case 2. of the proof of Theorem 1.12 suggests the following theorem.

Theorem 1.13. Let f be a nonconstant entire function in C, a = αz + β(. f ), where α(, 0) and β are constants, and
L = a2 f (2) + a3 f (3) + · · ·+ an f (n) ,where a2, a3, . . . , an(, 0) are constants. Further let NA(r, a; f ) + NB(r, a; L) = S(r, f )
and N(2(r, a; f ) = S(r, f ), where A = E(a; f ) \ E(a; L) and B = E(a; L) \ {E(a; f (1)) ∩ E(a; f (2)) ∩ E(a; L(1))}. If f . L

then f = a + cez and L = L(1) = cez and
n∑

k=2
ak = 1, where c(, 0) is a constant.

2. Lemmas

In this section we present some necessary lemmas.

Lemma 2.1. { p.47[1] } Let f be a nonconstant meromorphic function and a1, a2, a3 be three distinct meromorphic
functions satisfying T(r, aµ) = S(r, f ) for µ = 1, 2, 3. Then

T(r, f ) ≤ N(r, 0; f − a1) + N(r, 0; f − a2) + N(r, 0; f − a3) + S(r, f ).

Lemma 2.2. { p.57 [1] } Suppose that g is a nonconstant meromorphic function and Ψ =
l∑

µ=0
aµ1(µ) where a,µs are

meromorphic functions satisfying T(r, aµ) = S(r, 1) for µ = 0, 1, 2, · · · , l. If Ψ is nonconstant, then

T(r, 1) ≤ N(r,∞; 1) + N(r, 0; 1) + N(r, 1; Ψ) + S(r, 1).
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Lemma 2.3. Let f be a transcendental meromorphic function and a = αz +β,where α(, 0) and β are constants. Then
for a positive integer n

T(r, f ) ≤ N(r,∞; f ) + N(r, a; f ) + N(r, a; L) + S(r, f ).

Proof: The lemma follows from Lemma 2.2 for 1 = f − a, a0 = a1 = 0 and Ψ = L
a . This proves the lemma.

Lemma 2.4. { p.68 [1] } Let f be meromorphic and transcendental function in C and f nP = Q, where P, Q are
differential polynomials in f and the degree of Q is at most n. Then m(r,P) = S(r, f ).

Proof. [Proof of Theorem 1.12] First we verify that f can not be a polynomial. If f is a polynomial, then
T(r, f ) = O(log r). Since f is a polynomial so f − a and L − a have only finite number of zeros. If A , ∅
then A contains finite number of zeros of f − a. Then NA(r, a; f ) = O(log r), similarly NB(r, a; L) = O(log r)
so NA(r, a; f ) + NB(r, a; L) = O(log r) . But by the hypothesis NA(r, a; f ) + NB(r, a; L) = S(r, f ) . Therefore
T(r, f ) = O(log r) = S(r, f ), a contradiction. Hence A = B = ∅. Therefore E(a; f ) ⊂ E(a; L) ⊂ E(a; f (1)) ∩
E(a; f (2)) ∩ E(a; L(1)).

Let f = A1z + B1,where A1(, 0),B1 are constants. Then f (1) = A1, f (2) = 0,L = a2 f (2) + a3 f (3) + · · ·+ an f (n) =

0 = L(1). Now f − a = A1z + B1 − αz− β = 0, implies z =
β−B1

A1−α
is the only zero of f − a, A1−β

α is the only zero of

f (1)
− a and − βα is the only zero of L− a and also since E(a; L) ⊂ E(a; f (1)) so, A1−β

α = −
β
α implies A1 = 0, which

is a contradiction.
We denote by N(2(r, a; f | L = a) the counting function (counted with multiplicities) of those multiple

a-points of f which are a-points of L. We first note that

N(2(r, a; f ) ≤ NA(r, a; f ) + N(2(r, a; f | L = a)

≤ nN(2(r, a; f ) + S(r, f )
= S(r, f ).

