Extension of the Kantorovich Inequality for Positive Multilinear Mappings

Mohsen Kian ${ }^{\text {a }}$, Mahdi Dehghani ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Faculty of Basic Sciences, University of Bojnord, P. O. Box 1339, Bojnord 94531, Iran ${ }^{b}$ Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, P. O. Box 87317-53153, Kashan, Iran

Abstract

It is known that the power function $f(t)=t^{2}$ is not matrix monotone. Recently, it has been shown that t^{2} preserves the order in some matrix inequalities. We prove that if $\mathbb{A}=\left(A_{1}, \cdots, A_{k}\right)$ and $\mathbb{B}=\left(B_{1}, \cdots, B_{k}\right)$ are k-tuples of positive matrices with $0<m \leq A_{i}, B_{i} \leq M(i=1, \ldots, k)$ for some positive real numbers $m<M$, then

$\Phi^{2}\left(A_{1}^{-1}, \cdots, A_{k}^{-1}\right) \leq\left(\frac{\left(1+v^{k}\right)^{2}}{4 v^{k}}\right)^{2} \Phi^{-2}\left(A_{1}, \cdots, A_{k}\right)$
and
$\Phi^{2}\left(\frac{A_{1}+B_{1}}{2}, \cdots, \frac{A_{k}+B_{k}}{2}\right) \leq\left(\frac{\left(1+v^{k}\right)^{2}}{4 v^{k}}\right)^{2} \Phi^{2}\left(A_{1} \sharp B_{1}, \cdots A_{k} \sharp B_{k}\right)$,
where Φ is a unital positive multilinear mapping and $v=\frac{M}{m}$ is the condition number of each A_{i}.

1. Introduction

Throughout the paper, assume that $\mathcal{M}_{n}:=\mathcal{M}_{n}(\mathbb{C})$ is the algebra of all $n \times n$ complex matrices and I denotes the identity matrix. A Hermitian matrix A is called positive (denoted by $A \geq 0$) if all of its eigenvalues are nonnegative. If in addition A is invertible, then A is called strictly positive (denoted by $A>0$). For Hermitian matrices $A, B \in \mathcal{M}_{n}$, the inequality $A \leq B$ means that $B-A \geq 0$. If m is a real scalar, then by $m \leq A$ we mean that $m I \leq A$.

Let $J \subseteq \mathbb{R}$ be an interval. A continuous real function $f: J \rightarrow \mathbb{R}$ is called matrix monotone if $A \leq B$ implies that $f(A) \leq f(B)$ for all Hermitian matrices A and B whose eigenvalues are in J. A celebrated result of Löwner-Heinz (see for example [9,10]) asserts that $f(t)=t^{r}$ is matrix monotone for all $0 \leq r \leq 1$. In fact the converse is also true, if $f(t)=t^{r}$ is matrix monotone, then $0 \leq r \leq 1$. This concludes that the power function $f(t)=t^{r}$ does not preserve the matrix order in general except for $0 \leq r \leq 1$. For example, $A \leq B$ does not imply $A^{2} \leq B^{2}$. To see this, it is enough to set $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$.

[^0]However, there have recently been some works in which some operator inequalities are squared. Moreover, it has been recently shown that the power function $f(t)=t^{r}$ preserves the order in some matrix inequalities even if $r \geq 1$. In this section, we take a look at these works.

A linear mapping $\Phi: \mathcal{M}_{n} \rightarrow \mathcal{M}_{p}$ is called positive if Φ preserves the positivity, i.e., if $A \geq 0$ in \mathcal{M}_{n}, then $\Phi(A) \geq 0$ in \mathcal{M}_{p} and Φ is called unital if $\Phi(I)=I$. Also Φ is said to be strictly positive if $\Phi(A)>0$ whenever $A>0$.

A continuous real function $f: J \rightarrow \mathbb{R}$ is said to be matrix convex if

$$
f(\lambda A+(1-\lambda) B) \leq \lambda f(A)+(1-\lambda) f(B)
$$

for all Hermitian matrices A, B with eigenvalues in J and all $\lambda \in[0,1]$. Positive linear mappings have been used to characterize matrix convex and matrix monotone functions. For example, it is well-known that a continuous real function $f: J \rightarrow \mathbb{R}$ is matrix convex if and only if the Choi-Davis-Jensen inequality [10] $f(\Phi(A)) \leq \Phi(f(A))$ holds true for every unital positive linear mapping Φ and every Hermitian matrix A whose eigenvalues are in J. Two other special cases of this result are the Kadison inequality and the Choi inequality, see $[2,10]$:

Theorem 1.1. If $\Phi: \mathcal{M}_{n} \rightarrow \mathcal{M}_{p}$ is a unital positive linear mapping, then

$$
\begin{equation*}
\text { The Choi inequality } \Phi(A)^{-1} \leq \Phi\left(A^{-1}\right) \quad(A>0) \text {. } \tag{1}
\end{equation*}
$$

The Kadison inequality $\quad \Phi(A)^{2} \leq \Phi\left(A^{2}\right)$.
In what follows, assume that m and M are positive real numbers such that $0<m<M$ and $A, B \in \mathcal{M}_{n}$ are matrices with $0<m \leq A, B \leq M$ except where otherwise clearly indicated. Moreover, assume that $\xi=\frac{(M+m)^{2}}{4 M m}$.

