Filomat 31:20 (2017), 6461–6471 https://doi.org/10.2298/FIL1720461G

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Entire Functions Sharing a Linear Polynomial with Linear Differential Polynomials

Goutam Kumar Ghosh^a

^a Assistant Professor, Department of Mathematics, Dr. Bhupendra Nath Dutta Smriti Mahavidyalaya, Hatgobindapur, Burdwan, W.B, India

Abstract. In the paper we study the uniqueness of entire functions sharing a linear polynomial with linear differential polynomials generated by them. The results of the paper improves the corresponding results of P. Li (Kodai Math J. 22: 446–457, 1999), Lahiri-Present author(G. K. Ghosh) (Analysis (Munich)31: 331–340,2011) and Lahiri-Mukherjee(Bull. Aust. Math. Soc. 85: 295–306, 2012).

1. Introduction, Definitions and Results

In the paper, by meromorphic functions we shall always mean meromorphic functions in the complex plane \mathbb{C} . We adopt the standard notations of the Nevanlinna theory of meromorphic functions as explained in [1]. It will be convenient to let E denote any set of positive real numbers of finite linear measure, not necessarily the same at each occurrence. For a non-constant meromorphic function h, we denote by T(r,h) any quantity satisfying $S(r,h) = o\{T(r,h)\}$, as $r \to \infty$ and $r \notin E$.

Let *f* and *g* be two nonconstant meromorphic functions and let *a* be a small function of *f*. We denote by E(a; f) the set of *a*-pionts of *f*, where each point is counted according its multiplicity. We denote by $\overline{E}(a; f)$ the reduced form of E(a; f). We say that *f*, *g* share *a* CM, provided that E(a; f) = E(a; g), and we say that *f* and *g* share *a* IM, provided that $\overline{E}(a; f) = \overline{E}(a; g)$. In addition, we say that *f* and *g* share ∞ CM, if $\frac{1}{f}$ and $\frac{1}{g}$ share 0 CM, and we say that *f* and *g* share ∞ IM, if $\frac{1}{f}$ and $\frac{1}{g}$ share 0 IM.

We require the following definitions.

Definition 1.1. A meromorphic function a = a(z) is called a small function of f if T(r, a) = S(r, f).

Definition 1.2. Let *f* and *g* be two non-constant meromorphic functions defined in \mathbb{C} . For $a, b \in \mathbb{C} \cup \{\infty\}$ we denote by $N(r, a; f | g \neq b)(\overline{N}(r, a; f | g \neq b))$ the counting function (reduced counting function) of those *a*-points of *f* which are not the *b*-points of *g*.

Definition 1.3. Let *f* and *g* be two non-constant meromorphic functions defined in \mathbb{C} . For $a, b \in \mathbb{C} \cup \{\infty\}$ we denote by $N(r, a; f | g = b)(\overline{N}(r, a; f | g = b))$ the counting function (reduced counting function) of those *a*-points of *f* which are the *b*-points of *g*.

Keywords. Entire function, Linear Differential Polynomial, Uniqueness

Received: 09 May 2016; Revised: 06 August 2016; Accepted: 12 August 2017

Communicated by Miodrag Mateljević

²⁰¹⁰ Mathematics Subject Classification. Primary 30D35

Email address: g80g@rediffmail.com (Goutam Kumar Ghosh)

In 1986 G. Jank, E. Mues and L. Volkman [2] considered the case when an entire function shared a single value with its first two derivatives and proved the following result.

Theorem 1.4. [2] Let f be a nonconstant entire function and $a \neq 0$ be a finite number. If $\overline{E}(a; f) = \overline{E}(a; f^{(1)})$ and $\overline{E}(a; f) \subset \overline{E}(a; f^{(2)})$, then $f \equiv f^{(1)}$.

In fact, in Theorem 1.4 *f* and $f^{(1)}$ share the value *a* CM(counting multiplicities). Again considering $f = e^{wz} + w - 1$, where $w^{m-1} = 1, w \neq 1$ and $m \geq 3$ is an integer and a = w, we can verify that the second derivative in Theorem 1.4 can not be simply replaced by the *m*th derivative for $m \geq 3$ (see [9]).

In 1995 H. Zhong[9] generalised Theorem 1.4 and proved the following theorem.

Theorem 1.5. [9] Let f be a non-constant entire function and $a \neq 0$ be a finite complex number. If f and $f^{(1)}$ share the value $a \ CM$ and $\overline{E}(a; f) \subset \overline{E}(a; f^{(n)}) \cap \overline{E}(a; f^{(n+1)})$ for $n \ge 1$, then $f \equiv f^{(n)}$.

For $A \subset \mathbb{C} \cup \{\infty\}$, we denote by $N_A(r, a; f)(\overline{N}_A(r, a; f))$ the counting function (reduced counting function) of those *a*-points of *f* which belong to A.

In 2011 I. Lahiri and Present author(G. K. Ghosh) [3] improved Theorem 1.5 in the following manner.

Theorem 1.6. [3] Let f be a nonconstant entire function and a, b be two nonzero finite constants. Suppose further that $A = \overline{E}(a; f) \setminus \overline{E}(a; f^{(1)})$ and $B = \overline{E}(a; f^{(1)}) \setminus \{\overline{E}(a; f^{(n)}) \cap \overline{E}(b; f^{(n+1)})\}$ for $n(\geq 1)$. If each common zero of f - a and $f^{(1)} - a$ has the same multiplicity and $N_A(r, a; f) + N_B(r, a; f^{(1)}) = S(r, f)$, then $f = \lambda e^{\frac{bz}{a}} + \frac{ab-a^2}{b}$ or $f = \lambda e^{\frac{bz}{a}} + a$, where $\lambda (\neq 0)$ is a constant.