Now let f be a polynomial of degree greater than 1. Since N(2(r, a; f ) = S(r, f ), we see that f − a has no
multiple zero and so all the zeros of f −a are distinct. Since E(a; f ) ⊂ E(a; f (1)) and de1( f −a) = de1( f (1)

−a)+1,
we arrive at a contradiction.
Therefore f is a transcendental entire function. Now we consider the following cases.
Case 1. Let f ≡ L. Then f (1)

≡ L(1). Now

m(r, a; f ) = m(r,
1

f − a
)

= m(r,
f (1)
− a(1)

f − a
·

1
f (1) − a(1)

)

≤ m(r,
1

f (1) − a(1)
) + S(r, f )

≤ m(r,
a(1)

f (1) − a(1)
+ 1) + S(r, f )

= m(r,
L(1)

f (1) − a(1)
) + S(r, f )

= S(r, f ). (1)

We now define λ to be

λ =
f (1)
− a

f − a
. (2)
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From the hypotheses we see that λ has no simple pole and

N(r, λ) ≤ NA(r, a; f ) + NB(r, a; L) + S(r, f )
= S(r, f )

and from (1) we get

m(r, λ) = m(r,
f (1)
− a

f − a
)

= m(r,
f (1)
− a(1)

f − a
+

a(1)
− a

f − a
) + S(r, f )

≤ m(r,
a(1)
− a

f − a
) + S(r, f )

= S(r, f ).

Hence T(r, λ) = S(r, f ). From (2) we get

f (1) = λ1 f + µ1, (3)

where λ1 = λ and µ1 = a(1 − λ).
We repeat the above argument (k − 1)-times by differentiating (3) we get

f (k) = λk f + µk(k = 1, 2, . . .), (4)

where λk and µk are meromorphic functions satisfying λk = λ(1)
k−1 + λ1λk−1 and µk = µ(1)

k−1 + µ1λk−1 for
k = 2, 3, . . .. Also we note that T(r, λk) + T(r, µk) = S(r, f ) for k = 1, 2, . . ..

Now

L =

n∑
k=2

ak f (k) = (
n∑

k=2

akλk) f +

n∑
k=2

akµk = ξ f + η, say. (5)

Clearly T(r, ξ) + T(r, η) = S(r, f ). Differentiating (5) we get

L(1) = ξ f (1) + ξ(1) f + η(1). (6)

Let z0 be a simple zero of f − a such that z0 < A ∪ B ∪ C where C = {z : a(z) − a(1)(z) = 0}. Then from
(5) and (6) we get a(z0)ξ(z0) + η(z0) = a(z0) and a(z0)ξ(z0) + a(z0)ξ(1)(z0) + η(1)(z0) = a(z0). First suppose that
aξ + η . a. Since every multiple zero of f − a must belong to A ∪ B ∪ C then we get

N(r, a; f ) ≤ NA(r, a; f ) + NB(r, a; L) + N(r, a; aξ + η)
= S(r, f ),

which is impossible because we have from (1) m(r, a; f ) = S(r, f ). Hence

aξ + η ≡ a. (7)

Similarly

aξ + aξ(1) + η(1)
≡ a. (8)

Differentiating (7) and then subtract (8) we get a − a(1) = ξ(a − a(1)). Since a . a(1) we get ξ ≡ 1 and η ≡ 0.
Then from (5) we get f ≡ L.

By actual calculation we see that λ2 = λ2 +λ(1) and λ3 = λ3 + 3λλ(1) +λ(2). In general, we now verify that

λk = λk + Pk−1[λ], (9)
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where Pk−1[λ] is a differential polynomial in λ with constant coefficients having degree at most k − 1 and
weight at most k. Also we note that each term of Pk−1[λ] contains some derivative of λ.

Let (9) be true. Then

λk+1 = λ(1)
k + λ1λk

= (λk + Pk−1[λ])(1) + λ(λk + Pk−1[λ])
= λk+1 + kλk−1λ(1) + (Pk−1[λ])(1) + λPk−1[λ]
= λk+1 + Pk[λ],

noting that differentiation does not increase the degree of a differential polynomial but increase its weight
by 1. So (9) is verified by mathematical induction.

Since
n∑

k=2
akλk = ξ = 1, we get from (9)

n∑
k=2

akλ
k +

n∑
k=2

akPk−1[λ] ≡ 1. (10)

If z0 is a pole of λwith multiplicity p(≥ 2), then z0 is a pole of
n∑

k=2
akλk with multiplicity np and it is a pole

of
n∑

k=2
akPk−1[λ] with multiplicity not exceeding (n − 1)p + 1. Since np > (n − 1)p + 1, it follows that z0 is a

pole of the left hand side of (10) with multiplicity np, which is impossible. So λ is an entire function. If λ is
transcendental, from (10)we get by Lemma 2.4 that m(r, λ) = S(r, λ) and if λ is a polynomial then following
the proof of Lemma 2.4 we get m(r, λ) = O(1). Therefore λ is a constant. Hence from (9) we obtain λk = λk

for k = 1, 2, . . ..