A counterpart to the choi inequality (1) has been presented by Marshal and Olkin [15] as follows:

$$
\begin{equation*}
\Phi\left(A^{-1}\right) \leq \xi \Phi(A)^{-1} \tag{2}
\end{equation*}
$$

A similar result for the Kadison inequality (see [16]) holds true:

$$
\begin{equation*}
\Phi\left(A^{2}\right) \leq \xi \Phi(A)^{2} \tag{3}
\end{equation*}
$$

The constant ξ is known as the Kantorovich constant. In addition, the inequalities of type (2) and (3), which present reverse of some inequalities, are known as Kantorovich type inequalities. For a recent survey concerning Kantorovich type inequalities the reader is referred to [17].

Regarding the possible squared version of (2), Lin [13] noticed that the inequality

$$
\begin{equation*}
\Phi(A)+M m \Phi\left(A^{-1}\right) \leq M+m \tag{4}
\end{equation*}
$$

holds for every unital positive linear mapping Φ. The inequality (4) turns out to be a tool for squaring matrix inequalities. Using (4) Lin [13] showed that (2) can be squared:

Theorem 1.2. [13, Theorem 2.8] If $\Phi: \mathcal{M}_{n} \rightarrow \mathcal{M}_{p}$ is a unital positive linear mapping, then

$$
\begin{equation*}
\Phi\left(A^{-1}\right)^{2} \leq \xi^{2} \Phi(A)^{-2} \tag{5}
\end{equation*}
$$

As pointed out by Fu and He [5], the inequality (5) and the matrix monotonicity of $f(t)=t^{s} \quad(0 \leq s \leq 1)$ imply that

$$
\begin{equation*}
\Phi\left(A^{-1}\right)^{r} \leq \xi^{r} \Phi(A)^{-r} \tag{6}
\end{equation*}
$$

for every $0 \leq r \leq 2$. In the case where $r \geq 2$, it was shown in [5] that:

Theorem 1.3. [5, Theorem 3] For every $r \geq 2$

$$
\begin{equation*}
\Phi\left(A^{-1}\right)^{r} \leq\left(\frac{(M+m)^{2}}{4^{\frac{2}{r}} M m}\right)^{r} \Phi(A)^{-r} \tag{7}
\end{equation*}
$$

The matrix arithmetic-geometric mean inequality (the A-G mean inequality) (see for example [2, 10]) $A \sharp B \leq \frac{A+B}{2}$ implies that

$$
\Phi(A \sharp B) \leq \Phi\left(\frac{A+B}{2}\right)
$$

for every unital positive linear mapping Φ.
A converse of this inequality reads as follows (see [8])

$$
\begin{equation*}
\Phi\left(\frac{A+B}{2}\right) \leq \sqrt{\xi} \Phi(A \sharp B) \leq \xi \Phi\left(\left(\frac{A^{-1}+B^{-1}}{2}\right)^{-1}\right) . \tag{8}
\end{equation*}
$$

Lin [14] has tried to obtain an square version of (8) and proved that

$$
\begin{align*}
& \Phi^{2}\left(\frac{A+B}{2}\right) \leq \xi^{2} \Phi^{2}(A \sharp B) \tag{9}\\
& \Phi^{2}\left(\frac{A+B}{2}\right) \leq \xi^{2}(\Phi(A) \sharp \Phi(B))^{2} .
\end{align*}
$$

In Section 2, we give an extension of (9) using positive multilinear mappings. As noticed in [5], utilizing the Löwner-Heinz inequality, (9) can be extended as

$$
\begin{align*}
& \Phi^{r}\left(\frac{A+B}{2}\right) \leq \xi^{r} \Phi^{r}(A \sharp B) \tag{10}\\
& \Phi^{r}\left(\frac{A+B}{2}\right) \leq \xi^{r}(\Phi(A) \sharp \Phi(B))^{r}
\end{align*}
$$

for every $0 \leq r \leq 2$. In the case where $r \geq 2, \mathrm{Fu}$ and He [5] showed that
Theorem 1.4. [5, Theorem 4] If $r \geq 2$, then

$$
\begin{align*}
& \Phi^{r}\left(\frac{A+B}{2}\right) \leq\left(\frac{(M+m)^{2}}{4^{\frac{2}{r}} M m}\right)^{r} \Phi^{r}(A \sharp B) \tag{11}\\
& \Phi^{r}\left(\frac{A+B}{2}\right) \leq\left(\frac{(M+m)^{2}}{4^{\frac{2}{r}} M m}\right)^{r}(\Phi(A) \sharp \Phi(B))^{r} .
\end{align*}
$$

It is well-known that the arithmetic mean is the biggest and the harmonic mean is the smallest among symmetric means (see [11]). Fu and Hoa in [6] extended the inequalities (10) and (11) to arbitrary means between harmonic and arithmetic means. If σ, τ be two arbitrary means between harmonic and arithmetic means, then for every positive unital linear mapping Φ and $0 \leq r \leq 2$ they proved that

$$
\begin{align*}
& \Phi^{r}(A \sigma B) \leq \xi^{r} \Phi^{r}(A \tau B) \tag{12}\\
& \Phi^{r}(A \sigma B) \leq \xi^{r}(\Phi(A) \tau \Phi(B))^{r} .
\end{align*}
$$

Also for $r \geq 2$ they showed that

$$
\begin{align*}
& \Phi^{r}(A \sigma B) \leq\left(\frac{(M+m)^{2}}{4^{\frac{2}{r}} M m}\right)^{r} \Phi^{r}(A \tau B) \tag{13}\\
& \Phi^{r}(A \sigma B) \leq\left(\frac{(M+m)^{2}}{4^{\frac{2}{r}} M m}\right)^{r}(\Phi(A) \tau \Phi(B))^{r}
\end{align*}
$$

