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Abstract. A map f : V → {0, 1, 2} is a Roman dominating function on a graph G = (V,E) if for every vertex
v ∈ V with f (v) = 0, there exists a vertex u, adjacent to v, such that f (u) = 2. The weight of a Roman
dominating function is given by f (V) =

∑
u∈V f (u). The minimum weight among all Roman dominating

functions on G is called the Roman domination number of G. In this article we study the Roman domination
number of Generalized Sierpiński graphs S(G, t). More precisely, we obtain a general upper bound on the
Roman domination number of S(G, t) and discuss the tightness of this bound. In particular, we focus on the
cases in which the base graph G is a path, a cycle, a complete graph or a graph having exactly one universal
vertex.

1. Introduction

Let G = (V,E) be a non-empty graph of order n ≥ 2, and t a positive integer. We denote by Vt the set
of words of length t on the alphabet V. The letters of a word u of length t are denoted by u1u2...ut. The
concatenation of two words u and v is denoted by uv. Klavžar and Milutinović introduced in [12] the graph
S(Kn, t), t ≥ 1, whose vertex set is Vt, where {u, v} is an edge if and only if there exists i ∈ {1, ..., t} such that:

(i) u j = v j, if j < i; (ii) ui , vi; (iii) u j = vi and v j = ui if j > i.

As noted in [10], in a compact form, the edge sets can be described as

{{wuiur−1
j ,wu jur−1

i } : ui,u j ∈ V, i , j; r ∈ {1, ..., t}; w ∈ Vt−r
}.

The graph S(K3, t) is isomorphic to the graph of the Tower of Hanoi with t disks [12]. Later, those graphs
have been called Sierpiński graphs in [13] and they are studied by now from numerous points of view.
For instance, the authors of [6] studied identifying codes, locating-dominating codes, and total-dominating
codes in Sierpiński graphs. In [9] the authors propose an algorithm, which makes use of three automata
and the fact that there are at most two internally vertex-disjoint shortest paths between any two vertices,
to determine all shortest paths in Sierpiński graphs. The authors of [13] proved that for any n ≥ 1 and
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t ≥ 1, the Sierpiński graph S(Kn, t) has a unique 1-perfect code (or efficient dominating set) if t is even, and
S(Kn, t) has exactly n 1-perfect codes if t is odd. The Hamming dimension of a graph G was introduced
in [14] as the largest dimension of a Hamming graph into which G embeds as an irredundant induced
subgraph. That paper gives an upper bound for the Hamming dimension of the Sierpiński graphs S(Kn, t)
for n ≥ 3. It also showed that the Hamming dimension of S(Kn, t) grows as 3t−3. The idea of almost-extreme
vertex of S(Kn, t) was introduced in [15] as a vertex that is either adjacent to an extreme vertex of S(Kn, t)
or is incident to an edge between two subgraphs of S(Kn, t) isomorphic to S(Kn, t − 1). The authors of [15]
deduced explicit formulas for the distance in S(Kn, t) between an arbitrary vertex and an almost-extreme
vertex. Also they gave a formula of the metric dimension of a Sierpiński graph, which was independently
obtained by Parreau in her Ph.D. thesis. For a general background on Sierpiński graph, the reader is invited
to read the comprehensive survey [11] and references therein.

This construction was generalized in [7] for any graph G = (V,E), by defining the t-th generalized Sierpiński
graph of G, denoted by S(G, t), as the graph with vertex set Vt and edge set defined as

{{wuiur−1
j ,wu jur−1

i } : {ui,u j} ∈ E; r ∈ {1, ..., t}; w ∈ Vt−r
}.
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Figure 1: A graph G and the Sierpiński graph S(G, 2).

Figure 1 shows a graph G and the generalized Sierpiński graph S(G, 2), while Figure 2 shows the
Sierpiński graph S(G, 3).

Notice that if {u, v} is an edge of S(G, t), there is an edge {x, y} of G and a word w such that u = wxyy . . . y
and v = wyxx . . . x. In general, S(G, t) can be constructed recursively from G with the following process:
S(G, 1) = G and, for t ≥ 2, we copy n times S(G, t − 1) and add the letter x at the beginning of each label of
the vertices belonging to the copy of S(G, t − 1) corresponding to x. Then for every edge {x, y} of G, add an
edge between vertex xyy . . . y and vertex yxx . . . x. See, for instance, Figure 2. Vertices of the form xx . . . x
are called extreme vertices of S(G, t). Notice that for any graph G of order n and any integer t ≥ 2, S(G, t) has
n extreme vertices and, if x has degree d(x) in G, then the extreme vertex xx . . . x of S(G, t) also has degree
d(x). Moreover, the degrees of two vertices yxx . . . x and xyy . . . y, which connect two copies of S(G, t − 1),
are equal to d(x) + 1 and d(y) + 1, respectively.

For any w ∈ Vt−1 and t ≥ 2 the subgraph 〈Vw〉 of S(G, t), induced by Vw = {wx : x ∈ V}, is isomorphic to
G. Notice that there exists only one vertex u ∈ Vw of the form w′xx . . . x, where w′ ∈ Vr for some r ≤ t − 2.
We will say that w′xx . . . x is the extreme vertex of 〈Vw〉, which is an extreme vertex in S(G, t) whenever r = 0.
By definition of S(G, t) we deduce the following remark.

Remark 1.1. Let G = (V,E) be a graph, let t ≥ 2 be an integer and w ∈ Vt−1. If u ∈ Vw and v ∈ Vt
\Vw are adjacent

in S(G, t), then either u is the extreme vertex of 〈Vw〉 or u is adjacent to the extreme vertex of 〈Vw〉.