In 1999 P. Li [6] improved Theorem 1.5 by considering a linear differential polynomial instead of the derivative. The result of P. Li may be stated as follows:

Theorem 1.7. [6] Let f be nonconstant entire function and $L = a_1 f^{(1)} + a_2 f^{(2)} + \dots + a_n f^{(n)}$, where $a_1, a_2, \dots, a_n \neq 0$) are constants. If $\overline{E}(a; f) = \overline{E}(a; f^{(1)})$ and $\overline{E}(a; f) \subset \overline{E}(a; L) \cap \overline{E}(a; L^{(1)})$, then $f \equiv f^{(1)} \equiv L$.

In the same paper P. Li [6] also proved the following result.

Theorem 1.8. [6] Let f be a non-constant entire function and $L = a_1 f^{(1)} + a_2 f^{(2)} + \dots + a_n f^{(n)}$, where $a_1, a_2, \dots, a_n \neq 0$) are constants. If $\overline{E}(a; f) = \overline{E}(a; L)$, $\overline{E}(a; f) \subset \overline{E}(a; f^{(1)}) \cap \overline{E}(a; L^{(1)})$ and $\sum_{k=1}^n 2^k a_k \neq 0$ or $\sum_{k=1}^n a_k \neq -1$, then $f \equiv f^{(1)} \equiv L$.

In 2011 I. Lahiri and G. K. Ghosh [4] improved Theorem 1.8 by replacing the nature of sharing in the following manner.

Theorem 1.9. [4] Let f be a non-constant entire function in \mathbb{C} , a be a finite nonzero complex number and $L = a_1 f^{(1)} + a_2 f^{(2)} + \cdots + a_n f^{(n)}$, where $a_1, a_2, \ldots, a_n \neq 0$ are constants.

Further suppose that $E_1(a; f) \subset E(a; f^{(1)})$ and $N_A(r, a; f) + N_B(r, a; L) = S(r, f)$, where $A = E(a; f) \setminus E(a; L)$ and $B = E(a; L) \setminus \{E(a; f^{(1)}) \cap E(a; L^{(1)})\}$. Then one of the following cases holds:

- (i) $f = a + \alpha e^z$ and $L = \alpha e^z$, where α is a nonzero constant;
- (ii) $f = L = \alpha e^z$, where α is a nonzero constant;

(iii) $f = a + \frac{\alpha^2}{a}e^{2z} - \alpha e^z$ and $L = \alpha e^z$, where $\sum_{k=1}^n 2^k a_k = 0$, $\sum_{k=1}^n a_k = -1$ and α is a nonzero constant.

In the same paper I. Lahiri and G. K. Ghosh also proved the following result.

Theorem 1.10. [4] Let f be a nonconstant entire function in \mathbb{C} , a be a finite nonzero complex number and $L = a_1 f^{(1)} + a_2 f^{(2)} + \cdots + a_n f^{(n)}$, where $a_1, a_2, \ldots, a_n \neq 0$ are constants. Further let $N_A(r, a; f) + N_B(r, a; L) = S(r, f)$, where $A = E(a; f) \setminus E(a; L)$ and $B = E(a; L) \setminus \{E(a; f^{(1)}) \cap E(a; L^{(1)})\}$. If $f \neq L$ then one of the following holds:

(i) $f = a + \alpha e^z$ and $L = \alpha e^z$, where α is a nonzero constant;

(ii)
$$f = a + \frac{\alpha^2}{a}e^{2z} - \alpha e^z$$
 and $L = \alpha e^z$, where $\sum_{k=1}^n 2^k a_k = 0$, $\sum_{k=1}^n a_k = -1$ and α is a nonzero constant.

In 2012 I. Lahiri and R. Mukherjee [5] improved Theorem 1.7 in the following manner.

Theorem 1.11. [5] Let f be a non-constant entire function in \mathbb{C} , a be a finite nonzero complex number and $L = a_1 f^{(1)} + a_2 f^{(2)} + \cdots + a_n f^{(n)}$, where $a_1, a_2, \ldots, a_n \neq 0$ are constants.

Suppose further that:

- (i) $N_A(r,a;f) + N_B(r,a;f^{(1)}) = S(r,f)$, where $A = \overline{E}(a;f) \setminus \overline{E}(a;f^{(1)})$ and $B = \overline{E}(a;f^{(1)}) \setminus \{\overline{E}(a;L) \cap \overline{E}(a;L^{(1)})\}$;
- (ii) $\overline{E}_{1}(a; f) \subset \overline{E}(a; f^{(1)}) \cap \overline{E}(a; L^{(1)}); and$
- (iii) $\overline{E}_{(2}(a; f) \cap \overline{E}(0; L^{(1)}) = \emptyset$. Then $L = \alpha e^z$ and $f = \alpha e^z$ or $f = a + \alpha e^z$, where $\alpha \neq 0$ is a constant.

In the paper we consider the situation when a nonconstant entire function *f* share a linear polynomial $a(z) = \alpha z + \beta$, $\alpha \neq 0$ and β are constants, with their linear differential polynomial *L*, *L*⁽¹⁾.

We now state the main result of the paper.