Similar results can be found in [18].
Let $G\left(A_{1}, \cdots, A_{k}\right)$ denote the Ando-Li-Mathias geometric mean of strictly positive $A_{i} \in \mathcal{M}_{n}(i=1, \ldots, k)$ [1]. It is known that it satisfies in the arithmetic-geometric-Harmonic mean inequality:

$$
\begin{equation*}
\left(\frac{A_{1}^{-1}+\cdots+A_{k}^{-1}}{k}\right)^{-1} \leq G\left(A_{1}, \cdots, A_{k}\right) \leq \frac{A_{1}+\cdots+A_{k}}{k} \tag{14}
\end{equation*}
$$

The converse of (14) is a Kantorovich type inequality (see [7]) which reads as

$$
\begin{equation*}
\frac{A_{1}+\cdots+A_{k}}{k} \leq \xi G\left(A_{1}, \cdots, A_{k}\right) \quad \text { and } \quad G\left(A_{1}, \cdots, A_{k}\right) \leq \xi\left(\frac{A_{1}^{-1}+\cdots+A_{k}^{-1}}{k}\right)^{-1} \tag{15}
\end{equation*}
$$

where $A_{i} \in \mathcal{M}_{n}$ with $0<m \leq A_{i} \leq M(i=1, \ldots k)$.
Lin [14, Theorem 3.2] proved that (15) can be squared:

$$
\begin{equation*}
\left(\frac{A_{1}+\cdots+A_{k}}{k}\right)^{2} \leq \xi^{2} G\left(A_{1}, \cdots, A_{k}\right)^{2} \tag{16}
\end{equation*}
$$

In almost all of the above results, the following two key lemmas have been utilized:
Lemma 1.5. [3] Let $A, B \in \mathcal{M}_{n}$. If $A, B \geq 0$, then

$$
\|A B\| \leq \frac{1}{4}\|A+B\|^{2}
$$

for every unitarily invariant norm $\|\cdot\|$ on \mathcal{M}_{n}.
Lemma 1.6. [2, Theorem 1.6.9] Let $A, B \in \mathcal{M}_{n}$. If $A, B \geq 0$ and $1 \leq r<\infty$, then

$$
\begin{equation*}
\left\|A^{r}+B^{r}\right\| \leq\left\|(A+B)^{r}\right\| \tag{17}
\end{equation*}
$$

for every unitarily invariant norm $\|\cdot\|$ on \mathcal{M}_{n}.

2. Positive Multilinear Mapping Inequalities

A mapping $\Phi: \mathcal{M}_{n}^{k}:=\mathcal{M}_{n} \times \cdots \times \mathcal{M}_{n} \rightarrow \mathcal{M}_{p}$ is said to be multilinear if it is linear in each of its variable. A multilinear mapping $\Phi: \mathcal{M}_{n}^{k} \rightarrow \mathcal{M}_{p}$ is called positive if $A_{i} \geq 0$ for $i=1, \cdots, k$ implies that $\Phi\left(A_{1}, \cdots, A_{k}\right) \geq 0$ and Φ is called unital if $\Phi(I, \ldots, I)=I$. [4].

Recently, an extension of the Choi inequality (1) has been presented in [4] for positive multilinear mappings:
Lemma 2.1. If $\Phi: \mathcal{M}_{n}^{k} \rightarrow \mathcal{M}_{p}$ is a unital positive multilinear mapping, then

$$
\Phi\left(A_{1}, \cdots, A_{k}\right)^{-1} \leq \Phi\left(A_{1}^{-1}, \cdots, A_{k}^{-1}\right)
$$

for all strictly positive matrices $A_{i} \in \mathcal{M}_{n}(i=1, \ldots k)$.
Moreover, a multilinear version of (2), which is a Kantorovich type inequality for positive multilinear mappings, has also been presented in [4] as
Lemma 2.2. [4, Corollary 5.3] If $A_{i} \in \mathcal{M}_{n}(i=1, \ldots, k)$ are positive matrices with $0<m \leq A_{i} \leq M$ for some positive real numbers $m<M$ and $\Phi: \mathcal{M}_{n}^{k} \rightarrow \mathcal{M}_{p}$ is a unital positive multilinear mapping, then

$$
\begin{equation*}
\Phi\left(A_{1}^{-1}, \ldots, A_{k}^{-1}\right) \leq \frac{(1+v)^{2}}{4 v} \Phi\left(A_{1}, \ldots, A_{k}\right)^{-1} \tag{18}
\end{equation*}
$$

where $v=\frac{M}{m}$ is the condition number of each A_{i}.

Unfortunately, there is an error in the above lemma. The Kantorovich constant $\frac{(1+v)^{2}}{4 v}$ does not work in (18) in general (see Remark 2.7). We give a correct form of (18) in the next lemma. The proof is quite similar to that of [4, Corollary 5.3] and we omit the proof.

Lemma 2.3. Let $A_{i} \in \mathcal{M}_{n}(i=1, \cdots, k)$ with $0<m \leq A_{i} \leq M$ for some positive real numbers $m<M$. If $\Phi: \mathcal{M}_{n}^{k} \rightarrow \mathcal{M}_{p}$ is a unital positive multilinear mapping, then

$$
\begin{equation*}
\Phi\left(A_{1}^{-1}, \cdots, A_{k}^{-1}\right) \leq \frac{\left(1+v^{k}\right)^{2}}{4 v^{k}} \Phi\left(A_{1}, \cdots, A_{k}\right)^{-1} \tag{19}
\end{equation*}
$$

where $v=\frac{M}{m}$ is the condition number of each A_{i}.
The following key lemma which is a direct conclusion of [16, Theorem 2.1] has an important role in obtaining our main results.

