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Abstract. In this paper, some new classes of hyperoperations, extracting from the vertex coloring of a
graph, are presented. By these hyperoperations, we define a color hypergroup and a color join space on the
vertex set of a graph. Also we give some examples to clarify these structures. Finally, we investigate the
connection between the color join space and Graph Theory.

1. Introduction

Hyperstructure Theory was born in 1934, when Marty, at the 8th Congress of Scandinavian Mathemati-
cians, gave the definition of a hypergroup. After that the join spaces introduced by Prenowitz in the 40’s and
were utilized by him to reconstruct several kinds of geometries. Nowadays we know that the join spaces
have many applications in different fields of mathematics including Graph Theory. The correlation between
hyperstructures and Graph Theory also has been investigated by several researches, such as Ashrafi [1],
Corsini [3], Davvaz [7], Kalampakas [8-10], Leoreanu [11], Rosenberg [12, 13], Spartalis [14], and so on.

The purpose of the present paper is to construct a new kind of commutative hypergroups and join
spaces by considering the concept of vertex coloring of a graph.

In section 2, basic concepts of hyperstructures and graphs are presented. In section 3, first, by taking
idea from the vertex coloring of a graph G = (V,E), we define a new hyperoperation ” ∗X ” on V(G). Then
by this hyperoperation we could construct a commutative hypergroup (V, ∗X) on the vertex set of a graph
G. We call (V, ∗X) a color hypergroup. Also by an example we show that the color hypergroup (V, ∗X) is
not a join space. In the next section, we define a hyperoperation ” ∗X′ ” on V(G) and we prove that (V, ∗X′ )
is a commutative hypergroup. Moreover, we show that this hypergroup is a join space and we call it, a
color join space. Then we give an example to clarify this structure. Finally, we investigate the correlation
between subhypergroups of (V, ∗X′ ) and subgraphs of graph G.

2. Preliminaries

Let H be a non-empty set and o : H × H −→ P∗(H) be a hyperoperation, where P∗(H) is the family of
non-empty subsets of H. The couple (H, o) is called a hypergroupoid.
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Definition 2.1 (6). A hypergroupoid (H, o) is called a semihypergroup if for all a, b, c of H we have (aob)oc = ao(boc),
which means that ⋃

u∈aob

uoc =
⋃
v∈boc

aov·

Also (H, o) is called a quasihypergroup if for all a of H we have:

aoH = Hoa = H

Definition 2.2 (6). A hypergroupoid (H, o) which is both a semihypergroup and a quasihypergroup is called a
hypergroup. Furthermore, a hypergroup (H, o) is called commutative if for all a, b ∈ H, it holds aob = boa. An element
e ∈ H is called an identity if for all a ∈ H:

a ∈ eoa ∩ aoe·

Also, an element x′ is called an inverse of x if an identity e exists such that

e ∈ xox′ ∩ x′ox·

Definition 2.3 (6). A regular hypergroup H is a hypergroup which it has at least one identity and every element has
at least one inverse.

Definition 2.4 (6). A non-empty subset K of a hypergroup (H, o) is called a subhypergroup if it is a hypergroup.

In order to define a join space, we recall the following notation:
If a, b are elements of a hypergroup (H, o), then we denote a/b = {x ∈ H | a ∈ xob}.

Definition 2.5 (6). A commutative hypergroup (H, o) is called a join space if the following condition holds for all
elements a, b, c, d of H:

a/b ∩ c/d , ∅ =⇒ aod ∩ boc , ∅·

In the present paper, we will define a commutative hypergroup and a join space, extracting from a graph,
called color hypergroup and color join space. For this we will need the following definitions of a graph:
Formally, a graph G is a pair (V,E) where:
- V is a finite set, the elements of which we call vertices and
- E ⊆ V × V is a set of pairs of V, the elements of which we call edges.
We draw a graph on paper by placing each vertex at a point and representing each edge by a curve joining
the locations of its endpoints.
A graph G′ = (V′,E′) is a subgraph of the graph G = (V,E) if it holds V′ ⊆ V and E′ ⊆ E.

Definition 2.6 (16). A k-coloring of a graph G is a labeling f : V(G) −→ S, where |S| = k. The labels are colors; the
vertices of one color form a color class. A k-coloring is proper if adjacent vertices have different labels. A graph is
k-colorable if it has a proper k-coloring. The chromatic number X(G) is the least k such that G is k-colorable.