Theorem 1.12. Let f be a nonconstant entire function in \mathbb{C} , $a = \alpha z + \beta (\neq f)$, where $\alpha (\neq 0)$ and β are constants, and $L = a_2 f^{(2)} + a_3 f^{(3)} + \dots + a_n f^{(n)}$, where $a_2, a_3, \dots, a_n (\neq 0)$ are constants. *Further suppose that*

- (i) $N_A(r,a;f) + N_B(r,a;L) = S(r,f)$, where $A = \overline{E}(a;f) \setminus \overline{E}(a;L)$ and $B = \overline{E}(a;L) \setminus \{\overline{E}(a;f^{(1)}) \cap \overline{E}(a;f^{(2)}) \cap \overline{E}(a;L^{(1)})\}$;
- (ii) $\overline{E}_{1}(a; f) \subset \overline{E}(a; f^{(1)});$ and
- (iii) $\overline{N}_{(2}(r,a;f) = S(r,f)$. Then $f = L = ce^z$, or $f = a + ce^z$ and $L = L^{(1)} = ce^z$ and $\sum_{k=2}^n a_k = 1$, where $c(\neq 0)$ is a constant.

In the next theorem we see the possible form of an entire function if we drop the hypothesis $\overline{E}_{1}(a; f) \subset \overline{E}(a; f^{(1)})$. In fact the Case 2. of the proof of Theorem 1.12 suggests the following theorem.

Theorem 1.13. Let f be a nonconstant entire function in \mathbb{C} , $a = \alpha z + \beta (\neq f)$, where $\alpha (\neq 0)$ and β are constants, and $L = a_2 f^{(2)} + a_3 f^{(3)} + \dots + a_n f^{(n)}$, where $a_2, a_3, \dots, a_n (\neq 0)$ are constants. Further let $N_A(r, a; f) + N_B(r, a; L) = S(r, f)$ and $\overline{N}_{(2}(r, a; f)) = S(r, f)$, where $A = \overline{E}(a; f) \setminus \overline{E}(a; L)$ and $B = \overline{E}(a; L) \setminus {\overline{E}(a; f^{(1)}) \cap \overline{E}(a; f^{(2)}) \cap \overline{E}(a; L^{(1)})}$. If $f \neq L$ then $f = a + ce^z$ and $L = L^{(1)} = ce^z$ and $\sum_{k=2}^n a_k = 1$, where $c(\neq 0)$ is a constant.

2. Lemmas

In this section we present some necessary lemmas.

Lemma 2.1. { p.47[1] } Let f be a nonconstant meromorphic function and a_1 , a_2 , a_3 be three distinct meromorphic functions satisfying $T(r, a_\mu) = S(r, f)$ for $\mu = 1, 2, 3$. Then

$$T(r, f) \le \overline{N}(r, 0; f - a_1) + \overline{N}(r, 0; f - a_2) + \overline{N}(r, 0; f - a_3) + S(r, f).$$

Lemma 2.2. { p.57 [1] } Suppose that g is a nonconstant meromorphic function and $\Psi = \sum_{\mu=0}^{l} a_{\mu}g^{(\mu)}$ where $a'_{\mu}s$ are meromorphic functions satisfying $T(r, a_{\mu}) = S(r, g)$ for $\mu = 0, 1, 2, \cdots, l$. If Ψ is nonconstant, then

$$T(r,g) \le \overline{N}(r,\infty;g) + N(r,0;g) + \overline{N}(r,1;\Psi) + S(r,g).$$

6463

Lemma 2.3. Let *f* be a transcendental meromorphic function and $a = \alpha z + \beta$, where $\alpha \neq 0$ and β are constants. Then for a positive integer *n*

$$T(r, f) \le \overline{N}(r, \infty; f) + N(r, a; f) + \overline{N}(r, a; L) + S(r, f).$$

Proof: The lemma follows from Lemma 2.2 for g = f - a, $a_0 = a_1 = 0$ and $\Psi = \frac{L}{a}$. This proves the lemma.

Lemma 2.4. { p.68 [1] } Let f be meromorphic and transcendental function in \mathbb{C} and $f^n P = Q$, where P, Q are differential polynomials in f and the degree of Q is at most n. Then m(r, P) = S(r, f).

Proof. [Proof of Theorem 1.12] First we verify that f can not be a polynomial. If f is a polynomial, then $T(r, f) = O(\log r)$. Since f is a polynomial so f - a and L - a have only finite number of zeros. If $A \neq \emptyset$ then A contains finite number of zeros of f - a. Then $N_A(r, a; f) = O(\log r)$, similarly $N_B(r, a; L) = O(\log r)$ so $N_A(r, a; f) + N_B(r, a; L) = O(\log r)$. But by the hypothesis $N_A(r, a; f) + N_B(r, a; L) = S(r, f)$. Therefore $T(r, f) = O(\log r) = S(r, f)$, a contradiction. Hence $A = B = \emptyset$. Therefore $\overline{E}(a; f) \subset \overline{E}(a; L) \subset \overline{E}(a; f^{(1)}) \cap \overline{E}(a; f^{(2)}) \cap \overline{E}(a; L^{(1)})$.

Let $f = A_1 z + B_1$, where $A_1 \neq 0$, B_1 are constants. Then $f^{(1)} = A_1$, $f^{(2)} = 0$, $L = a_2 f^{(2)} + a_3 f^{(3)} + \dots + a_n f^{(n)} = 0 = L^{(1)}$. Now $f - a = A_1 z + B_1 - \alpha z - \beta = 0$, implies $z = \frac{\beta - B_1}{A_1 - \alpha}$ is the only zero of f - a, $\frac{A_1 - \beta}{\alpha}$ is the only zero of $f^{(1)} - a$ and $-\frac{\beta}{\alpha}$ is the only zero of L - a and also since $\overline{E}(a; L) \subset \overline{E}(a; f^{(1)})$ so, $\frac{A_1 - \beta}{\alpha} = -\frac{\beta}{\alpha}$ implies $A_1 = 0$, which is a contradiction.