Lemma 2.4. Let f be a positive strictly convex twice differentiable function on $[m, M]$ with $0<m<M$ and let $C_{i} \in \mathcal{M}_{n}$ such that $\sum_{i=1}^{k} C_{i}^{*} C_{i}=$ I. If $A_{i} \in \mathcal{M}_{n}$ with $0<m \leq A_{i} \leq M(i=1, \cdots, k)$, then

$$
\begin{equation*}
\sum_{i=1}^{k} C_{i}^{*} f\left(A_{i}\right) C_{i} \leq a_{f} \sum_{i=1}^{k} C_{i}^{*} A_{i} C_{i}+b_{f} I \leq \alpha f\left(\sum_{i=1}^{k} C_{i}^{*} A_{i} C_{i}\right) \tag{20}
\end{equation*}
$$

where $a_{f}=\frac{f(M)-f(m)}{M-m}, b_{f}=\frac{M f(m)-m f(M)}{M-m}$ and $\alpha=\max _{m \leq t \leq M}\left\{\frac{a_{f} t+b_{f}}{f(t)}\right\}$.
Lemma 2.5. Let $A_{i} \in \mathcal{M}_{n}$ with $0<m \leq A_{i} \leq M$ for some positive real numbers $m<M(i=1, \cdots, k)$. If $\Phi: \mathcal{M}_{n}^{k} \rightarrow \mathcal{M}_{p}$ is a unital positive multilinear mapping, then

$$
\begin{equation*}
\Phi\left(A_{1}^{r}, \cdots, A_{k}^{r}\right) \leq a_{r} \Phi\left(A_{1}, \cdots, A_{k}\right)+b_{r} I \tag{21}
\end{equation*}
$$

for all $r \geq 1$ and $r \leq 0$ in which

$$
a_{r}=\frac{M^{k r}-m^{k r}}{M^{k}-m^{k}}, \quad b_{r}=\frac{M^{k} m^{k r}-m^{k} M^{k r}}{M^{k}-m^{k}} .
$$

Proof. Assume that $A_{i}=\sum_{j=1}^{n} \lambda_{i j} P_{i j}(i=1, \cdots, k)$ is the spectral decomposition of each $A_{i} \in \mathcal{M}_{n}$ for which $\sum_{j=1}^{n} P_{i j}=I$. Put $C\left(j_{1}, \cdots, j_{k}\right):=\left(\Phi\left(P_{1 j_{1}}, \cdots, P_{k j_{k}}\right)\right)^{\frac{1}{2}}$ so that $\sum_{j_{1}=1}^{n} \sum_{j_{2}=1}^{n} \cdots \sum_{j_{k}=1}^{n} C\left(j_{1}, \cdots, j_{k}\right)^{*} C\left(j_{1}, \cdots, j_{k}\right)=I$. It is well known that $f(t)=t^{r}$ is a positive strictly convex differentiable function on $(0, \infty)$. Then

$$
\begin{aligned}
& \Phi\left(A_{1}^{r}, A_{2}^{r}, \cdots, A_{k}^{r}\right)=\Phi\left(\sum_{j=1}^{n} \lambda_{1 j}^{r} P_{1 j}, \cdots, \sum_{j=1}^{n} \lambda_{k j}^{r} P_{k j}\right) \\
& =\sum_{j_{1}=1}^{n} \sum_{j_{2}=1}^{n} \cdots \sum_{j_{k}=1}^{n} \lambda_{1_{j_{1}}}^{r} \lambda_{2 j_{2}}^{r} \cdots \lambda_{k j_{k}}^{r} \Phi\left(P_{1 j_{1}}, \cdots, P_{k j_{k}}\right) \quad \text { (by multilinearity of } \Phi \text {) } \\
& =\sum_{j_{1}=1}^{n} \sum_{j_{2}=1}^{n} \cdots \sum_{j_{k}=1}^{n} C\left(j_{1}, \cdots, j_{k}\right)\left(\lambda_{1 j_{1}} \lambda_{2 j_{2}} \cdots \lambda_{k j_{k}}\right)^{r} C\left(j_{1}, \cdots, j_{k}\right) \\
& \leq a_{r} \sum_{j_{1}=1}^{n} \sum_{j_{2}=1}^{n} \cdots \sum_{j_{k}=1}^{n} C\left(j_{1}, \cdots, j_{k}\right) \lambda_{1 j_{1}} \lambda_{2 j_{2}} \cdots \lambda_{k k_{k}} C\left(j_{1}, \cdots, j_{k}\right)+b_{r} I \quad \text { (by Lemma 2.4) } \\
& =a_{r} \sum_{j_{1}=1}^{n} \sum_{j_{2}=1}^{n} \cdots \sum_{j_{k}=1}^{n} \lambda_{1 j_{1}} \lambda_{2 j_{2}} \cdots \lambda_{k j_{k}} \Phi\left(P_{1 j_{1}}, \cdots, P_{k j_{k}}\right)+b_{r} I \\
& =a_{r} \Phi\left(A_{1}, \cdots, A_{k}\right)+b_{r} I .
\end{aligned}
$$