In a proper coloring, each color class is an independent set, so G is k-colorable if and only if V(G) is the
union of k independent sets. Note that, we say that a graph G has an optimal coloring if we pay attention
to the following points when we want to color the graph G:
- The coloring must be a proper coloring,
- If X(G) = k, we should use only k colors ({1, · · · , k}) to color the graph.
In this paper, when we say a colored graph, we mean that this graph has an optimal coloring.

Remark 2.7 (16). We know that an optimal coloring of a graph G has an edge with endpoints of color i and j for each
pair i, j of colors.
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3. Color Hypergroup and Graph Theory

In this section, we construct a color hypergroup, i.e., a hypergroup extracting from a colored graph. To
achieve this goal, we need the following definitions:

Definition 3.1. Let G = (V,E) be a graph withX(G) = k. Then the color class i is defined for every i ∈ {1, · · · , k} by:

i = {u ∈ V(G)|u is colored by color i}

Definition 3.2. Consider two color classes i and j of a colored graph G and i, j ∈ {1, · · · , k}. The set Ai, j is defined in
the following way:

Ai, j =

{u ∈ V(G) | u is an endpoint of an edge in which, that edge has endpoints of the colors i and j}

By remark 2.7, it is obvious that Ai, j , ∅ and also Ai, j = A j,i for all i, j ∈ {1, · · · , k}.

Definition 3.3. Let G = (V,E) be a graph with X(G) = k. Then we define the hyperoperation ∗X : V × V → P∗(V)
as follows:
For every u,w ∈ V(G) and i, j ∈ {1, · · · , k}

u ∗X w =

{
Ai, j ∪ {u,w} if u ∈ i,w ∈ j and i , j
{u,w} i f u,w ∈ i

Proposition 3.4. Let G = (V,E) be a colored graph. Then the hypergroupoid (V, ∗X) is commutative.

Proof. By definitions of the hyperoperation ∗X and Ai, j, it is easy to see that the hypergroupoid (V, ∗X) is
commutative.

Theorem 3.5. Let G = (V,E) be a colored graph withX(G) = k. Then the hypergroupoid (V, ∗X) is a semihypergroup.

Proof. It is enough to check the associativity of ” ∗X ” i.e. (u ∗X w) ∗X v = u ∗X (w ∗X v) For all u,w, v ∈ V(G).
To achieve this aim we check the following situations for every u,w, v ∈ V(G) and i, j, f ∈ {1, · · · , k}:

- u ∈ i,w ∈ j, v ∈ f , i , j , f , i

(u ∗X w) ∗X v = (Ai, j ∪ {u,w}) ∗X v = Ai, j ∪ Ai, f ∪ A j, f ∪ {u,w, v}

u ∗X (w ∗X v) = u ∗X (A j, f ∪ {w, v}) = Ai, j ∪ Ai, f ∪ A j, f ∪ {u,w, v}

- u,w ∈ i, v ∈ j, i , j

(u ∗X w) ∗X v = {u,w} ∗X v = Ai, j ∪ {u,w, v}

u ∗X (w ∗X v) = u ∗X (Ai, j ∪ {w, v}) = Ai, j ∪ {u,w, v}

- u, v ∈ i,w ∈ j, i , j

(u ∗X w) ∗X v = (Ai, j ∪ {u,w}) ∗X v = Ai, j ∪ {u,w, v}

u ∗X (w ∗X v) = u ∗X (Ai, j ∪ {w, v}) = Ai, j ∪ {u,w, v}

- w, v ∈ i,u ∈ j, i , j

(u ∗X w) ∗X v = (Ai, j ∪ {u,w}) ∗X v = Ai, j ∪ {u,w, v}

u ∗X (w ∗X v) = u ∗X ({w, v}) = Ai, j ∪ {u,w, v}
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- u,w, v ∈ i

(u ∗X w) ∗X v = {u,w, v} = u ∗X (w ∗X v)

So, we conclude that the hypergroupoid (V, ∗X) is a semihypergroup.

Theorem 3.6. Let G = (V,E) be a colored graph. Then the semihypergroup (V, ∗X) is a commutative hypergroup.