We denote by $N_{(2}(r, a; f | L = a)$ the counting function (counted with multiplicities) of those multiple *a*-points of *f* which are *a*-points of *L*. We first note that

$$N_{(2}(r, a; f) \leq N_A(r, a; f) + N_{(2}(r, a; f | L = a))$$

$$\leq n\overline{N}_{(2}(r, a; f) + S(r, f)$$

$$= S(r, f).$$

Now let *f* be a polynomial of degree greater than 1. Since $N_{(2}(r, a; f) = S(r, f)$, we see that f - a has no multiple zero and so all the zeros of f - a are distinct. Since $\overline{E}(a; f) \subset \overline{E}(a; f^{(1)})$ and $deg(f - a) = deg(f^{(1)} - a) + 1$, we arrive at a contradiction.

Therefore *f* is a transcendental entire function. Now we consider the following cases. **Case 1.** Let $f \equiv L$. Then $f^{(1)} \equiv L^{(1)}$. Now

$$m(r,a;f) = m(r, \frac{1}{f-a})$$

$$= m(r, \frac{f^{(1)} - a^{(1)}}{f-a} \cdot \frac{1}{f^{(1)} - a^{(1)}})$$

$$\leq m(r, \frac{1}{f^{(1)} - a^{(1)}}) + S(r, f)$$

$$\leq m(r, \frac{a^{(1)}}{f^{(1)} - a^{(1)}} + 1) + S(r, f)$$

$$= m(r, \frac{L^{(1)}}{f^{(1)} - a^{(1)}}) + S(r, f)$$

$$= S(r, f).$$
(1)

We now define λ to be

$$\lambda = \frac{f^{(1)} - a}{f - a}.$$
(2)

From the hypotheses we see that λ has no simple pole and

$$N(r,\lambda) \leq N_A(r,a;f) + N_B(r,a;L) + S(r,f)$$

= S(r, f)

and from (1) we get

(1)

$$m(r, \lambda) = m(r, \frac{f^{(1)} - a}{f - a})$$

= $m(r, \frac{f^{(1)} - a^{(1)}}{f - a} + \frac{a^{(1)} - a}{f - a}) + S(r, f)$
 $\leq m(r, \frac{a^{(1)} - a}{f - a}) + S(r, f)$
= $S(r, f).$

Hence $T(r, \lambda) = S(r, f)$. From (2) we get

$$f^{(1)} = \lambda_1 f + \mu_1, \tag{3}$$

where $\lambda_1 = \lambda$ and $\mu_1 = a(1 - \lambda)$.

We repeat the above argument (k - 1)-times by differentiating (3) we get

$$f^{(k)} = \lambda_k f + \mu_k (k = 1, 2, \ldots), \tag{4}$$

where λ_k and μ_k are meromorphic functions satisfying $\lambda_k = \lambda_{k-1}^{(1)} + \lambda_1 \lambda_{k-1}$ and $\mu_k = \mu_{k-1}^{(1)} + \mu_1 \lambda_{k-1}$ for k = 2, 3, ... Also we note that $T(r, \lambda_k) + T(r, \mu_k) = S(r, f)$ for k = 1, 2, ... Now

$$L = \sum_{k=2}^{n} a_k f^{(k)} = (\sum_{k=2}^{n} a_k \lambda_k) f + \sum_{k=2}^{n} a_k \mu_k = \xi f + \eta, \text{ say.}$$
(5)

Clearly $T(r, \xi) + T(r, \eta) = S(r, f)$. Differentiating (5) we get

$$L^{(1)} = \xi f^{(1)} + \xi^{(1)} f + \eta^{(1)}.$$
(6)

Let z_0 be a simple zero of f - a such that $z_0 \notin A \cup B \cup C$ where $C = \{z : a(z) - a^{(1)}(z) = 0\}$. Then from (5) and (6) we get $a(z_0)\xi(z_0) + \eta(z_0) = a(z_0)$ and $a(z_0)\xi(z_0) + a(z_0)\xi^{(1)}(z_0) + \eta^{(1)}(z_0) = a(z_0)$. First suppose that $a\xi + \eta \neq a$. Since every multiple zero of f - a must belong to $A \cup B \cup C$ then we get

$$N(r,a;f) \leq N_A(r,a;f) + N_B(r,a;L) + N(r,a;a\xi + \eta)$$

= $S(r,f),$

which is impossible because we have from (1) m(r, a; f) = S(r, f). Hence

$$a\xi + \eta \equiv a. \tag{7}$$

Similarly

$$a\xi + a\xi^{(1)} + \eta^{(1)} \equiv a.$$
(8)

Differentiating (7) and then subtract (8) we get $a - a^{(1)} = \xi(a - a^{(1)})$. Since $a \neq a^{(1)}$ we get $\xi \equiv 1$ and $\eta \equiv 0$. Then from (5) we get $f \equiv L$.

By actual calculation we see that $\lambda_2 = \lambda^2 + \lambda^{(1)}$ and $\lambda_3 = \lambda^3 + 3\lambda\lambda^{(1)} + \lambda^{(2)}$. In general, we now verify that

$$\lambda_k = \lambda^k + P_{k-1}[\lambda],\tag{9}$$

where $P_{k-1}[\lambda]$ is a differential polynomial in λ with constant coefficients having degree at most k-1 and weight at most k. Also we note that each term of $P_{k-1}[\lambda]$ contains some derivative of λ .