F. Ramezani et al. / Filomat 31:20 (2017), 6515–6528 6517

332

334

335

331

333

336
337

342

344

345

341

343

346
347

352

354

355

351

353

356
357

312

314

315

311

313

316
317

322

324

325

321

323

326
327

362

364

365

361

363

366
367

372

374

375

371

373

376
377

432

434

435

431

433

436
437

442

444

445

441

443

446
447

452

454

455

451

453

456
457

412

414

415

411

413

416
417

422

424

425

421

423

426
427

462

464

465

461

463

466
467

472

474

475

471

473

476
477

532

534

535

531

533

536
537

542

544

545

541

543

546
547

552

554

555

551

553

556
557

512

514

515

511

513

516
517

522

524

525

521

523

526
527

562

564

565

561

563

566
567

572

574

575

571

573

576
577

132

134

135

131

133

136
137

142

144

145

141

143

146
147

152

154

155

151

153

156
157

112

114

115

111

113

116
117

122

124

125

121

123

126
127

162

164

165

161

163

166
167

172

174

175

171

173

176
177

232

234

235

231

233

236
237

242

244

245

241

243

246
247

252

254

255

251

253

256
257

212

214

215

211

213

216
217

222

224

225

221

223

226
227

262

264

265

261

263

266
267

272

274

275

271

273

276
277

632

634

635

631

633

636
637

642

644

645

641

643

646
647

652

654

655

651

653

656
657

612

614

615

611

613

616
617

622

624

625

621

623

626
627

662

664

665

661

663

666
667

672

674

675

671

673

676
677

732

734

735

731

733

736
737

742

744

745

741

743

746
747

752

754

755

751

753

756
757

712

714

715

711

713

716
717

722

724

725

721

723

726
727

762

764

765

761

763

766
767

772

774

775

771

773

776
777

Figure 2: The Sierpiński graph S(G, 3) for the graph G of Figure 1.

The authors of [7] announced some results about generalized Sierpiński graphs concerning their auto-
morphism groups and perfect codes. These results definitely deserve to be published. Since then some
papers have been published on various aspects of generalized Sierpiński graphs. For instance, in [17]
their chromatic number, vertex cover number, clique number, and domination number, are investigated.
The authors of [18] obtained closed formulae for the Randić index of polymeric networks modelled by
generalized Sierpiński graphs, while in [4] this work was extended to the so-called generalized Randić
index. Also, the total chromatic number of generalized Sierpiński graphs was studied in [5] and the strong
metric dimension has recently been studied in [16]. In this paper we obtain closed formulae or bounds on
the Roman domination number of generalized Sierpiński graphs S(G, t) in terms of parameters of the base
graph G.

We begin by establishing the principal terminology and notation which we will use throughout the
article. Hereafter G = (V,E) denotes a finite simple graph of order n ≥ 2. The distance between two vertices
x, y ∈ V will be denoted by dG(x, y). For two adjacent vertices u and v of G we use the notation u ∼ v. For a
vertex v of G, NG(v) = {u ∈ V : u ∼ v} denotes the set of neighbors that v has in G. NG(v) is called the open
neighborhood of v and the closed neighborhood of v is defined as NG[v] = NG(v) ∪ {v}. For a set D ⊆ V, the open
neighborhood is NG(D) = ∪v∈DNG(v) and the closed neighborhood is NG[D] = NG(D)∪D. A set D is a dominating
set if NG[D] = V. The domination number γ(G) is the minimum cardinality among all dominating sets in G.
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We say that a set S is a γ(G)-set if it is a dominating set and |S| = γ(G). The subgraph induced by a subset S
of vertices will be denoted by 〈S〉.

A map f : V → {0, 1, 2} is a Roman dominating function on a graph G if for every vertex v with f (v) = 0,
there exists a vertex u ∈ N(v) such that f (u) = 2. The weight of a Roman dominating function is given by
f (V) =

∑
u∈V f (u). The minimum weight among all Roman dominating functions on G is called the Roman

domination number of G and is denoted by γR (G).
Any Roman dominating function f on a graph G induces three sets B0,B1,B2, where Bi = {v ∈ V : f (v) =

i}. Thus, we will write f = (B0,B1,B2). It is clear that for any Roman dominating function f = (B0,B1,B2) on
a graph G = (V,E) of order n we have that f (V) =

∑
u∈V f (u) = 2|B2| + |B1| and |B0| + |B1| + |B2| = n. We say

that a function f = (B0,B1,B2) is a γR(G)-function or a γR-function on G if it is a Roman dominating function
and f (V) = γR (G).

The Roman domination number was introduced by Cockayne et al. [3] in 2004 and since then about
100 papers have been published on various aspects of Roman domination in graphs (for examples, see
[1, 2]). For instance, in [3, 8] was obtained the following result, which shows the relationship between the
domination number and the Roman domination number of a graph.

Lemma 1.2. [3, 8] For any graph G, γ(G) ≤ γR (G) ≤ 2γ(G).

As shown in [3], γ(G) = γR (G) if and only if G is an empty graph. A graph G is said to be a Roman graph
if γR (G) = 2γ(G). Several examples of Roman graphs are given in [3, 19, 20].

Theorem 1.3. [3] A graph G is Roman if and only if it has a γR -function f = (B0, ∅,B2).

The following result, stated in [3], will be used as a tool to study the Roman domination number of
S(G, t) for the cases in which the base graph is a path or a cycle.

Theorem 1.4. [3] For the classes of paths Pn and cycles Cn, γR (Pn) = γR (Cn) = d 2n
3 e.

Let G = (V,E) be a graph, and H = (V,E′) a subgraph of G. Since any γR (H)-function is a Roman
dominating function of G, we can state the following remark.

Remark 1.5. Let G = (V,E) be a graph, and H = (V,E′) a subgraph of G. Then γR (G) ≤ γR (H).

2. An Upper Bound on the Roman Domination Number of S(G, t)

Let f = (B0,B1,B2) be a γR -function on G and let Di be the set of non-isolated vertices of 〈Bi〉 for i ∈ {0, 1, 2}.
Also, let D12 be the set of non-isolated vertices of 〈B1∪B2〉. Notice that, if we take f such that |B1| is minimum,
then B1 is an independent set, which implies that D1 = ∅ and D1,2 = D2. With these notations in mind we
state the following result.