Proof. By prorposition 3.4, we obtain that the semihypergroup (V, ∗X) is commutative. Now, it is sufficient
to prove that u ∗X V = V ∗X u = V for all u ∈ V(G). First we show that u ∗X V = V for all u ∈ V(G).
By definition of hyperoperation ∗X, we have w ∈ u ∗Xw, for all u,w ∈ V(G). So V ⊆ u ∗XV. Also by definition
of hyperoperation in general, we know that u ∗XV ⊆ V. Hence, we conclude that u ∗XV = V for all u ∈ V(G).
Since ∗X is commutative, thus V ∗X u = V, so that (V, ∗X) is a hypergroup.

We call this hypergroup a color hypergroup.

Theorem 3.7. Let G = (V,E) be a colored graph withX(G) = k. Then the hypergroup (V, ∗X) is a regular hypergroup.

Proof. Assume that e be a vertex of V(G). By definition of hyperoperation ∗X, we have u ∈ e ∗X u∩ u ∗X e, for
every u ∈ V(G). So, every vertex of V(G) could be an identity.
Also consider e ∈ V(G) be an idenity of hypergroup (V, ∗X). By definition of hyperoperation ∗X, it holds
e ∈ e ∗X u ∩ u ∗X e for every u ∈ V(G). So, the inverse of every vertex of V(G) could be the vertex e. So,
we show that the hypergroup (V, ∗X) has an identity and every element has at least one inverse. Therefore
(V, ∗X) is a regular hypergroup.

From the following example, we obtain that (V, ∗X) is not a join space.

Example 3.8. Consider the following colored graph G, withX(G) = 3. For every (u j, i), j ∈ {1, · · · , 6} and i ∈ {1, 2, 3},
u j is the vertex of the graph G and i is the color of this vertex.

(u1, 1)

(u3, 3)(u2, 2)

(u6, 1)
(u5, 1)

(u4, 1)

To show the color classes, we draw the graph according to the color of each vertex as follows:

u4 u1 u5 u6

u2 u3

1̄

3̄2̄
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Now by definition of hyperoperation ” ∗X ”, we have the following table:

∗X u1 u2 u3 u4 u5 u6

u1 {u1} {u1,u2,u4,u5} {u1,u3,u6} {u1,u4} {u1,u5} {u1,u6}

u2 {u1,u2,u4,u5} {u2} {u2,u3} {u1,u2,u4,u5} {u1,u2,u4,u5} {u1,u2,u4,u5,u6}

u3 {u1,u3,u6} {u2,u3} {u3} {u1,u3,u4,u6} {u1,u3,u5,u6} {u1,u3,u6}

u4 {u1,u4} {u1,u2,u4,u5} {u1,u3,u4,u6} {u4} {u4,u5} {u4,u6}

u5 {u1,u5} {u1,u2,u4,u5} {u1,u3,u5,u6} {u4,u5} {u5} {u5,u6}

u6 {u1,u6} {u1,u2,u4,u5,u6} {u1,u3,u6} {u4,u6} {u5,u6} {u6}

According to the above table, we get that

u1 ∈ u2 ∗X u4

u5 ∈ u2 ∗X u6

=⇒ u2 ∈ u1/u4 ∩ u5/u6

Also, it is easy to see that u1 ∗X u6 ∩ u4 ∗X u5 = {u1,u6} ∩ {u4,u5} = ∅. So (V(G), ∗X) is not a join space.

4. Color Join Space and Graph Theory

In this section, we want to construct a join space which is extracted from a colored graph. To achieve
this aim, let G = (V,E) be a graph with X(G) = k. First, we define the hyperoperation ∗X′ : V × V −→ P∗(V)
as follows:
For every u,w ∈ V(G) and i, j ∈ {1, · · · , k}

u ∗X′ w =

{
Ai, j ∪ {u,w} if u ∈ i,w ∈ j and i , j
i i f u,w ∈ i

Proposition 4.1. Let G = (V,E) be a colored graph. Then the hypergroupoid (V, ∗X′ ) is commutative.

Proof. By definitions of the hyperoperation ∗X′ and Ai, j, it is easy to see that the hypergroupoid (V, ∗X′ ) is
commutative.

Theorem 4.2. Let G = (V,E) be a colored graph withX(G) = k. Then the hypergroupoid (V, ∗X′ ) is a semihypergroup.