Since ξ ≡ 1, we see that
n∑

k=2
akλk

≡ 1. Also from (3) we obtain f (1) = λ f +a(1−λ) then f (2) = λ f (1) +α(1−λ)

and f (3) = λ f (2) and so f (2) = ceλz, where c(, 0) is a constant. Then f (1) = ceλz

λ + d. Since L ≡ f then also
L(1)
≡ f (1) implies

L(1) = a2 f (3) + a3 f (4) + · · ·+ an f (n+1) = ceλz(a2λ+ a3λ2 + · · ·+ anλn−1) = f (1) = ceλz

λ + d then d = 0 and
n∑

k=2
akλk = 1.

So f (1) = ceλz

λ then f = ceλz

λ2 + d1. Since m(r, a; f ) = S(r, f ) then obviously N(r, a; f ) , S(r, f ). By hypothesis
NA(r, a; f ) + NB(r, a; L) = S(r, f ) so E(a; f )∩ E(a; f (1)) , ∅.Hence from f (1) = ceλz

λ and f = ceλz

λ2 + d1 we get d1 = 0

and λ = 1. Hence L ≡ f ≡ cez and
n∑

k=2
ak = 1.

Case 2. Let f . L.
Subcase 2.1. Let L ≡ L(1)

≡ f (1). Then L ≡ L(1) implies L = cez. Hence L ≡ L(1)
≡ f (1) = cez then f = cez + d,

which implies f does not assume the values d and∞, by Lemma 2.1 we get

T(r, f ) ≤ N(r, 0; f − a) + N(r, 0; f −∞) + N(r, 0; f − d)

≤ N(r, a; f ).

This implies N(r, a; f ) , S(r, f ). Also since NA(r, a; f ) + NB(r, a; L) = S(r, f ) and f = cez + d = L + d we see that
E(r, a; f ) ∩ E(r, a; L) , ∅ this implies d = 0 and so f ≡ L, we arrive at a contradiction.
Subcase 2.2. Suppose that L(1) . f (1). Here we have to consider following subcases.
Subcase 2.2.1. Suppose L ≡ L(1) and L . f (1). Then we have two possibilities either L ≡ L(1) and L(1)

≡ f (2)

or L ≡ L(1) and L(1) . f (2).
If we consider the possibility L ≡ L(1) and L(1)

≡ f (2). Then L ≡ L(1) implies L = cez(c is a non zero
constant) and so L(1) = f (2) = cez then f (1) = cez + γ, and f = cez + γz + δ. Since L , f (1) obviously γ , 0.
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If we consider γz + δ , a. Then by Lemma 2.1 we get

T(r, cez) ≤ N(r, 0; cez) + N(r,∞; cez) + N(r, a − γz − δ; cez)

= N(r, a; f ) + S(r, cez). (11)

Since f = L(1) + γz + δ, we see that if z1 is a zero of f − a such that z1 < A ∪ B then γz + δ = 0. Therefore

N(r, a; f ) ≤ NA(r, a; f ) + NB(r, a; L) + N(r, 0;γz + δ)
= S(r, f ).

Which contradicts (11).
Next we consider γz + δ ≡ a, then f = cez + a and so f (1) = cez + α and f (2) = cez.

Hence L = (a2 + a3 + · · · + an)cez = f (2) = cez implies
n∑

k=2
ak = 1. Hence we get L = L(1) = cez and f = a + cez

where c(, 0) is a constant and
n∑

k=2
ak = 1.

Next we consider the possibility L ≡ L(1) and L(1) . f (2). Hence L . f (2). Then by the hypothesis we get

N(r, a; L) ≤ NB(r, a; L) + N(r, 1;
L

f (2)
)

≤ T(r,
L

f (2)
) + S(r, f )

= N(r,
L

f (2)
) + S(r, f )

≤ N(r, 0; f (2)) + S(r, f ). (12)

Again

m(r, a; f ) = m(r,
f (2)

f − a
·

1
f (2)

)

≤ m(r, 0; f (2)) + S(r, f )
= T(r, f (2)) −N(r, 0; f (2)) + S(r, f )
= m(r, f (2)) −N(r, 0; f (2)) + S(r, f )
≤ m(r, f ) −N(r, 0; f (2)) + S(r, f )
= T(r, f ) −N(r, 0; f (2)) + S(r, f )

and so

N(r, 0; f (2)) ≤ N(r, a; f ) + S(r, f ). (13)

Hence from (12) and (13) we get

N(r, a; L) ≤ N(r, a; f ) + S(r, f ), (14)

which implies by Lemma 2.3 that

T(r, f ) ≤ 2N(r, a; f ) + S(r, f ). (15)

We put Φ =
f (2)
−L

f−a and Ψ =
(a−a(1)) f (2)