Theorem 2.1. Let G be a graph of order n. For any γR -function f = (B0,B1,B2) on G, and any integer t ≥ 2,

γR (S(G, t)) ≤ nt−2(nγR (G) − |B2| − |D12| − θ + 1
2 |D1|),

where θ = |{u ∈ B1 \D1 : dG(u, v) = 2 for some v ∈ B2 such that |NG(v) ∩ B0| = 2}|.

Proof. Let f = (B0,B1,B2) be aγR (G)-function. For a given integer t ≥ 2 we define Si = {wx; w ∈ Vt−1, x ∈ Bi},
for i ∈ {0, 1, 2}. Let 1 : Vt

→ {0, 1, 2} such that 1 = (S0,S1,S2). If v ∈ Vt and 1(v) = 0, then v = wy where w is a
word in Vt−1 and y ∈ B0. Since f is aγR -function on G, there exists z ∈ B2∩NG(y). Hence, wz ∈ S2∩NS(G,t)(wy).
So 1 is a Roman dominating function on S(G, t) and γR (S(G, t)) ≤ ω(1) = nt−1(|B1| + 2|B2|) = nt−1γR (G). Now
we have four steps for reaching the result.

Step 1: Set S′2 = {wuu : w ∈ Vt−2, u ∈ B2}. We define 11 : Vt
→ {0, 1, 2} such that 11 = (S0,S1 ∪ S′2,S2 \ S′2). Let

y ∈ S0. Then y has the form wuv0 where w ∈ Vt−2, v0 ∈ B0 and u ∈ V. Since f is a γR (G)-function, there is
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v2 ∈ B2 such that v0 is adjacent to v2 in G. So wuv0 is adjacent to wuv2. If wuv2 ∈ S2\S′2, then we are done. Now,
if wuv2 ∈ S′2, then v2 = u and, since v0 is adjacent to v2, we can conclude that y = wv2v0 is adjacent to wv0v2.
Hence, 11 is a Roman dominating function on S(G, t). Therefore γR (S(G, t)) ≤ ω(11) = nt−2(nγR (G) − |B2|).

Step 2: Set S′′2 = {wvv : w ∈ Vt−2, v ∈ D2}. We define 12 : Vt
→ {0, 1, 2}where

12(x) =

{
0, x ∈ S′′2 ;
11(x), otherwise.

Let x ∈ Vt such that 12(x) = 0. In this case, 11(x) = 0 or x ∈ S′′2 .
Suppose that 11(x) = 0. Since x must belong to S0, it is of the form x = wuv0, where w ∈ Vt−2, u ∈ V and

v0 ∈ B0. If NS(G,t)(x)∩S′′2 = ∅, then there exists y ∈ NS(G,t)(x)∩ (S2 \S′2). On the other side, if z ∈ NS(G,t)(x)∩S′′2 ,
then z = wv2v2, where v2 ∈ D2 and u = v2, and so v2 ∼ v0, which implies that x = wv2v0 ∼ wv0v2, and we
know that 12(wv0v2) = 11(wv0v2) = 1(wv0v2) = 2.

Now, if x ∈ S′′2 , then there exists w ∈ Vt−2 and v ∈ D2 such that x = wvv. So, by definition of D2, x must
be adjacent to wvu for some u ∈ D2 \ {v}. Hence, 12(wvu) = 11(wvu) = 1(wvu) = f (u) = 2.

Therefore, 12 is a Roman dominating function on S(G, t), and so γR (S(G, t)) ≤ nt−2(nγR (G) − |B2| − |D2|).

Step 3: We know that the maximum degree on 〈B1〉 is one. Since D1 is the set of non-isolated vertices of 〈B1〉,
〈D1〉 � ∪k

i=1P2, where k = 1
2 |D1|. Suppose that {v1,u1, v2,u2, . . . , vk,uk} is the vertex set of 〈D1〉, where vi ∼ ui for

1 ≤ i ≤ k. Set S′1 = {wvivi : w ∈ Vt−2, vi ∈ D1 and 1 ≤ i ≤ k}, S′′1 = {wuivi : w ∈ Vt−2, vi,ui ∈ D1 and 1 ≤ i ≤ k}
and S′′′1 = {wviui : wuivi ∈ S′′1 }. We define 13 : Vt

→ {0, 1, 2} such that

13(x) =


0, x ∈ S′1 ∪ S′′1 ;
2, x ∈ S′′′1 ;
12(x), otherwise.

Notice that S′′′1 dominates every vertex in S′1 ∪ S′′2 . So 13 is a Roman dominating function on S(G, t). Also
ω(13) = ω(12) − |S′1| − |S

′′

1 | + |S
′′′

1 | and |S′1| =
nt−2

2 |D1|. Hence, γR (S(G, t)) ≤ nt−2(nγR (G) − |B2| − |D2| −
1
2 |D1|).

We know that there are not any edges between B1 and B2. So |D12| = |D1| + |D2|. Hence, γR (S(G, t)) ≤
nt−2(nγR (G) − |B2| − |D12| +

1
2 |D1|).

Step 4: Let B′2 = {v ∈ B2 : |NG(v) ∩ B0| = 2 and dG(v,u) = 2 for some u ∈ B1 \ D1}. Let Π be the set of
paths v0,w2,w0,w1 in G such that w2 ∈ B′2, v0,w0 ∈ B0 and w1 ∈ B1 \D1. Given two vertices x, y ∈ V, we say
that µ(x, y) = (i, j) if there exist a path v0,w2,w0,w1 in Π such that x and y are (from the left) in position i
and j, respectively. We define the following sets.

A1 = {wxy : w ∈ Vt−2 and µ(x, y) = (3, 4)},

A2 = {wxy : w ∈ Vt−2 and µ(x, y) = (4, 4)},

A3 = {wxy : w ∈ Vt−2 and µ(x, y) = (4, 2)},

A4 = {wxy : w ∈ Vt−2 and µ(x, y) = (4, 1)},

A5 = {wxy : w ∈ Vt−2 and µ(x, y) = (4, 3)}.