Now we give our first main result which is an square version of (19).
Theorem 2.6. Let $A_{i} \in \mathcal{M}_{n}$ with $0<m \leq A_{i} \leq M$ for some positive real numbers $m<M(i=1, \ldots, k)$. If $\Phi: \mathcal{M}_{n}^{k} \rightarrow \mathcal{M}_{p}$ is a unital positive multilinear mapping, then

$$
\begin{equation*}
\Phi^{2}\left(A_{1}^{-1}, \cdots, A_{k}^{-1}\right) \leq\left(\frac{\left(1+v^{k}\right)^{2}}{4 v^{k}}\right)^{2} \Phi^{-2}\left(A_{1}, \cdots, A_{k}\right) \tag{22}
\end{equation*}
$$

in which $v=\frac{M}{m}$ is the condition number of each A_{i}.
Proof. Assume that the convex function f is defined on $(0, \infty)$ by $f(t)=t^{-1}$. Applying Lemma 2.5 for $r=-1$ we get

$$
a_{r}=\frac{-1}{M^{k} m^{k}}, \quad b_{r}=\frac{M^{k}+m^{k}}{M^{k} m^{k}}
$$

and

$$
\Phi\left(A_{1}^{-1}, \cdots, A_{k}^{-1}\right) \leq \frac{-1}{M^{k} m^{k}} \Phi\left(A_{1}, \cdots, A_{k}\right)+\frac{M^{k}+m^{k}}{M^{k} m^{k}} I
$$

It follows that

$$
\begin{equation*}
\Phi\left(A_{1}, \cdots, A_{k}\right)+M^{k} m^{k} \Phi\left(A_{1}^{-1}, \cdots, A_{k}^{-1}\right) \leq M^{k}+m^{k} \tag{23}
\end{equation*}
$$

On the other hand Lemma 1.5 yields that

$$
\begin{align*}
& M^{k} m^{k}\left\|\Phi\left(A_{1}, \cdots, A_{k}\right) \Phi\left(A_{1}^{-1}, \cdots, A_{k}^{-1}\right)\right\| \\
& \quad \leq \frac{1}{4}\left\|\Phi\left(A_{1}, \cdots, A_{k}\right)+M^{k} m^{k} \Phi\left(A_{1}^{-1}, \cdots, A_{k}^{-1}\right)\right\|^{2} \tag{24}
\end{align*}
$$

Combining (23) and (24) we obtain

$$
\left\|\Phi\left(A_{1}, \cdots, A_{k}\right) \Phi\left(A_{1}^{-1}, \cdots, A_{k}^{-1}\right)\right\| \leq \frac{\left(M^{k}+m^{k}\right)^{2}}{4 M^{k} m^{k}}=\frac{\left(1+v^{k}\right)^{2}}{4 v^{k}}
$$

Therefore

$$
\Phi^{2}\left(A_{1}^{-1}, \cdots, A_{k}^{-1}\right) \leq\left(\frac{\left(1+v^{k}\right)^{2}}{4 v^{k}}\right)^{2} \Phi^{-2}\left(A_{1}, \cdots, A_{k}\right)
$$

Remark 2.7. It should be remarked that the number k in the constant $\frac{\left(1+v^{k}\right)^{2}}{4 v^{k}}$ is the best possible in (19) and so in (22). To see this, consider the bilinear mapping $\Phi: \mathcal{M}_{2}^{2} \rightarrow \mathcal{M}_{p}$ defined by $\Phi(A, B)=\langle x, \operatorname{diag}(A) \operatorname{diag}(B) x\rangle I_{p}$, where $x=[1 / \sqrt{2}, 1 / \sqrt{2}]^{t} \in \mathbb{C}^{2}$. If $A=B=\operatorname{diag}(1,2)$ so that $v=2$, then

$$
\Phi\left(A^{-1}, B^{-1}\right)=0.625 I_{p}=\frac{\left(1+v^{2}\right)^{2}}{4 v^{2}} \Phi(A, B)^{-1}
$$

Let $A_{i} \in \mathcal{M}_{n}$ with $0<m \leq A_{i} \leq M$ for some real numbers $m<M(i=1, \ldots, k)$. If $\Phi: \mathcal{M}_{n}^{k} \rightarrow \mathcal{M}_{p}$ is a unital positive multilinear mapping, then matrix monotonicity of $f(t)=t^{s}(0 \leq s \leq 1)$ and (22) imply that

$$
\Phi^{r}\left(A_{1}^{-1}, \cdots, A_{k}^{-1}\right) \leq\left(\frac{\left(1+v^{k}\right)^{2}}{4 v^{k}}\right)^{r} \Phi^{-r}\left(A_{1}, \cdots, A_{k}\right)
$$

for every $0 \leq r \leq 2$. By a similar technique used in the proof of Theorem 2.6 and Applying Lemma 1.6 one can obtain the following result as a multilinear version of (7).

Theorem 2.8. Let $A_{i} \in \mathcal{M}_{n}$ with $0<m \leq A_{i} \leq M$ for some positive real numbers $m<M(i=1, \ldots, k)$. If $\Phi: \mathcal{M}_{n}^{k} \rightarrow \mathcal{M}_{p}$ is a unital positive multilinear mapping and $r>2$, then

$$
\Phi^{r}\left(A_{1}^{-1}, \cdots, A_{k}^{-1}\right) \leq\left(\frac{\left(1+v^{k}\right)^{2}}{4^{\frac{2}{r}} v^{k}}\right)^{r} \Phi^{-r}\left(A_{1}, \cdots, A_{k}\right)
$$

In [12] Lim and Pálfia established the notion of the matrix power means for k positive definite matrices ($k \geq 3$). First we recall some basic properties of matrix power means.