Let (9) be true. Then

$$\begin{split} \lambda_{k+1} &= \lambda_k^{(1)} + \lambda_1 \lambda_k \\ &= (\lambda^k + P_{k-1}[\lambda])^{(1)} + \lambda(\lambda^k + P_{k-1}[\lambda]) \\ &= \lambda^{k+1} + k\lambda^{k-1}\lambda^{(1)} + (P_{k-1}[\lambda])^{(1)} + \lambda P_{k-1}[\lambda] \\ &= \lambda^{k+1} + P_k[\lambda], \end{split}$$

noting that differentiation does not increase the degree of a differential polynomial but increase its weight by 1. So (9) is verified by mathematical induction.

Since $\sum_{k=2}^{n} a_k \lambda_k = \xi = 1$, we get from (9)

$$\sum_{k=2}^{n} a_k \lambda^k + \sum_{k=2}^{n} a_k P_{k-1}[\lambda] \equiv 1.$$
(10)

If z_0 is a pole of λ with multiplicity $p \geq 2$, then z_0 is a pole of $\sum_{k=2}^{n} a_k \lambda^k$ with multiplicity np and it is a pole of $\sum_{k=0}^{n} a_k P_{k-1}[\lambda]$ with multiplicity not exceeding (n-1)p + 1. Since np > (n-1)p + 1, it follows that z_0 is a pole of the left hand side of (10) with multiplicity *np*, which is impossible. So λ is an entire function. If λ is

transcendental, from (10)we get by Lemma 2.4 that $m(r, \lambda) = S(r, \lambda)$ and if λ is a polynomial then following the proof of Lemma 2.4 we get $m(r, \lambda) = O(1)$. Therefore λ is a constant. Hence from (9) we obtain $\lambda_k = \lambda^k$ for k = 1, 2, ...

Since $\xi \equiv 1$, we see that $\sum_{k=2}^{n} a_k \lambda^k \equiv 1$. Also from (3) we obtain $f^{(1)} = \lambda f + a(1-\lambda)$ then $f^{(2)} = \lambda f^{(1)} + \alpha(1-\lambda)$ and $f^{(3)} = \lambda f^{(2)}$ and so $f^{(2)} = ce^{\lambda z}$, where $c(\neq 0)$ is a constant. Then $f^{(1)} = \frac{ce^{\lambda z}}{\lambda} + d$. Since $L \equiv f$ then also $L^{(1)} \equiv f^{(1)}$ implies $L^{(1)} = a_2 f^{(3)} + a_3 f^{(4)} + \dots + a_n f^{(n+1)} = c e^{\lambda z} (a_2 \lambda + a_3 \lambda^2 + \dots + a_n \lambda^{n-1}) = f^{(1)} = \frac{c e^{\lambda z}}{\lambda} + d \text{ then } d = 0 \text{ and } \sum_{k=2}^n a_k \lambda^k = 1.$

So $f^{(1)} = \frac{ce^{\lambda z}}{\lambda}$ then $f = \frac{ce^{\lambda z}}{\lambda^2} + d_1$. Since m(r, a; f) = S(r, f) then obviously $N(r, a; f) \neq S(r, f)$. By hypothesis $N_A(r, a; f) + N_B(r, a; L) = S(r, f)$ so $E(a; f) \cap E(a; f^{(1)}) \neq \emptyset$. Hence from $f^{(1)} = \frac{ce^{\lambda z}}{\lambda}$ and $f = \frac{ce^{\lambda z}}{\lambda^2} + d_1$ we get $d_1 = 0$ and $\lambda = 1$. Hence $L \equiv f \equiv ce^{z}$ and $\sum_{k=2}^{n} a_{k} = 1$.

Case 2. Let $f \not\equiv L$.

Subcase 2.1. Let $L \equiv L^{(1)} \equiv f^{(1)}$. Then $L \equiv L^{(1)}$ implies $L = ce^z$. Hence $L \equiv L^{(1)} \equiv f^{(1)} = ce^z$ then $f = ce^z + d$, which implies *f* does not assume the values d and ∞ , by Lemma 2.1 we get

$$T(r, f) \leq \overline{N}(r, 0; f - a) + \overline{N}(r, 0; f - \infty) + \overline{N}(r, 0; f - d)$$

$$\leq \overline{N}(r, a; f).$$

This implies $\overline{N}(r, a; f) \neq S(r, f)$. Also since $N_A(r, a; f) + N_B(r, a; L) = S(r, f)$ and $f = ce^z + d = L + d$ we see that $\overline{E}(r, a; f) \cap \overline{E}(r, a; L) \neq \emptyset$ this implies d = 0 and so $f \equiv L$, we arrive at a contradiction.

Subcase 2.2. Suppose that $L^{(1)} \neq f^{(1)}$. Here we have to consider following subcases. Subcase 2.2.1. Suppose $L \equiv L^{(1)}$ and $L \neq f^{(1)}$. Then we have two possibilities either $L \equiv L^{(1)}$ and $L^{(1)} \equiv f^{(2)}$ or $L \equiv L^{(1)}$ and $L^{(1)} \neq f^{(2)}$.

If we consider the possibility $L \equiv L^{(1)}$ and $L^{(1)} \equiv f^{(2)}$. Then $L \equiv L^{(1)}$ implies $L = ce^{z}$ (c is a non zero constant) and so $L^{(1)} = f^{(2)} = ce^{z}$ then $f^{(1)} = ce^{z} + \gamma$, and $f = ce^{z} + \gamma z + \delta$. Since $L \neq f^{(1)}$ obviously $\gamma \neq 0$.