Notice that |A2| = θ and Ai ∩A j = ∅, for all i , j, i, j ∈ {1, . . . , 5}. Also, since the weight of f is minimum,
for every w2 ∈ B′2 there exists exactly one vertex w1 ∈ B1 \ D1 such that dG(w2,w1) = 2. Hence, |A3| = |B′2|.
Furthermore, since |NG(w2) ∩ B0| = 2, we can conclude that |A1| = |A4| = |A5|. On the other hand, suppose
that there are two different paths v0,w2,w0,w1 and v0,w′2,w

′

0,w1 in Π. In such a case, the weight of the cycle
v0,w2,w0,w1,w′0,w

′

2, v0 equals 5 and we can find a Roman dominating function with weight equal to 4, as
we can consider that v0 and w1 have label 2 and the remaining vertices have label 0, which is a contradiction
with the minimality of f . Hence, |A4| = |B′2|. Now, define the function 14 : Vt

→ {0, 1, 2} such that



F. Ramezani et al. / Filomat 31:20 (2017), 6515–6528 6520

14(v) =


0, v ∈ A1 ∪ A2 ∪ A3;
1, v ∈ A4;
2, v ∈ A5;
13(v), otherwise.

ww1w2

ww0w1 ww1w1

ww1v0

ww1w0

0

0 0

1

2

ww1w2

ww0w1 ww1w1

ww1v0

ww1w0

2

1 1

0

0

−→

Figure 3: This figure shows how the labels imposed by function 13 are transformed by function 14.

Notice that A5 is a dominating set for A1 ∪A2 ∪A3. So 14 is a Roman dominating function on S(G, t) (See
Figure 3). Then

ω(14) = 2|A5| + |A4| + ω(13) − |A1| − |A2| − 2|A3|

= ω(13) − θ

≤ nt−2
(
nγR (G) − |B2| − |D12| − θ +

|D1|

2

)
,

as required.

As we can see in Theorems 3.1 and 4.3 the bound above is achieved for any Sierpiński graph whose base
graph has one universal vertex or is a path Pn, where n ≡ 0, 1 (mod 3).

Since any Roman graph has a γR -function f = (B0, ∅,B2), we can state the following particular case of
Theorem 2.1.

Corollary 2.2. For any Roman graph G of order n and any integer t ≥ 2,

γR (S(G, t)) ≤ γ(G)nt−2(2n − 1).

3. Graphs Having Exactly One Universal Vertex

Theorem 3.1. If G is a graph of order n ≥ 4 having exactly one vertex of degree n − 1, then for any integer t ≥ 2,
γR (S(G, t)) = nt−2(2n − 1).

Proof. By Theorem 2.1 we deduce that γR(S(G, t)) ≤ nt−2(2n − 1). We will show that for any γR (S(G, t))-
function f = (B0,B1,B2), ω( f ) ≥ nt−2(2n− 1). Let V = {0, 1, . . . ,n− 1} such that de1(0) = n− 1.We would point
out that for any w ∈ Vt−2, i ∈ V and t ≥ 3, the subgraph 〈Vwi〉 of S(G, t), induced by Vwi = {wij : j ∈ V}, is
isomorphic to G. Let λ(Vwi) = |{wij ∈ Vwi : de1(wij) , de1( j)}|. There are two general cases.
Case I. i , 0. In this case 1 ≤ λ(Vwi) ≤ n − 1. So there exists wij ∈ Vwi such that de1(wij) = de1( j) for
1 ≤ j ≤ n − 1. If B2 ∩ Vwi , ∅, then ω(Vwi) ≥ 2. Otherwise, wij ∈ B1 and ω(Vwi) ≥ 1. If ω(Vwi) = 1, then
f (wik) = 0 for k ∈ V \ { j}. Let l ∈ V \ {0, i, j}. Then wil ∈ N(wli) where wli ∈ B2. Since l , 0, λ(Vwl) ≤ n− 1, and
so there exists wll′ ∈ Vwl ∩ (B1 ∪ B2) such that l′ , i.Hence, ω(Vwl) ≥ 3. This shows that ω(Vwi) +ω(Vwl) ≥ 4.
Therefore, for every copy of G of weight 1 there is another copy of G of weight at least 3. Since there
are nt−2(n − 1) copies of G of this type in S(G, t), the contribution of these copies of G to ω( f ) equals∑
w∈Vt−2

n−1∑
i=1

ω(Vwi) ≥ 2nt−2(n − 1).
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Case II. i = 0. Then n − 1 ≤ λ(Vw0) ≤ n. If Vw0 * B0, then ω(Vw0) ≥ 1. Suppose that ω(Vw0) = 0. Hence,
λ(Vw0) = n and so w00 ∈ N(w′ j j) for w′ ∈ Vt−2 and j , 0. Since f is aγR-function, w′ j j ∈ B2.Also de1( j) < n−1,
so there exists z ∈ V \ {0, j} such that w′ jz < N(w′ j j) and de1(w′ jz) = de1(z). Hence, f (w′ jz) ∈ {0, 1}. If
f (w′ jz) = 1, then we can move the label 2 from w′ j j to w′00 and the label 1 from w′ jz to w00. The function
obtained in this manner is a γR -function on S(G, t), and so we can assume that f is such a function, i.e.,
ω(Vw0) = 1. Now, If f (w′ jz) = 0, then we have two possibilities. Either f (w′ j0) = 2 or f (w′ jl) = 2, for some
l ∈ N(z). The case f (w′ j0) = 2 is impossible, as we can put the label 1 to w00 and the label 0 to w′ j j, and the
function obtained is a Roman dominating function of weight less than f , which is a contradiction. Finally,
if f (w′ jl) = 2, then we can modify the following weights: we put label 2 to w′ j0, label 0 to w′ jl, label 1 to
w00, label 0 to w′ j j and, if l ∈ N( j), then we put label 1 to w′l j. The function obtained in this manner is a
γR -function on S(G, t), and so we can assume that f is such a function, i.e.,ω(Vw0) = 1. So

∑
w∈Vt−2

ω(Vw0) ≥ nt−2.