−a( f (1)
−a(1))

f−a .
Then

N(r,Φ) ≤ NA(r, a; f ) + NB(r, a; L) + N(2(r, a; f ) + S(r, f )
= S(r, f ),
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also N(r,Ψ) = S(r, f ), and m(r,Φ) = S(r, f ), m(r,Ψ) = S(r, f ). Therefore T(r,Φ) = S(r, f ) and T(r,Ψ) = S(r, f ).
Since L , f (2) so Φ . 0.
Let z2 be a simple zero of f − a such that z2 < A ∪ B ∪ C where C = {z : a(z) − a(1)(z) = 0}.
Then by Taylor’s expansion in some neighbourhood of z2 we get

f − a = ( f − a)(z2) + ( f − a)(1)(z2)(z − z2) + ( f − a)(2)(z2)
(z − z2)2

2
+ ( f − a)(3)(z2)

(z − z2)3

6
+ . . .

= (a(z2) − a(1)(z2))(z − z2) + a(z2)
(z − z2)2

2
+ f (3)(z2)

(z − z2)3

6
+ . . .

Now differentiating we obtain

f (1)
− α = a(z2) − a(1)(z2) + a(z2)(z − z2) + f (3)(z2)

(z − z2)2

2
+ . . .

and

f (2) = a(z2) + f (3)(z2)(z − z2) + . . .

Also,

L = L(z2) + L(1)(z2)(z − z2) + L(2)(z2)
(z − z2)2

2
+ . . .

= a(z2) + a(z2)(z − z2) + L(2)(z2)
(z − z2)2

2
+ . . .

Therefore in some neighbourhood of z2 we get

Φ(z) =
a(z2) + f (3)(z2)(z − z2) − a(z2) − a(z2)(z − z2) + O(z − z2)2

(a(z2) − α)(z − z2) + O(z − z2)2

=
( f (3)(z2) − a(z2))(z − z2) + O(z − z2)2

(a(z2) − α)(z − z2) + O(z − z2)2

=
f (3)(z2) − a(z2) + O(z − z2)

a(z2) − α + O(z − z2)

Noting that a(z2) − α , 0, then

Φ(z2) =
f (3)(z2) − a(z2)

a(z2) − α
. (16)

Also in some neighbourhood of z2 we get

Ψ(z) =
{a(z) − a(1)(z)}{a(z2) + f (3)(z2)(z − z2)} − a(z){a(z2) − a(1)(z2) + a(z2)(z − z2)} + O(z − z2)2

(a(z2) − α)(z − z2) + O(z − z2)2

=
α2(z − z2){(a(z) − α) f (3)(z2) − a(z)a(z2)}(z − z2) + O(z − z2)2

(a(z2) − α)(z − z2) + O(z − z2)2

=
α2 + (a(z) − α) f (3)(z2) − a(z)a(z2) + O(z − z2)

a(z2) − α + O(z − z2)
.
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Hence

Ψ(z2) =
( f (3)(z2) − a(z2) − α)(a(z2) − α)

a(z2) − α

= f (3)(z2) − a(z2) − α. (17)

From (16) and (17) we get

(a(z2) − α)Φ(z2) = Ψ(z2) + a(z2) + α − a(z2)

implies

(a(z2) − α)Φ(z2) −Ψ(z2) − α = 0.

If

(a − α)Φ −Ψ − α . 0,

then we get

N(r, a; f ) ≤ NA(r, a; f ) + NB(r, a; L) + N(2(r, a; f ) + N(r, 0; (a − α)Φ −Ψ − α)
= S(r, f ),

which contradicts (15).
Therefore

(a − α)Φ −Ψ − α ≡ 0. (18)

First we suppose that Ψ ≡ 0. Then from (18) and the definitions of Φ and Ψ we get (a − α) f (2)
−L

f−a = α and
(a − α) f (2)

− a( f (1)
− α) = 0 implies

(a − α) f (2)
− (a − α)L = α( f − a) (19)

and

(a − α) f (2) = a( f (1)
− α). (20)

From (19) and (20) we get

a( f (1)
− α) − (a − α)L = α( f − a). (21)

Differentiating (21) we get

a f (2) + α( f (1)
− α) − αL − (a − α)L(1) = α( f (1)

− α). (22)

Since L ≡ L(1) then from (22) we get a f (2) = aL implies a( f (2)
− L) = 0, since a , 0 so f (2)

− L ≡ 0 and so Φ ≡ 0,
which is a contradiction.