Assume that $\mathbb{A}=\left(A_{1}, \ldots, A_{k}\right)$ is a k-tuple of strictly positive matrices in \mathcal{M}_{n} and $\omega=\left(\omega_{1}, \ldots, \omega_{k}\right)$ is a k-tuple of positive scalars with $\sum_{i=1}^{k} \omega_{i}=1$. The matrix power mean of $A_{1}, \ldots, A_{k}[12]$, denoted by $P_{t}(\omega ; \mathbb{A})$, is the unique positive invertible solution of the non-linear matrix equation

$$
X=\sum_{i=1}^{k} \omega_{i}\left(X \sharp_{t} A_{i}\right),
$$

where $t \in(0,1]$ and $X \sharp_{t} A=X^{\frac{1}{2}}\left(X^{-\frac{1}{2}} A X^{-\frac{1}{2}}\right)^{t} X^{\frac{1}{2}}$ is the t-weighted geometric mean of strictly positive matrices X and A. If $t \in[-1,0)$, then put $P_{t}(\omega ; \mathbb{A}):=P_{-t}\left(\omega ; \mathbb{A}^{-1}\right)^{-1}$, where $\mathbb{A}^{-1}=\left(A_{1}^{-1}, \ldots, A_{k}^{-1}\right)$. The matrix power mean $P_{t}(\omega, \mathbb{A})$ interpolates between the weighted harmonic and arithmetic means. In particular, it satisfies the inequality

$$
\begin{equation*}
\left(\sum_{i=1}^{k} \omega_{i} A_{i}^{-1}\right)^{-1} \leq P_{t}(\omega, \mathbb{A}) \leq \sum_{i=1}^{k} \omega_{i} A_{i} \quad(t \in[-1,1] \backslash\{0\}) \tag{25}
\end{equation*}
$$

The Karcher mean of A_{1}, \ldots, A_{k}, denoted by $G(\omega ; \mathbb{A})$, is the unique positive invertible solution of the Karcher equation

$$
\sum_{i=1}^{k} \omega_{i} \log \left(X^{-1 / 2} A_{i} X^{-1 / 2}\right)=0
$$

It is known that the Karcher mean coincides with the limit of matrix power means as $t \rightarrow 0$. For more information on the matrix power mean the reader is referred to [12]. We are going to present an extension of (9) for positive multilinear mappings.

Theorem 2.9. Let $\Phi: \mathcal{M}_{n}^{k} \rightarrow \mathcal{M}_{p}$ be a unital positive multilinear mapping and $\mathbb{A}^{(i)}=\left(A_{1}^{(i)}, \ldots, A_{q}^{(i)}\right)(i=1, \ldots, k)$, where $0<m \leq A_{j}^{(i)} \leq M$ for every $i=1, \ldots, k$ and every $j=1, \cdots, q$ and some positive real numbers $m<M$. Let $\omega^{(i)}=\left(\omega_{1}^{(i)}, \cdots, \omega_{q}^{(i)}\right)$ be a weight vector of positive scalars with $\sum_{j=1}^{q} \omega_{j}^{(i)}=1$ for every $i=1, \ldots, k$. If $t \in(0,1]$, then

$$
\begin{align*}
& \Phi^{2}\left(\sum_{j=1}^{q} \omega_{j}^{(1)} A_{j}^{(1)}, \ldots, \sum_{j=1}^{q} \omega_{j}^{(k)} A_{j}^{(k)}\right) \\
& \quad \leq\left(\frac{\left(1+v^{k}\right)^{2}}{4 v^{k}}\right)^{2} \Phi^{2}\left(P_{t}\left(\omega^{(1)} ; \mathbb{A}^{(1)}\right), \ldots, P_{t}\left(\omega^{(k)} ; \mathbb{A}^{(k)}\right)\right), \tag{26}
\end{align*}
$$

where $v=\frac{M}{m}$ is the condition number of each $A_{j}^{(i)}$.
Proof. Utilizing Lemma 1.5 we have

$$
\begin{aligned}
& M^{k} m^{k}\left\|\Phi\left(\sum_{j=1}^{q} \omega_{j}^{(1)} A_{j}^{(1)}, \ldots, \sum_{j=1}^{q} \omega_{j}^{(k)} A_{j}^{(k)}\right) \Phi^{-1}\left(P_{t}\left(\omega^{(1)} ; \mathbb{A}^{(1)}\right), \ldots, P_{t}\left(\omega^{(k)} ; \mathbb{A}^{(k)}\right)\right)\right\| \\
& \leq \frac{1}{4}\left\|\Phi\left(\sum_{j=1}^{q} \omega_{j}^{(1)} A_{j}^{(1)}, \ldots, \sum_{j=1}^{q} \omega_{j}^{(k)} A_{j}^{(k)}\right)+M^{k} m^{k} \Phi^{-1}\left(P_{t}\left(\omega^{(1)} ; \mathbb{A}^{(1)}\right), \ldots, P_{t}\left(\omega^{(k)} ; \mathbb{A}^{(k)}\right)\right)\right\|^{2} .
\end{aligned}
$$