Therefore, γR (S(G, t)) = ω( f ) ≥ nt−2 + 2nt−2(n − 1) = nt−2(2n − 1). The proof is completed.

Since any graph of order n having at most one vertex of degree greater than or equal to n−2 is a subgraph
of a graph of order n having exactly one vertex of degree n − 1, Remark 1.5 and Theorem 3.1 lead to the
following result.

Theorem 3.2. If G is a graph of order n ≥ 4 having at most one vertex of degree greater than or equal to n − 2, then
for any integer t ≥ 2, γR (S(G, t)) ≥ nt−2(2n − 1).

4. The Particular Case of Paths

Notice that S(P2, t) � P2t and so γR (S(P2, t)) =
⌈

2t+1

3

⌉
. From now on we assume that n ≥ 3. Let

V = {1, 2, . . . ,n} be the vertex set of Pn, and 〈Vwu〉 a copy of Pn in S(Pn, t) for w ∈ Vt−2 and u ∈ V. Set

Awu =


{wui ∈ Vwu : i < u − 1}, 3 ≤ u ≤ n ;

∅, u = 1, 2.

Bwu =


{wuj ∈ Vwu : j > u + 1}, 1 ≤ u ≤ n − 2 ;

∅, u = n − 1,n.

Also, let

Di =
{
〈Vwu〉 : ω(Vwu) =

⌈2|Awu|

3

⌉
+

⌈2|Bwu|

3

⌉
+ i

}
, for i ∈ {0, 1}

and
D2 =

{
〈Vwu〉 : ω(Vwu) =

⌈2|Awu|

3

⌉
+

⌈2|Bwu|

3

⌉
+ j, for some j ≥ 2

}
,

where the weightω(Vwu) corresponds to a labelling defined by aγR -function on S(Pn, t). Also set Λ = {〈Vwu〉 :
de1(wuu) , de1(u) for 1 ≤ u ≤ n}. With these notations in mind we will prove the following Lemmas.

Lemma 4.1. Let f = (B0,B1,B2) be a γR -function on S(Pn, t), where n ≥ 3. For any w ∈ Vt−2 and u ∈ V there exists
i ≥ 0 such that 〈Vwu〉 ∈ Di, and i ≥ 1 whenever Vwu < Λ.

Proof. Let Pr = 〈Awu〉 and Pr′ = 〈Bwu〉. Notice that Theorem 1.4 leads toγR (〈Awu〉) = d 2r
3 e andγR (〈Bwu〉) = d 2r′

3 e.
If Vwu < Λ, then de1(wuu) = de1(u) ≤ 2. Since

ω(Vwu) = ω(Awu) +
∑

wui<Awu∪Bwu

f (wui) + ω(Bwu),
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ω(Vwu) ≥ ω(Awu) + ω(Bwu) + 1. If ω(Awu) ≥ d 2r
3 e or ω(Bwu) ≥ d 2r′

3 e, then we are done. If Awu , ∅ and
ω(Awu) < d 2r

3 e, then f (wu(u−2)) = 0, f (wu(u−3)) ≤ 1, and so f (wu(u−1)) = 2. Hence,ω(Awu)+ f (wu(u−1)) =

d
2(r−2)

3 e + 1 + 2 ≥ d 2r
3 e + 1. By analogy, if Bwu , ∅ and ω(Bwu) < d 2r′

3 e, then ω(Bwu) + f (wu(u + 1)) ≥ d 2r′
3 e + 1.

Therefore, in any case,

ω(Vwu) ≥
⌈2|Awu|

3

⌉
+

⌈2|Bwu|

3

⌉
+ 1.

Let Vwu ∈ Λ. Then wuu ∈ N(w′vv) where w′ ∈ Vt−2 and v ∈ V. Thus, as above,

ω(Vwu) = ω(Awu) +
∑

wui<Awu∪Bwu

f (wui) + ω(Bwu) ≥
⌈2|Awu|

3

⌉
+

⌈2|Bwu|

3

⌉
.

Lemma 4.2. Let V be the vertex set of Pn, n ≥ 3, and t a positive integer. If for some w ∈ Vt−2 and u ∈ V we have
that 〈Vwu〉 ∈ D0, then there exists w′ ∈ Vt−2 and v ∈ NG(u) such that 〈Vw′v〉 ∈ D2.

Proof. Let f = (B0,B1,B2) be γR -function on S(Pn, t), and 〈Vwu〉 ∈ D0. Then
∑

wui<Awu∪Bwu

f (wui) = 0. Thus, wuu ∈

N(w′vv) where w′vv ∈ Vt−2
∩B2 for w′ ∈ Vt−2 and v ∈ V. Hence, 〈Vw′v〉 ∈ Λ andω(Vw′v) ≥

⌈
2|Aw′v |

3

⌉
+
⌈

2|Bw′v |

3

⌉
+2.

So, 〈Vw′v〉 ∈ D2.

Theorem 4.3. For any integers n ≥ 3 and t ≥ 2,

γR (S(Pn, t)) =


nt−2

(
nd 2n

3 e − d
n
3 e

)
, n ≡ 0, 1 (mod 3);

nt−2
(
nd 2n

3 e − 2d n
3 e + 1

)
, n ≡ 2 (mod 3).

Proof. We first proceed to deduce the lower bound γR (S(Pn, t)) ≥ nt−2(nd 2n
3 e − d

n
3 e). Let V = {1, 2, . . . ,n}, and

f = (B0,B1,B2) a γR -function on S(Pn, t). Let 〈Vwu〉 be a copy of Pn in S(Pn, t) for w ∈ Vt−2 and u ∈ V. Since

γR (S(Pn, t)) =
∑

w∈Vt−2,u∈V

ω(Vwu),

we will obtain a lower bound on ω(Vwu) in terms of n. Before doing it, notice that

γR (S(Pn, t)) =
∑

〈Vwu〉∈D0

ω(Vwu) +
∑

〈Vwu〉∈D1

ω(Vwu) +
∑

〈Vwu〉∈D2

ω(Vwu)

and by Lemma 4.2, there exists an injective application ψ : D0 −→ D2, so that we emphasize that if
〈Vwu〉 ∈ D0, then the contribution of ω(Vwu) + ω(ψ(〈Vwu〉)) to γR (S(Pn, t)) is greater than or equal to its
contribution when both 〈Vwu〉 and ψ(〈Vwu〉) belong to D1. With this observation in mind we continue the
proof.