Next we suppose that Ψ . 0. Then from (18) and the definitions of Φ and Ψ we get

(a − α)
f (2)
− L

f − a
−

(a − α) f (2)
− a( f (1)

− α)
f − a

= α

this implies

−(a − α)L + a( f (1)
− α) = α( f − a). (23)

Differentiating both sides of (23) and put L ≡ L(1) we get a(L − f (2)) = 0, since a , 0 so f (2)
− L ≡ 0 and so

Φ ≡ 0, which is a contradiction.
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Subcase 2.2.2. Let L . L(1) and L(1)
≡ f (1).

Since L . L(1). Then by hypothesis we get

N(r, a; L) ≤ NB(r, a; L) + N(r, 1;
L(1)

L
)

≤ T(r,
L(1)

L
) + S(r, f )

= N(r,
L(1)

L
) + S(r, f )

≤ N(r, 0; L) + S(r, f ). (24)

Again

m(r, a; f ) = m(r,
L

f − a
.
1
L

)

≤ m(r, 0; L) + S(r, f )
= T(r,L) −N(r, 0; L) + S(r, f )
= m(r,L) −N(r, 0; L) + S(r, f )
≤ m(r, f ) −N(r, 0; L) + S(r, f )
= T(r, f ) −N(r, 0; L) + S(r, f )

and so

N(r, 0; L) ≤ N(r, a; f ) + S(r, f ). (25)

Hence from (24) and (25) we get

N(r, a; L) ≤ N(r, a; f ) + S(r, f ),

which implies by Lemma 2.3 that

T(r, f ) ≤ 2N(r, a; f ) + S(r, f ). (26)

Therefore N(r, a; f ) , S(r, f ). Also since L(1)
≡ f (1). Then L ≡ f + c, where c is a constant. Also since

N(r, a; f ) , S(r, f ) and by hypothesis we get c = 0. Hence L ≡ f , which contradicts the initial supposition of
Case 2.
Subcase 2.2.3. Let L . L(1) and L ≡ f (1).
We put

τ =
(a − a(1))L − a( f (1)

− a(1))
f − a

.

Then

N(r, τ) ≤ NA(r, a; f ) + NB(r, a; L) + N(2(r, a; f ) + S(r, f )
= S(r, f ),

also m(r, τ) = S(r, f ). Therefore T(r, τ) = S(r, f ).
Let z4 be a simple zero of f − a such that z4 < A ∪ B ∪ C where C = {z : a(z) − a(1)(z) = 0}.
Then by Taylor’s expansion in some neighbourhood of z4 we get

f − a = ( f − a)(z4) + ( f − a)(1)(z4)(z − z4) + ( f − a)(2)(z4)
(z − z4)2

2
+ O(z − z4)3

= (a(z4) − α)(z − z4) + a(z4)
(z − z4)2

2
+ O(z − z4)3
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Now differentiating we obtain

f (1)
− α = (a(z4) − α) + a(z4)(z − z4) + (z − z4)2

and

L = L(z4) + L(1)(z4)(z − z4) + O(z − z4)2

= a(z4) + a(z4)(z − z4) + O(z − z4)2

Therefore in some neighbourhood of z4 we get

τ(z) =
{a(z) − a(1)(z)}{a(z4) + a(z4)(z − z4)} − a(z){a(z4) − α + a(z4)(z − z4)} + O(z − z4)2

(a(z4) − α)(z − z4) + O(z − z4)2

=
α2(z − z4) − αa(z4)(z − z4) + O(z − z4)2

(z − z4)(a(z4) − α + O(z − z4))

=
−α(a(z4) − α) + O(z − z4)

a(z4) − α + O(z − z4)
= −α + O(z − z4).

Let P = τ + α. Then in some neighbourhood of z4 we get P(z) = O(z − z4).
First we suppose that P(z) . 0. Since every multiple zero of f − a must belongs to A ∪ B ∪ C, then we get

N(r, a; f ) ≤ NA(r, a; f ) + NB(r, a; L) + N(r, 0; P)
= S(r, f ).

Then from (26) we get T(r, f ) = S(r, f ), a contradiction. Hence P ≡ 0 and so

(a − α)L − a( f (1)
− α) + α( f − a) = 0.

Since L ≡ f (1) then we get

(a − α) f (1)
− a( f (1)

− α) + α( f − a) = 0

which implies α( f − f (1)) = 0, since α , 0 then f ≡ f (1). So f = cez where c(, 0) is a constant. Then
L = a2 f (2) +a3 f (3) + · · ·+an f (n) = (a2 +a3 + · · ·+an)cez and L(1) = a2 f (3) +a3 f (4) + · · ·+an f (n+1) = (a2 +a3 + · · ·+an)cez.
So L ≡ L(1) which is a contradiction. This completes the proof of the theorem.
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