If we consider $\gamma z + \delta \neq a$. Then by Lemma 2.1 we get

$$T(r, ce^{z}) \leq \overline{N}(r, 0; ce^{z}) + \overline{N}(r, \infty; ce^{z}) + \overline{N}(r, a - \gamma z - \delta; ce^{z})$$

= $\overline{N}(r, a; f) + S(r, ce^{z}).$ (11)

Since $f = L^{(1)} + \gamma z + \delta$, we see that if z_1 is a zero of f - a such that $z_1 \notin A \cup B$ then $\gamma z + \delta = 0$. Therefore

$$\overline{N}(r,a;f) \leq N_A(r,a;f) + N_B(r,a;L) + N(r,0;\gamma z + \delta)$$

= $S(r,f).$

Which contradicts (11).

Next we consider $\gamma z + \delta \equiv a$, then $f = ce^z + a$ and so $f^{(1)} = ce^z + \alpha$ and $f^{(2)} = ce^z$. Hence $L = (a_2 + a_3 + \dots + a_n)ce^z = f^{(2)} = ce^z$ implies $\sum_{k=2}^n a_k = 1$. Hence we get $L = L^{(1)} = ce^z$ and $f = a + ce^z$

where $c \neq 0$ is a constant and $\sum_{k=2}^{n} a_k = 1$. Next we consider the possibility $L \equiv L^{(1)}$ and $L^{(1)} \neq f^{(2)}$. Hence $L \neq f^{(2)}$. Then by the hypothesis we get

$$\overline{N}(r,a;L) \leq N_{B}(r,a;L) + N(r,1;\frac{L}{f^{(2)}})
\leq T(r,\frac{L}{f^{(2)}}) + S(r,f)
= N(r,\frac{L}{f^{(2)}}) + S(r,f)
\leq N(r,0;f^{(2)}) + S(r,f).$$
(12)

Again

$$\begin{split} m(r,a;f) &= m(r,\frac{f^{(2)}}{f-a}\cdot\frac{1}{f(2)}) \\ &\leq m(r,0;f^{(2)}) + S(r,f) \\ &= T(r,f^{(2)}) - N(r,0;f^{(2)}) + S(r,f) \\ &= m(r,f^{(2)}) - N(r,0;f^{(2)}) + S(r,f) \\ &\leq m(r,f) - N(r,0;f^{(2)}) + S(r,f) \\ &= T(r,f) - N(r,0;f^{(2)}) + S(r,f) \end{split}$$

and so

$$N(r,0;f^{(2)}) \le N(r,a;f) + S(r,f).$$
(13)

Hence from (12) and (13) we get

$$N(r,a;L) \le N(r,a;f) + S(r,f), \tag{14}$$

which implies by Lemma 2.3 that

$$T(r, f) \le 2N(r, a; f) + S(r, f).$$
 (15)

We put
$$\Phi = \frac{f^{(2)}-L}{f-a}$$
 and $\Psi = \frac{(a-a^{(1)})f^{(2)}-a(f^{(1)}-a^{(1)})}{f-a}$.
Then

$$N(r, \Phi) \leq N_A(r, a; f) + N_B(r, a; L) + N_{(2}(r, a; f) + S(r, f)$$

= S(r, f),

6467

also $N(r, \Psi) = S(r, f)$, and $m(r, \Phi) = S(r, f)$, $m(r, \Psi) = S(r, f)$. Therefore $T(r, \Phi) = S(r, f)$ and $T(r, \Psi) = S(r, f)$. Since $L \neq f^{(2)}$ so $\Phi \neq 0$.

Let z_2 be a simple zero of f - a such that $z_2 \notin A \cup B \cup C$ where $C = \{z : a(z) - a^{(1)}(z) = 0\}$. Then by Taylor's expansion in some neighbourhood of z_2 we get

$$f - a = (f - a)(z_2) + (f - a)^{(1)}(z_2)(z - z_2) + (f - a)^{(2)}(z_2)\frac{(z - z_2)^2}{2} + (f - a)^{(3)}(z_2)\frac{(z - z_2)^3}{6} + \dots$$
$$= (a(z_2) - a^{(1)}(z_2))(z - z_2) + a(z_2)\frac{(z - z_2)^2}{2} + f^{(3)}(z_2)\frac{(z - z_2)^3}{6} + \dots$$

Now differentiating we obtain

$$f^{(1)} - \alpha = a(z_2) - a^{(1)}(z_2) + a(z_2)(z - z_2) + f^{(3)}(z_2)\frac{(z - z_2)^2}{2} + \dots$$

and

$$f^{(2)} = a(z_2) + f^{(3)}(z_2)(z - z_2) + \dots$$

Also,

$$L = L(z_2) + L^{(1)}(z_2)(z - z_2) + L^{(2)}(z_2)\frac{(z - z_2)^2}{2} + \dots$$
$$= a(z_2) + a(z_2)(z - z_2) + L^{(2)}(z_2)\frac{(z - z_2)^2}{2} + \dots$$

Therefore in some neighbourhood of z_2 we get

$$\Phi(z) = \frac{a(z_2) + f^{(3)}(z_2)(z - z_2) - a(z_2) - a(z_2)(z - z_2) + O(z - z_2)^2}{(a(z_2) - \alpha)(z - z_2) + O(z - z_2)^2}$$

=
$$\frac{(f^{(3)}(z_2) - a(z_2))(z - z_2) + O(z - z_2)^2}{(a(z_2) - \alpha)(z - z_2) + O(z - z_2)^2}$$