By Lemma 4.1,ω(Vwu) =
⌈

2|Awu |

3

⌉
+
⌈

2|Bwu |

3

⌉
+ i, for some i ≥ 0. Hence, we now proceed to express

⌈
|Awu |

3

⌉
and⌈

2|Bwu |

3

⌉
in terms of n. To this end, we consider the set S = {x ∈ V : x ≡ 2 (mod 3 )} and differentiate three cases.

Case 1: n = 3k for some positive integer k. So S is a γ(Pn)-set. If u ∈ S, then |Awu|, |Bwu| ∈ {3k′ : 0 ≤ k′ ≤ k− 1}
and, as |Awu ∪ Bwu| = n − 3, we have

ω(Vwu) = 2
n − 3

3
+ i =

2n
3

+ i − 2. (1)
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If u ∈ N(S) \ {1,n}, then |Awu| ∈ {l : l ≡ 1(mod 3)} and |Bwu| ∈ {l : l ≡ 2(mod 3)} or vice versa. Hence,
ω(Vwu) = 2n

3 + i − 1. Notice that if u = 1, then Awu = ∅ and |Bwu| ≡ 1 (mod 3), which implies that
ω(Vwu) = 2n

3 + i − 1. The case u = n is analogous to the previous one. Therefore,

γR (S(Pn, t)) =
∑

w∈Vt−2

∑
u∈V

ω(Vwu)

≥ nt−2
((2n

3
− 1

)
γ(Pn) +

2n
3

(
n − γ(Pn)

))
= nt−2

(
n
⌈2n

3

⌉
−

⌈n
3

⌉)
.

Case 2: n = 3k + 1 for some positive integer k. In this case, S′ = S ∪ {n − 1} is a γ-set of Pn. If 〈Vwd〉 is a copy
of Pn for some d ∈ S′, |Awd| ∈ {l : l ≡ 0 (mod 3)} and |Bwd| ∈ {l : l ≡ 1 (mod 3)} or vice versa. Hence,

ω(Vwd) =
⌈2|Awd|

3

⌉
+

⌈2|Bwd|

3

⌉
+ i = 2

⌊n
3

⌋
+ i − 1. (2)

Let Vwu where u ∈ N(S′) \ {1,n}. Hence, we have two possibilities, |Awu|, |Bwu| ∈ {l : l ≡ 2 (mod 3)} or
|Awu|, |Bwu| ∈ {l : l ≡ 0, 1 (mod 3)} where |Awu| . |Bwu| (mod 3). In the first case, ω(Vwu) ≥ 2b n

3 c + i and, in
the second one, ω(Vwu) ≥ 2b n

3 c + i − 1.
Suppose that ω(Vwv) = 2b n

3 c+ i− 1 for w ∈ Vt−2 and v ∈ V. Then ω(Vw(v−1)) > 2b n
3 c+ i− 1 where v− 1 ∈ S.

Therefore ω(Vwu) is equal to 2b n
3 c + i − 1 at most for γ(Pn) copies of Pn, and for other copies it is more than

2b n
3 c + i − 1. Hence,

γR (S(Pn, t)) ≥ nt−2
(
2γ(Pn)

⌊n
3

⌋
+ (n − γ(Pn))

(
2
⌊n

3

⌋
+ 1

))
= nt−2

(
n
⌈2n

3

⌉
−

⌈n
3

⌉)
.

Case 3: n = 3k + 2 for some positive integer k. We discuss first words of the form wu where 2 ≤ u ≤ n − 1
and w ∈ Vt−2. If wuu ∈ B2 ∪ B1, then ω(Vwu) ≥ d 2(u−2)

3 e + d
2(n−u−1)

3 e + 1. Hence, ω(Vwu) ≥ 2b n
3 c + 1 for

u ≡ 0 (mod 3) and ω(Vwu) ≥ 2b n
3 c + 2 for others. Now, suppose that wuu ∈ B0 and 〈Vwu〉 < D0. In this case

wu(u − 1) ∈ B2 or wu(u + 1) ∈ B2, say wu(u + 1) ∈ B2. Hence, ω(Vwu) ≥ d 2(u−2)
3 e + d

2(n−u−2)
3 e + 2, which implies

that ω(Vwu) ≥ 2b n
3 c + 1 for u ∈ {3k′, 3k′ + 2 : 0 ≤ k′ ≤ k − 1} and ω(Vw′ ) ≥ 2b n

3 c + 2 for others. In summary,
ω(Vwu) ≥ 2b n

3 c + 1 for u ≡ 0, 2 (mod 3) and ω(Vwu) ≥ 2b n
3 c + 2 for u ≡ 1 (mod 3).