Moreover,

$$
\begin{align*}
& \Phi\left(\sum_{j=1}^{q} \omega_{j}^{(1)} A_{j}^{(1)}, \ldots, \sum_{j=1}^{q} \omega_{j}^{(k)} A_{j}^{(k)}\right)+M^{k} m^{k} \Phi^{-1}\left(P_{t}\left(\omega^{(1)} ; \mathbb{A}^{(1)}\right), \ldots, P_{t}\left(\omega^{(k)} ; \mathbb{A}^{(k)}\right)\right) \\
& \leq \Phi\left(\sum_{j=1}^{q} \omega_{j}^{(1)} A_{j}^{(1)}, \ldots, \sum_{j=1}^{q} \omega_{j}^{(k)} A_{j}^{(k)}\right)+M^{k} m^{k} \Phi\left(P_{t}\left(\omega^{(1)} ; \mathbb{A}^{(1)}\right)^{-1}, \ldots, P_{t}\left(\omega^{(k)} ; \mathbb{A}^{(k)}\right)^{-1}\right) \\
& \leq \Phi\left(\sum_{j=1}^{q} \omega_{j}^{(1)} A_{j}^{(1)}, \ldots, \sum_{j=1}^{q} \omega_{j}^{(k)} A_{j}^{(k)}\right)+M^{k} m^{k} \Phi\left(\sum_{j=1}^{q} \omega_{j}^{(1)}\left(A_{j}^{(1)}\right)^{-1}, \ldots, \sum_{j=1}^{q} \omega_{j}^{(k)}\left(A_{j}^{(k)}\right)^{-1}\right) \tag{byLemma2.1}\\
& =\sum_{j_{1}=1}^{q} \cdots \sum_{j_{k}=1}^{q} \omega_{j_{1}}^{(1)} \cdots \omega_{j_{k}}^{(k)}\left(\Phi\left(A_{j_{1}}^{(1)}, \cdots, A_{j_{k}}^{(k)}\right)+M^{k} m^{k} \Phi\left(\left(A_{j_{1}}^{(1)}\right)^{-1}, \ldots,\left(A_{j_{k}}^{(k)}\right)^{-1}\right)\right) \\
& \leq \sum_{j_{1}=1}^{q} \cdots \sum_{j_{k}=1}^{q} \omega_{j_{1}}^{(1)} \cdots \omega_{j_{k}}^{(k)}\left(M^{k}+m^{k}\right) \\
& =M^{k}+m^{k} .
\end{align*}
$$

Therefore

$$
\begin{aligned}
& \left\|\Phi\left(\sum_{j=1}^{q} \omega_{j}^{(1)} A_{j}^{(1)}, \ldots, \sum_{j=1}^{q} \omega_{j}^{(k)} A_{j}^{(k)}\right) \Phi^{-1}\left(P_{t}\left(\omega^{(1)} ; \mathbb{A}^{(1)}\right), \ldots, P_{t}\left(\omega^{(k)} ; \mathbb{A}^{(k)}\right)\right)\right\| \\
& \leq \frac{\left(M^{k}+m^{k}\right)^{2}}{4 M^{k} m^{k}}
\end{aligned}
$$

which is equivalent to (26).
Remark 2.10. Let $\Phi: \mathcal{M}_{n} \rightarrow \mathcal{M}_{p}$ be a unital positive linear mapping and let $\mathbb{A}=\left(A_{1}, \cdots, A_{q}\right)$ is a q-tuple of matrices in \mathcal{M}_{n} with $0<m \leq A_{i} \leq M$ for some positive real numbers $m<M$. If $\omega=\left(\omega_{1}, \cdots, \omega_{q}\right)$ is a weight vector such that $\omega_{i} \geq 0(i=1, \ldots, q)$ with $\sum_{j=1}^{q} \omega_{i}=1$, then it follows from Theorem 2.9 that

$$
\begin{equation*}
\Phi^{2}\left(\sum_{j=1}^{q} \omega_{i} A_{i}\right) \leq\left(\frac{(1+v)^{2}}{4 v}\right)^{2} \Phi^{2}\left(P_{t}(\omega ; \mathbb{A})\right), \tag{27}
\end{equation*}
$$

where $v=\frac{M}{m}$. Tending t to zero, we get

$$
\begin{equation*}
\Phi^{2}\left(\sum_{j=1}^{q} \omega_{i} A_{i}\right) \leq\left(\frac{(1+v)^{2}}{4 v}\right)^{2} \Phi^{2}(G(\omega ; \mathbb{A})) \tag{28}
\end{equation*}
$$

where $G(\omega ; \mathbb{A})$ is the Karcher mean of A_{1}, \cdots, A_{q}. Inequality (28) is an extension of (9). Moreover, it follows from (27) that the Kantorovich inequality

$$
\Phi\left(\sum_{j=1}^{q} \omega_{i} A_{i}\right) \leq \frac{(M+m)^{2}}{4 M m} \Phi\left(P_{t}(\omega ; \mathbb{A})\right)
$$

holds true.
Remark 2.11. Define a linear mapping $\Theta: \mathcal{M}_{n} \oplus \cdots \oplus \mathcal{M}_{n} \rightarrow \mathcal{M}_{n} \oplus \cdots \oplus \mathcal{M}_{n}$ by

$$
\Theta\left(\left(\begin{array}{cccc}
A_{1} & 0 & \cdots & 0 \\
0 & A_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & A_{q}
\end{array}\right)\right)=\left(\sum_{j=1}^{q} \omega_{i} A_{i}\right) \otimes I_{q}
$$

where I_{q} is the identity matrix in \mathcal{M}_{q}. Then Θ is a unital positive linear mapping. Applying (5) to Θ concludes that

$$
\Theta^{2}\left(\left(\begin{array}{cccc}
A_{1} & 0 & \cdots & 0 \\
0 & A_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & A_{q}
\end{array}\right)\right) \leq\left(\frac{(M+m)^{2}}{4 M m}\right)^{2} \Theta^{-2}\left(\left(\begin{array}{cccc}
A_{1}^{-1} & 0 & \cdots & 0 \\
0 & A_{2}^{-1} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & A_{q}^{-1}
\end{array}\right)\right)
$$