=
$$\frac{f^{(3)}(z_2) - a(z_2) + O(z - z_2)}{a(z_2) - \alpha + O(z - z_2)}$$

Noting that $a(z_2) - \alpha \neq 0$, then

$$\Phi(z_2) = \frac{f^{(3)}(z_2) - a(z_2)}{a(z_2) - \alpha}.$$
(16)

Also in some neighbourhood of z_2 we get

$$\begin{split} \Psi(z) &= \frac{\{a(z) - a^{(1)}(z)\}\{a(z_2) + f^{(3)}(z_2)(z - z_2)\} - a(z)\{a(z_2) - a^{(1)}(z_2) + a(z_2)(z - z_2)\} + O(z - z_2)^2}{(a(z_2) - \alpha)(z - z_2) + O(z - z_2)^2} \\ &= \frac{\alpha^2(z - z_2)\{(a(z) - \alpha)f^{(3)}(z_2) - a(z)a(z_2)\}(z - z_2) + O(z - z_2)^2}{(a(z_2) - \alpha)(z - z_2) + O(z - z_2)^2} \\ &= \frac{\alpha^2 + (a(z) - \alpha)f^{(3)}(z_2) - a(z)a(z_2) + O(z - z_2)}{a(z_2) - \alpha + O(z - z_2)}. \end{split}$$

Hence

$$\Psi(z_2) = \frac{(f^{(3)}(z_2) - a(z_2) - \alpha)(a(z_2) - \alpha)}{a(z_2) - \alpha}$$

= $f^{(3)}(z_2) - a(z_2) - \alpha.$ (17)

From (16) and (17) we get

$$(a(z_2) - \alpha)\Phi(z_2) = \Psi(z_2) + a(z_2) + \alpha - a(z_2)$$

implies

$$(a(z_2) - \alpha)\Phi(z_2) - \Psi(z_2) - \alpha = 0.$$

If

$$(a-\alpha)\Phi-\Psi-\alpha\neq 0,$$

then we get

$$\begin{array}{ll} N(r,a;f) &\leq & N_A(r,a;f) + N_B(r,a;L) + N_{(2}(r,a;f) + N(r,0;(a-\alpha)\Phi - \Psi - \alpha) \\ &= & S(r,f), \end{array}$$

which contradicts (15). Therefore

$$(a - \alpha)\Phi - \Psi - \alpha \equiv 0. \tag{18}$$

First we suppose that $\Psi \equiv 0$. Then from (18) and the definitions of Φ and Ψ we get $(a - \alpha)\frac{f^{(2)}-L}{f-a} = \alpha$ and $(a - \alpha)f^{(2)} - a(f^{(1)} - \alpha) = 0$ implies

$$(a-\alpha)f^{(2)} - (a-\alpha)L = \alpha(f-a)$$
⁽¹⁹⁾

and

$$(a - \alpha)f^{(2)} = a(f^{(1)} - \alpha).$$
⁽²⁰⁾

From (19) and (20) we get

$$a(f^{(1)} - \alpha) - (a - \alpha)L = \alpha(f - a).$$

$$(21)$$

Differentiating (21) we get

$$af^{(2)} + \alpha(f^{(1)} - \alpha) - \alpha L - (a - \alpha)L^{(1)} = \alpha(f^{(1)} - \alpha).$$
(22)

Since $L \equiv L^{(1)}$ then from (22) we get $af^{(2)} = aL$ implies $a(f^{(2)} - L) = 0$, since $a \neq 0$ so $f^{(2)} - L \equiv 0$ and so $\Phi \equiv 0$, which is a contradiction.

Next we suppose that $\Psi \neq 0$. Then from (18) and the definitions of Φ and Ψ we get

$$(a - \alpha)\frac{f^{(2)} - L}{f - a} - \frac{(a - \alpha)f^{(2)} - a(f^{(1)} - \alpha)}{f - a} = \alpha$$

this implies

$$-(a-\alpha)L + a(f^{(1)}-\alpha) = \alpha(f-a).$$
⁽²³⁾

Differentiating both sides of (23) and put $L \equiv L^{(1)}$ we get $a(L - f^{(2)}) = 0$, since $a \neq 0$ so $f^{(2)} - L \equiv 0$ and so $\Phi \equiv 0$, which is a contradiction.

6469

Subcase 2.2.2. Let $L \not\equiv L^{(1)}$ and $L^{(1)} \equiv f^{(1)}$. Since $L \not\equiv L^{(1)}$. Then by hypothesis we get

$$\overline{N}(r,a;L) \leq N_{B}(r,a;L) + N(r,1;\frac{L^{(1)}}{L})
\leq T(r,\frac{L^{(1)}}{L}) + S(r,f)
= N(r,\frac{L^{(1)}}{L}) + S(r,f)
\leq N(r,0;L) + S(r,f).$$
(24)

Again

$$\begin{split} m(r,a;f) &= m(r,\frac{L}{f-a},\frac{1}{L}) \\ &\leq m(r,0;L) + S(r,f) \\ &= T(r,L) - N(r,0;L) + S(r,f) \\ &= m(r,L) - N(r,0;L) + S(r,f) \\ &\leq m(r,f) - N(r,0;L) + S(r,f) \\ &= T(r,f) - N(r,0;L) + S(r,f) \end{split}$$

and so

 $N(r,0;L) \le N(r,a;f) + S(r,f).$

Hence from (24) and (25) we get

 $\overline{N}(r,a;L) \le N(r,a;f) + S(r,f),$

which implies by Lemma 2.3 that

 $T(r, f) \le 2N(r, a; f) + S(r, f).$

Therefore $N(r, a; f) \neq S(r, f)$. Also since $L^{(1)} \equiv f^{(1)}$. Then $L \equiv f + c$, where c is a constant. Also since $N(r, a; f) \neq S(r, f)$ and by hypothesis we get c = 0. Hence $L \equiv f$, which contradicts the initial supposition of Case 2.