Now, let u ∈ {1,n}. Suppose that u = 1 (for u = n, the proof is likewise). If 〈Vw1〉 ∈ D2, then
ω(Vw1) ≥ 2b n

3 c + 2. Now, if 〈Vw1〉 ∈ D1, then f (w11) = 1 or f (w11) = 0. In the first case, f (w21) = 2, as
f (w13) = 2 implies that 〈Vw1〉 ∈ D2, which is a contradiction. In the second case, there exists w′ ∈ Vt−2

such that f (w′22) = 2 and w11 ∈ N(w′22). As a consequence, ω(Vw1) ≥ 2b n
3 c + 2 or for some w′ ∈ Vt−2,

ω(Vw′2) ≥ 2b n
3 c+2. In summary, we can collect the lower bounds for the weight of the copies of Pn in S(Pn, 2)

in a table.

u = 3k′ 3k′ + 1 3k′ + 2
u , 1,n, ω(Vwu) ≥ 2b n

3 c + 1 2b n
3 c + 2 2b n

3 c + 1

〈Vw1〉 ∈ D0

ω(Vw1) ≥
ω(Vw2) ≥
and

∃w′ ∈ Vt−2 : ω(Vw′2) ≥

2b n
3 c 2b n

3 c + 2

2b n
3 c + 2

〈Vw1〉 ∈ D1

ω(Vw1) ≥
ω(Vw2) ≥
or

∃w′ ∈ Vt−2 : ω(Vw′2) ≥

2b n
3 c + 1 2b n

3 c + 2

2b n
3 c + 2

〈Vw1〉 ∈ D2 ω(Vw1) ≥ 2b n
3 c + 2
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Therefore,

γR (S(Pn, t)) =
∑

w∈Vt−2

∑
u∈V

ω(Vwu)

≥ nt−2
((

2
⌊n

3

⌋
+ 1

) (
2
⌊n

3

⌋
+ 1

)
+

⌈n
3

⌉ (
2
⌊n

3

⌋
+ 2

))
= nt−2

(
n
⌈2n

3

⌉
− 2

⌈n
3

⌉
+ 1

)
.

and the proof of the lower bound is complete.

For n ≡ 0, 1 (mod 3), the upper bound γR (S(Pn, t)) ≤ nt−2(nd 2n
3 e− d

n
3 e) is obtained from Theorem 2.1. Thus

we consider the case n = 3k + 2 for some positive integer k.

As above, consider the set S = {x ∈ V \ {n} : x ≡ 2 (mod 3 )}. In order to construct a Roman dominating
function we introduce the following sets.

A1 = {wis : w ∈ Vt−2, s ∈ S, i ≥ s + 2},

A2 = {wi(n − 1) : w ∈ Vt−2, i ∈ {1,n}},

A3 = {wij : w ∈ Vt−2, 1 ≤ i ≤ n − 2, j = i + 1 + 3k′, 0 ≤ k′ ≤ k − 1},

C1 = {win : w ∈ Vt−2, i ∈ S},

C2 = {w(s + 1)(s − 1) : w ∈ Vt−2, s ∈ S},

C3 = {w(n − 1)(n − 1) : w ∈ Vt−2
}.

Define 1 : Vt
→ {0, 1, 2} such that

1(wij) =



2, wij ∈
3⋃

i=1

Ai;

1, wij ∈
3⋃

i=1

Ci;

0, otherwise.

Suppose that 1(wij) = 0 for w ∈ Vt−2 and i, j ∈ V. If i > j + 2, then j < S and so wij ∈ N(wis) where
s ∈ { j−1, j+1}. As a consequence, i > s+2 and wis ∈ A1. If i = j+2 and s = j+1, then wij = w(s+1)(s−1) ∈ C2,
which is a contradiction, as 1(wij) = 0. Hence, if i = j + 2, then s = j − 1 and wis = w(s + 3)s ∈ A1. Now,
let i < j + 2. If i = j + 1, then wij = wi(i − 1) ∈ N(w(i − 1)i) and w(i − 1)i ∈ A2. Also, if i < j + 1, then wij is
dominated by some vertex in A2 ∪ A3. Hence, 1 is a Roman dominating function on S(Pn, t). Thus,

γR (S(Pn, t)) ≤ ω(1) = 2
3∑

i=1

|Ai| +

3∑
i=1

|Ci|.

On one hand,
3∑

i=1

|Ci| = nt−2(2|S| + 1) = nt−2(2γ(Pn) − 1) = 2k + 1

and, on the other hand,

|A1| = nt−2
∑
u∈S

u = nt−2

(
3k2 + k

2

)
, |A2| = 2nt−2
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w2333

w3322

Figure 4: This figure shows the labelling of 〈Vw32〉 � S(P8, 2) induced by 1, where labels 0’s are omitted.

and

|A3| = nt−2

k + 2 +

k∑
i=2

3i

 = nt−2

(
3k2 + 5k − 2

2

)
.

Thus,
3∑

i=1

|Ai| = nt−2

(
3k2 + k

2
+ 2 +

3k2 + 5k − 2
2

)
= nt−2(3k2 + 3k + 1).

Therefore, γR (S(Pn, t)) ≤ nt−2(6k2 + 8k + 3) and, since n = 3k + 2,

γR (S(Pn, t)) ≤ nt−2
(
n
⌈2n

3

⌉
− 2

⌈n
3

⌉
+ 1

)
,

as required.

5. The Particular Case of Cycles

Theorem 5.1. Let n ≥ 4 and t ≥ 2 be two integers. If n ≡ 1, 2 (mod 3), then γR (S(Cn, t)) = nt−1
b

2n
3 c, otherwise,

nt−1(2n−3)
3 ≤ γR (S(Cn, t)) ≤

nt−1(2n−1)
3 .

Proof. Let V = {1, . . . ,n} be the vertex set of Cn, where i ∈ NCn (i + 1), for any i, and the addition is taken
modulo n. First, we proceed to deduce the upper bound for γR (S(Cn, t)). If n ≡ 0 (mod 3), then Theorem
2.1 leads to

γR (S(Cn, t)) ≤
nt−1

3
(2n − 1). (3)

Suppose that n = 3k + 1, for some integer k. Define D = {i j : i ∈ V, j = i + 1 + 3k′, 0 ≤ k′ < k − 1} and
Dt−2 = {wx : w ∈ Vt−2, x ∈ D}. Notice that D is a 2-packing1) dominating set, and D ∩ {ii : i ∈ V} = ∅, hence

1)A set S of vertices is called a 2-packing of G if for every pair of vertices u, v ∈ S, NG[u] ∩NG[v] = ∅.
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Dt−2 is also a 2-packing dominating set and therefore γ(S(Cn, t)) = |Dt−2| = nt−2
|D| = nt−1

⌊
n
3

⌋
, which implies

that

γR (S(Cn, t)) ≤ 2γ(S(Cn, t)) = nt−1
⌊2n

3

⌋
. (4)

Now, let n = 3k + 2 for any positive integer k. Set

A = {wij : w ∈ Vt−2, i ∈ V, j = i + 1 + 3k′, 0 ≤ k′ ≤ k − 1}

and
B = {wij : w ∈ Vt−2, i ∈ V, j = i − 2}.