Proof. It is enough to check the associativity of ” ∗X′ ”, i.e. (u ∗X′ w) ∗X′ v = u ∗X′ (w ∗X′ v) For all u,w, v ∈ V(G).
To achieve this aim we check the following situations for every u,w, v ∈ V(G) and i, j, f ∈ {1, · · · , k}:

- u ∈ i,w ∈ j, v ∈ f , i , j , f , i

(u ∗X′ w) ∗X′ v = (Ai, j ∪ {u,w}) ∗X′ v = Ai, j ∪ Ai, f ∪ A j, f ∪ {u,w, v}

u ∗X′ (w ∗X′ v) = u ∗X′ (A j, f ∪ {w, v}) = Ai, j ∪ Ai, f ∪ A j, f ∪ {u,w, v}

- u,w ∈ i, v ∈ j, i , j

(u ∗X′ w) ∗X′ v = i ∗X′ v = i ∪ Ai, j ∪ {v}

u ∗X′ (w ∗X′ v) = u ∗X′ (Ai, j ∪ {w, v}) = i ∪ Ai, j ∪ {v}

- u, v ∈ i,w ∈ j, i , j

(u ∗X′ w) ∗X′ v = (Ai, j ∪ {u,w}) ∗X′ v = i ∪ Ai, j ∪ {w}

u ∗X′ (w ∗X′ v) = u ∗X′ (Ai, j ∪ {w, v}) = i ∪ Ai, j ∪ {w}
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- w, v ∈ i,u ∈ j, i , j

(u ∗X′ w) ∗X′ v = (Ai, j ∪ {u,w}) ∗X′ v = i ∪ Ai, j ∪ {u}

u ∗X′ (w ∗X′ v) = u ∗X′ i = i ∪ Ai, j ∪ {u}

- u,w, v ∈ i

(u ∗X′ w) ∗X′ v = i = u ∗X′ (w ∗X′ v)

So, we obtain that the hypergroupoid (V, ∗X′ ) is a semihypergroup.

The proofs of the next Theorems are similar to those of Theorems 3.6 and 3.7 respectively.

Theorem 4.3. Let G = (V,E) be a colored graph. Then the semihypergroup (V, ∗X′ ) is a commutative hypergroup.

Theorem 4.4. Let G = (V,E) be a colored graph. Then the hypergroup (V, ∗X′ ) is a regular hypergroup.

The most important information on the hypergroup (V, ∗X′ ) is obtained from the following result:

Theorem 4.5. Let G = (V,E) be a colored graph with X(G) = k. Then (V, ∗X′ ) is a join space.

Proof. By theorem 4.3, we found that (V, ∗X′ ) is a commutative hypergroup. According to the definition of
join space, we must prove

u1/u2 ∩ u3/u4 , ∅ =⇒ u1 ∗X′ u4 ∩ u2 ∗X′ u3 , ∅,

for every u1,u2,u3,u4 ∈ V(G).
Since u1/u2 ∩ u3/u4 , ∅, we assume that t ∈ u1/u2 ∩ u3/u4 and t ∈ V(G). So, we get that

u1 ∈ t ∗X′ u2 and u3 ∈ t ∗X′ u4

In this proof, we show the color class of ui by ui for i ∈ {1, · · · , 4} and the color class of t by t. First we
consider the following situations:

- u1 = u2
By definition of hyperoperation ∗X′ , we have u,w ∈ u ∗X′ w for all u,w ∈ V(G). So, we get that

u1 = u2 ∈ u1 ∗X′ u4 ∩ u2 ∗X′ u3

- u1 = u3
In this case, the proof is similar to the previous situation. So, we have

u1 = u3 ∈ u1 ∗X′ u4 ∩ u2 ∗X′ u3

- u1 = u4
We know that u1 ∈ t ∗X′ u2, so by definition of hyperoperation ∗X′ we have

either u1 ∈ t or u1 ∈ u2

� Assume that u1 ∈ u2
Since u1 = u4 we have u1 ∈ u1 ∗X′ u4 = u1. Also, we know that u1 ∈ u2 so u1 = u2 and u2 ∈ u1. Thus,
we get that

u2 ∈ u1 ∗X′ u4 ∩ u2 ∗X′ u3
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� Assume that u1 ∈ t
We know that u3 ∈ t ∗X′ u4, hence it holds

either u3 ∈ t or u3 ∈ u4·

If u3 ∈ t, then by considering u1 ∈ t and u1 ∗X′ u4 = u1 we have u1 = t = u3 and

u3 ∈ u1 ∗X′ u4 ∩ u2 ∗X′ u3

If u3 ∈ u4, then by considering u1 = u4 we have u1 = u3 = u4 and

u3 ∈ u1 ∗X′ u4 ∩ u2 ∗X′ u3

- u2 = u4
By definition of hyperoperation ∗X′ , we have u,w ∈ u ∗X′ w for all u,w ∈ V(G). So, we have