Subcase 2.2.3. Let $L \neq L^{(1)}$ and $L \equiv f^{(1)}$. We put

$$\tau = \frac{(a - a^{(1)})L - a(f^{(1)} - a^{(1)})}{f - a}.$$

Then

$$\begin{split} N(r,\tau) &\leq N_A(r,a;f) + N_B(r,a;L) + N_{(2}(r,a;f) + S(r,f) \\ &= S(r,f), \end{split}$$

also $m(r, \tau) = S(r, f)$. Therefore $T(r, \tau) = S(r, f)$. Let z_4 be a simple zero of f - a such that $z_4 \notin A \cup B \cup C$ where $C = \{z : a(z) - a^{(1)}(z) = 0\}$. Then by Taylor's expansion in some neighbourhood of z_4 we get

$$f - a = (f - a)(z_4) + (f - a)^{(1)}(z_4)(z - z_4) + (f - a)^{(2)}(z_4)\frac{(z - z_4)^2}{2} + O(z - z_4)^3$$
$$= (a(z_4) - \alpha)(z - z_4) + a(z_4)\frac{(z - z_4)^2}{2} + O(z - z_4)^3$$

(26)

(25)

Now differentiating we obtain

$$f^{(1)} - \alpha = (a(z_4) - \alpha) + a(z_4)(z - z_4) + (z - z_4)^2$$

and

$$L = L(z_4) + L^{(1)}(z_4)(z - z_4) + O(z - z_4)^2$$

= $a(z_4) + a(z_4)(z - z_4) + O(z - z_4)^2$

Therefore in some neighbourhood of z_4 we get

$$\begin{aligned} \tau(z) &= \frac{\{a(z) - a^{(1)}(z)\}\{a(z_4) + a(z_4)(z - z_4)\} - a(z)\{a(z_4) - \alpha + a(z_4)(z - z_4)\} + O(z - z_4)^2}{(a(z_4) - \alpha)(z - z_4) + O(z - z_4)^2} \\ &= \frac{\alpha^2(z - z_4) - \alpha a(z_4)(z - z_4) + O(z - z_4)^2}{(z - z_4)(a(z_4) - \alpha + O(z - z_4))} \\ &= \frac{-\alpha(a(z_4) - \alpha) + O(z - z_4)}{a(z_4) - \alpha + O(z - z_4)} \\ &= -\alpha + O(z - z_4). \end{aligned}$$

Let $P = \tau + \alpha$. Then in some neighbourhood of z_4 we get $P(z) = O(z - z_4)$. First we suppose that $P(z) \neq 0$. Since every multiple zero of f - a must belongs to $A \cup B \cup C$, then we get

$$N(r, a; f) \leq N_A(r, a; f) + N_B(r, a; L) + N(r, 0; P)$$

= $S(r, f).$

Then from (26) we get T(r, f) = S(r, f), a contradiction. Hence $P \equiv 0$ and so

$$(a-\alpha)L - a(f^{(1)} - \alpha) + \alpha(f - a) = 0$$

Since $L \equiv f^{(1)}$ then we get

$$(a - \alpha)f^{(1)} - a(f^{(1)} - \alpha) + \alpha(f - a) = 0$$

which implies $\alpha(f - f^{(1)}) = 0$, since $\alpha \neq 0$ then $f \equiv f^{(1)}$. So $f = ce^z$ where $c(\neq 0)$ is a constant. Then $L = a_2 f^{(2)} + a_3 f^{(3)} + \dots + a_n f^{(n)} = (a_2 + a_3 + \dots + a_n)ce^z$ and $L^{(1)} = a_2 f^{(3)} + a_3 f^{(4)} + \dots + a_n f^{(n+1)} = (a_2 + a_3 + \dots + a_n)ce^z$. So $L \equiv L^{(1)}$ which is a contradiction. This completes the proof of the theorem. \Box

Acknowledgement.

The author is thankful to the referee for his valuable suggestions towards the improvement of the paper.

References

- [1] W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford, 1964.
- [2] G. Jank, E. Mues, L. Volkman, Meromorphe Functionen, die mit ihrer ersten und zweiten Ableitung einen endlichen wert teilen, Complex Var. Theory Appl. 6 (1986) 51–71.
- [3] I. Lahiri , G. K. Ghosh, Entire functions sharing values with their derivatives, Analysis (Munich) 31 (2011) 47–59.
- [4] I. Lahiri , G. K. Ghosh, Entire functions sharing one value with linear differential polynomials, Analysis (Munich) 31 (2011) 331–340.
- [5] I. Lahiri , R. Mukherjee, Uniqueness of entire functions sharing a value with linear differential polynomials, Bull. Aust. Math. Soc. 85 (2012) 295–306.
- [6] P. Li, Entire functions that share one value with their linear differential polynomials, Kodai Math. J. 22 (1999) 446-457.
- [7] C. C. Yang, On deficiencies of differential polynomials II, Math. Z. 125 (1972) 107–112.
- [8] L. Z. Yang, Entire functions that share one value with their derivatives, Bull. Hong Kong Math. Soc. 2 (1998) 115–121.
- [9] H. Zhong, Entire functions that share one value with their derivatives, Kodai Math. J. 18 (1995) 250–259.