That is

$$
\left(\sum_{j=1}^{q} \omega_{i} A_{i}\right)^{2} \leq\left(\frac{(M+m)^{2}}{4 M m}\right)^{2}\left(\left(\sum_{j=1}^{q} \omega_{i} A_{i}^{-1}\right)^{-1}\right)^{2}
$$

A special case of Theorem 2.9 gives an extension of (9) for multilinear mappings:
Corollary 2.12. Suppose that $A_{i}, B_{i} \in \mathcal{M}_{n}$ with $0<m \leq A_{i}, B_{i} \leq M$ for some positive real numbers $m<M$ $(i=1, \cdots, k)$. If $\Phi: \mathcal{M}_{n}^{k} \rightarrow \mathcal{M}_{p}$ is a unital positive multilinear mapping, then

$$
\Phi^{2}\left(\frac{A_{1}+B_{1}}{2}, \cdots, \frac{A_{k}+B_{k}}{2}\right) \leq\left(\frac{\left(1+v^{k}\right)^{2}}{4 v^{k}}\right)^{2} \Phi^{2}\left(A_{1} \sharp B_{1}, \cdots A_{k} \sharp B_{k}\right),
$$

where $v=\frac{M}{m}$ is the condition number of each A_{i} and B_{i}.
Acknowledgement. The authors would like to thank the referee for valuable comments. The authors also thank Professor J.-C. Bourin to point out some errors in the previous version of the paper and for the remark 2.7.

References

[1] T. Ando, C.-K. Li, R. Mathias, Geometric means, Linear Algebra and its Applications 385 (2004) 305-334.
[2] R. Bhatia, Positive Definite Matrices, Princeton University Press, Princeton, 2007.
[3] R. Bhatia, F. Kittaneh, Notes on matrix arithmetic-geometric mean inequalities, Linear Algebra and its Applications 308 (2000) 203-211.
[4] M. Dehghani, M. Kian and Y. Seo, Developed matrix inequalities via positive multilinear mappings, Linear Algebra and its Applications 484 (2015) 63-85.
[5] X. Fu and C. He, Some operator inequalities for positive linear maps, Linear and Multilinear Algebra 63 (2015) 571-577.
[6] X. Fu and D. T. Hoa, On some inequalities with matrix means, Linear and Multilinear Algebra 63 (2015) 2373-2378.
[7] J. I. Fujii, M. Fujii, M. Nakamura, J. Pečarić and Y. Seo, A reverse of the weighted geometric mean due to Lawson-Lim , Linear Algebra and its Applications 427 (2007) 272-284.
[8] J. I. Fujii, M. Nakamura, J. Pečarić and Y. Seo, Bounds for the ratio and difference between parallel sum and series via Mond-Pečarić method, Mathematical Inequalities and Applications 9 (2006) 749-759.
[9] M. Fujii, Y. Kim and R. Nakamoto, A characterization of convex functions and its application to operator monotone functions, Banach Journal of Mathematical Analysis 8 (2014) 118-123.
[10] T. Furuta, H. Mićić, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities, Zagreb Element, 2005.
[11] F. Kubo, T. Ando, Means of positive linear operators, Mathematische Annalen 246 (1979/80) 205-224.
[12] Y. Lim and M. Pálfia, Matrix power means and the Karcher mean, Journal of Functional Analysis 262 (2012) 1498-1514.
[13] M. Lin, On an operator Kantorovich inequality for positive linear maps, Journal of Mathematical Analysis and Applications 402 (2013) 127-132.
[14] M. Lin, Squaring a reverse AM-GM inequality, tudia Mathematica 215 (2013) 189-194.
[15] A.W. Marshall, I. Olkin, Matrix versions of Cauchy and Kantorovich inequalities, Aequationes Mathematicae 40 (1990) $89-93$.
[16] J. Mićić, J. Pečarić and Y. Seo, Complementary inequalities to inequalities of Jensen and Ando based on the Mond-Pečarić method, Linear Algebra and its Applications 318 (2000) 87-107.
[17] M.S. Moslehian, Recent developments of the operator Kantorovich inequality, Expositiones Mathematicae 30 (2012) 376-388.
[18] M. S. Moslehian and X. Fu, Squaring operator Pólya-Szegö and Diaz-Metcalf type inequalities, Linear Algebra and its Applications 491 (2016) 73-82.

[^0]: 2010 Mathematics Subject Classification. Primary 47A63; Secondary 47A64
 Keywords. Kantorovich inequality; multilinear mapping; matrix power mean
 Received: 12 May 2016; Revised: 14 June 2016; Accepted: 20 July 2016
 Communicated by M. S. Moslehian
 Email addresses: kian@ub.ac.ir; kian@member.ams.org (Mohsen Kian), m.dehghani@kashanu.ac.ir;
 e.g.mahdi@gmail.com (Mahdi Dehghani)