u2 = u4 ∈ u1 ∗X′ u4 ∩ u2 ∗X′ u3

- u3 = u4
The proof is similar to the previous situation. Thus, we have

u3 = u4 ∈ u1 ∗X′ u4 ∩ u2 ∗X′ u3

- u2 = u3
We know that u1 ∈ t ∗X′ u2, so by definition of hyperoperation ∗X′ we have

either u1 ∈ t or u1 ∈ u2

� Assume that u1 ∈ u2
Since u2 = u3 we have u2 ∗X′ u3 = u2 = u3. Also, we know that u1 ∈ u2 and u1 ∈ u1 ∗X′ u4. Thus, it holds

u1 ∈ u1 ∗X′ u4 ∩ u2 ∗X′ u3

� Assume that u1 ∈ t
We know that u3 ∈ t ∗X′ u4, hence, we have

either u3 ∈ t or u3 ∈ u4·

If u3 ∈ t, then by considering u1 ∈ t and u1 ∈ u1 ∗X′ u4 we have u1 = t = u3 = u2 and

u1 ∈ u1 ∗X′ u4 ∩ u2 ∗X′ u3

If u3 ∈ u4, then by considering u2 = u3 we have u2 = u3 = u4 and

u4 ∈ u1 ∗X′ u4 ∩ u2 ∗X′ u3

Now we consider the cases in which all vertices (u1,u2,u3 and u4) are different. Since u1 ∈ t ∗X′ u2 and
u3 ∈ t ∗X′ u4 we find that

either u1 ∈ t or u1 ∈ u2,

either u3 ∈ t or u3 ∈ u4

Therefore, the proof will be completed if we check the following four situations:
1) u1 ∈ t and u3 ∈ t

Note that since u1,u3 ∈ t we have u3 = t = u1. To check this situation, we should consider the following
subcases:
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� u1 , t , u3 and u2 , t , u4 , u2
Since u1 ∈ t ∗X′ u2,u1 , t and u1 ∈ t there exists an edge between classes t and u2 such that one of its
end point is u1 and the other one is in class u2. Similarly, since u3 ∈ t ∗X′ u4,u3 , t and u3 ∈ t, we can
say that there exists also an edge between classes t and u4 such that one of its end point is u3 and the
other one is in class u4. Thus, by definition of hyperoperation ∗X′ we have

u1 t u3

u2 u4

⇒ u3,u1 ∈ u1 ∗χ′ u4 ∩ u2 ∗χ′ u3

u1 = t = u3

� u1 = t , u3 and u2 , t , u4 , u2
By similar discussion, we have the following shape:

u1 = t u3

u2 u4

⇒ u3 ∈ u1 ∗χ′ u4 ∩ u2 ∗χ′ u3

u1 = t = u3

Note that we are not sure there exists an edge between vertex u1 and class u2 or not.
� u1 , t = u3 and u2 , t , u4 , u2

Similarly, in this case, we have the following shape:

u1 u3 = t

u2 u4

⇒ u1 ∈ u1 ∗χ′ u4 ∩ u2 ∗χ′ u3

u1 = t = u3

� u1 , t , u3 and u2 = u4 , t
Since u1 ∈ t ∗X′ u2,u1 , t and u1 ∈ t there exists an edge between classes t and u2 such that one of its
end point is u1 and the other one is in class u2. Similarly, since u3 ∈ t ∗X′ u4,u3 , t and u3 ∈ t, we can
say that there exists also an edge between classes t and u4 such that one of its end point is u3 and the
other one is in class u4 .
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u1 t u3

u2 = u4

⇒ u1,u3 ∈ u1 ∗χ′ u4 ∩ u2 ∗χ′ u3

u1 = t = u3

� u1 = t , u3 and u2 = u4 , t
By similar discussion, we have the following shape:

u1 = t u3

u2 = u4

⇒ u3 ∈ u1 ∗χ′ u4 ∩ u2 ∗χ′ u3

u1 = t = u3

� u1 , t = u3 and u2 = u4 , t
Similar to the previous case, we have

u3 = t u1

u2 = u4

⇒ u1 ∈ u1 ∗χ′ u4 ∩ u2 ∗χ′ u3

u1 = t = u3

� t = u3 = u1 = u2 , u4
Since u1 ∈ u1 ∗X′ u4 and u2 ∗X′ u3 = u1, we get that

u1 ∈ u1 ∗X′ u4 ∩ u2 ∗X′ u3

� t = u3 = u1 = u4 , u2
Since u3 ∈ u2 ∗X′ u3 and u1 ∗X′ u4 = u3, we have

u3 ∈ u1 ∗X′ u4 ∩ u2 ∗X′ u3

� t = u1 = u3 = u2 = u4
It is easy to see that u1,u2,u3,u4 ∈ u1 ∗X′ u4 ∩ u2 ∗X′ u3.
Checking of the first situation is complete.
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2) u1 ∈ t and u3 ∈ u4
Note that since u1 ∈ t and u3 ∈ u4 we have t = u1 and u3 = u4. To check this situation, we should
consider the following subcases:

� u1 , t and t , u2 , u4 , t
Since u1 ∈ t ∗X′ u2,u1 , t and u1 ∈ t there exists an edge between classes t and u2 such that one of its
end point is u1 and the other one is in class u2. Similarly, since u3 ∈ t ∗X′ u4,u3 , u4 and u3 < t, we find
that there exists also an edge between classes t and u3 such that one of its end point is u3 and the other
one is in class t. So, we have the following shape:

u1 t

u3 = u4

u1 = t

u4u3

u2

⇒ u3 ∈ u1 ∗χ′ u4 ∩ u2 ∗χ′ u3

� u1 = t and t , u2 , u4 , t
We can discuss similar to the previous case and we get the following shape:

u1 = t

u3 = u4

u1 = t

u4u3

u2

⇒ u3 ∈ u1 ∗χ′ u4 ∩ u2 ∗χ′ u3

Note that we are not sure there exists an edge between vertex u1 and class u2 or not.
� t , u4 = u2

By definition of hyperoperation ∗X′ , it holds u4 ∈ u1 ∗X′ u4. Also, we know that u4 = u2 = u3 = u2 ∗X′ u3.
Hence, we get that

u4 ∈ u1 ∗X′ u4 ∩ u2 ∗X′ u3

� t = u4 , u2
Since u1 = t = u3 = u4 we find that u3 = u1 = u1 ∗X′ u4. So u3 ∈ u1 ∗X′ u4. Also, we know that
u3 ∈ u2 ∗X′ u3. Therefore, we have

u3 ∈ u1 ∗X′ u4 ∩ u2 ∗X′ u3

� t = u2 , u4
According to the remark 2.7, since u1 , u4 there exists an edge between class u1 and class u4 . Now
assume that two end points of this edge be vertex w and vertex v. So, by definition of hyperoperation
∗X′ , it is easy to see that w, v ∈ u1 ∗X′ u4. In addition, we know that u1 = u2 and u3 = u4. Hence,
w, v ∈ u2 ∗X′ u3 and it holds

w, v ∈ u1 ∗X′ u4 ∩ u2 ∗X′ u3

If we want to show the above discussion in a shape, we have the following shape:
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w

u3 = u4

u1 = t = u2

v

� t = u2 = u4
It is easy to see that u1,u2,u3,u4 ∈ u1 ∗X′ u4 ∩ u2 ∗X′ u3.
Checking of the second situation is finished.

3) u3 ∈ t and u1 ∈ u2
Checking of this situation is completely similar to the proof of situation 2.

4) u1 ∈ u2 and u3 ∈ u4
Note that since u1 ∈ u2 and u3 ∈ u4 we have u1 = u2 and u3 = u4. To check this situation, we should
consider following subcases:

� u2 , u4
According to the remark 2.7, since u2 , u4 there exists an edge between class u2 and class u4. Assume
that two end points of this edge be vertex w and vertex v. So, it is easy to see that w, v ∈ u1 ∗X′ u4. In
addition, we know that u1 = u2 and u3 = u4. Hence, w, v ∈ u2 ∗X′ u3 and we have

w

u3 = u4

⇒ w, v ∈ u1 ∗χ′ u4 ∩ u2 ∗χ′ u3

u1 = u2

v

� u2 = u4
This case is checked before and u1,u2,u3,u4 ∈ u1 ∗X′ u4 ∩ u2 ∗X′ u3.
Finally, we conclude that (V, ∗X′ ) is a join space.

Example 4.6. Consider the following colored graph G, withX(G) = 3. For every (u j, i), j ∈ {1, · · · , 7} and i ∈ {1, 2, 3},
u j is the vertex of the graph G and i is the color of this vertex.

(u4, 1)(u1, 1) (u7, 1)(u6, 2)

(u5, 3)(u2, 2)(u3, 3)
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To show the color classes, we draw the graph according to the color of each vertex as follows:

u4 u1 u7

u6
u5u2 u3

1̄

3̄2̄

According to the definition of hyperoperation ” ∗X′ ” , we have the following table, in which it shows a join
space structure:
∗X′ u1 u2 u3 u4 u5 u6 u7

u1 {u1,u4,u7} {u1,u2,u4} {u1,u3} {u1,u4,u7} {u1,u3,u5} {u1,u2,u4,u6} {u1,u4,u7}

u2 {u1,u2,u4} {u2,u6} {u2,u3,u5} {u1,u2,u4} {u2,u3,u5} {u2,u6} {u1,u2,u4,u7}

u3 {u1,u3} {u2,u3,u5} {u3,u5} {u1,u3,u4} {u3,u5} {u2,u3,u5,u6} {u1,u3,u7}

u4 {u1,u4,u7} {u1,u2,u4} {u1,u3,u4} {u1,u4,u7} {u1,u3,u4,u5} {u1,u2,u4,u6} {u1,u4,u7}

u5 {u1,u3,u5} {u2,u3,u5} {u3,u5} {u1,u3,u4,u5} {u3,u5} {u2,u3,u5,u6} {u1,u3,u5,u7}

u6 {u1,u2,u4,u6} {u2,u6} {u2,u3,u5,u6} {u1,u2,u4,u6} {u2,u3,u5,u6} {u2,u6} {u1,u2,u4,u6,u7}

u7 {u1,u4,u7} {u1,u2,u4,u7} {u1,u3,u7} {u1,u4,u7} {u1,u3,u5,u7} {u1,u2,u4,u6,u7} {u1,u4,u7}

The relation of join space (V, ∗X′ ) with Graph Theory is illustrated by the following proposition:

Proposition 4.7. Let G = (V,E) be a colored graph with X(G) = k and H ⊆ V(G), then (H, ∗X′ ) is a subhypergroup
of the hypergroup (V, ∗X′ ) if and only if H is the union of some color classes of graph G.

Proof. (=⇒) Let H be a subhypergroup of the hypergroup (V, ∗X′ ),u ∈ H and u is colored by color i. Also
consider that v ∈ i. By definition of subhypergroup and hyperoperation ∗X′ we have:

u ∗X′ H = H =⇒ u ∗X′ u = i ⊆ H =⇒ v ∈ H

So H should be obtained as the union of some color classes.
(⇐=) Assume conversely that H is the union of some color classes. Consume that H = i1 ∪ · · · ∪ i j, for all
m ∈ {1, · · · , j} we have im ∈ {1, · · · , k}. Let u,w, v ∈ H such that u ∈ im,w ∈ in, v ∈ il and m,n, l ∈ {1, · · · , j}. By
definition of hyperoperation ∗X′ we have

u ∗X′ w ⊆ im ∪ in ⊆ H =⇒ (u ∗X′ w) ∗X′ v ⊆ im ∪ in ∪ il ⊆ H

Since (V, ∗X′ ) is a hypergroup, for every u,w, v ∈ H we get that

(u ∗X′ w) ∗X′ v = u ∗X′ (w ∗X′ v) ⊆ im ∪ in ∪ il ⊆ H·

Therefore (H, ∗X′ ) is a semihypergroup.
Now we are going to show that u ∗X′ H = H for every u ∈ H. By definition of hyperoperation ∗X′ , for every
u,w ∈ V(G) we have

u,w ∈ u ∗X′ w

So, it is obvious that H ⊆ u ∗X′ H, for every u ∈ H. To complete the proof, we must show that for all u ∈ H it
holds u ∗X′ H ⊆ H. Let u,w ∈ H such that u ∈ im,w ∈ in and m,n ∈ {1, · · · , j}. By definition of hyperoperation
∗X′ we get that

u ∗X′ w ⊆ im ∪ in ⊆ H =⇒ u ∗X′ H ⊆ H.

Thus, u ∗X′ H = H for every u ∈ H and H is a subhypergroup.
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