Define f2 : Vt
→ {0, 1, 2} such that

f2(x) =


2, x ∈ A;
1, x ∈ B;
0, otherwise.

Let w ∈ Vt−2 and i, j ∈ V such that 1(wii) = 0. If j ≡ i − 1 (mod n), then wi(i − 1) ∈ N(w(i − 1)i) ⊂ N(A).
Otherwise, j ≡ i + 3k′ or i + 2 + 3k′ (mod n), for 1 ≤ k′ ≤ k− 1. Hence, wij ∈ N(wi( j + 1)) or wij ∈ N(wi( j− 1))
respectively. So wij ∈ N(A). Therefore, 1 is a Roman dominating function on S(Cn, t) and, as a consequence,

γR (S(Cn, t)) ≤ ω( f2) = 2|A| + |B| = nt−1(2k + 1) = nt−1
⌊2n

3

⌋
. (5)

Now we will find the lower bound for γR (S(Cn, t)). Assume that f = (B0,B1,B2) is a γR -function on S(Cn, t).
Set

Cwu = {wui ∈ Vwu : i < {u − 1,u,u + 1}}

for w ∈ Vt−2 and u ∈ V. Hence, the subgraph induced by Cwu is isomorphic to Pn−3 and ω(Vwu) =

ω(Cwu) +
∑

i∈{u−1,u,u+1}

f (wui). Let

Di =
{
〈Vwu〉 : ω(Vwu) =

⌈2n
3

⌉
− 2 + i

}
for i ∈ {0, 1}

and
D2 =

{
〈Vwu〉 : ω(Vwu) =

⌈2n
3

⌉
− 2 + j, for some j ≥ 2

}
.

Notice that
γR (S(Cn, t)) =

∑
〈Vwu〉∈D0

ω(Vwu) +
∑

〈Vwu〉∈D1

ω(Vwu) +
∑

〈Vwu〉∈D2

ω(Vwu).

If 〈Vwu〉 ∈ D0, then {wu(u − 1),wuu,wu(u + 1)} ⊂ B0 and so there exists w′ ∈ Vt−2 and v ∈ V such that
wuu ∈ N(w′vv) and f (w′vv) = 2. Thus, 〈Vw′v〉 ∈ D2. We can define an injective application φ : D0 −→ D2, so
that we emphasize that if 〈Vwu〉 ∈ D0, then the contribution of ω(Vwu) +ω(φ(〈Vwu〉)) to γR (S(Cn, t)) is greater
than or equal to such contribution when both 〈Vwu〉 and φ(〈Vwu〉) belong to D1. The argument shows that,

γR (S(Cn, t)) =
∑

w∈Vt−2

∑
u∈V

ω(Vwu) ≥ nt−1
(⌈2n

3

⌉
− 1

)
.

Therefore, the result follows.
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6. The Particular Case of Complete Graphs

The domination number of S(Kn, t) was previously studied by Klavžar, Milutinović and Petr in [13]
where they obtained the following result.

Theorem 6.1. [13] For any integers n ≥ 2 and t ≥ 1,

γ(S(Kn, t)) =


nt + n
n + 1

, t even;

nt + 1
n + 1

, t odd.

The above result is an important tool to deduce an upper bound on the Roman domination number of
S(Kn, t).

Theorem 6.2. For any integers n ≥ 2 and t ≥ 1,

γR (S(Kn, t)) ≤


2nt + n − 1

n + 1
, t even;

2(nt + 1)
n + 1

, t odd.

Proof. Let V = {1, 2, . . . ,n} be the vertex set of Kn. For t odd we deduce the bound from Theorem 6.1, as
γR (S(Kn, t)) ≤ 2γ(S(Kn, t)). We claim that for t = 2k there exists a Roman dominating function such that
f (1 . . . 1) = 1 and ω( f ) = 2n2k+n−1

n+1 . To show this we proceed by induction on k. For k = 1 we define the
Roman dominating function f as follows. f (11) = 1, f (i1) = 2 for all i , 1 and f (xy) = 0 for others. Notice
that ω( f ) = 2(n − 1) + 1 = 2n2+n−1

n+1 .
Now, suppose that f is a Roman dominating function on S(Kn, 2k) such that f (1 . . . 1) = 1 and ω( f ) =

2n2k+n−1
n+1 . We shall construct a Roman dominating function f ′ on S(Kn, 2k + 2) in the following way:

• f ′(11w) = f (w) for all w ∈ V2k.

• f ′(1i . . . i) = 0 for all i , 1 and f (11w) = f (w′) for all w ∈ V2k−2
\ {i . . . i : i ∈ V}, where w′ is obtained

from w by exchanging i and 1.

• For any i ∈ V \ {1} and w ∈ V2k, we define f (i1w) as follows. As shown in [13, Corollary 3.5], there
exists a 1-perfect code C of S(Kn, 2k) which contains all the extreme vertices. So, we set f ′(i1w) = 2 for
all w ∈ C and f ′(i1w) = 0 for others.

• f ′(i j1 . . . 1) = 0 and f ′(i jw) = f (w) for all i, j , 1 and w , 1 . . . 1.

Notice that f ′(1 . . . 1) = 1. To conclude that f ′ is a Roman dominating function on S(Kn, 2k + 2) we only need
to observe that all x ∈ V2k+2 of the form x = 1i . . . i, i , 1 are adjacent to i1 . . . 1 and f ′(i1 . . . 1) = 2, and all
x ∈ V2k+2 of the form x = i j1 . . . 1, i, j , 1 are adjacent to i1 j . . . j and f ′(i1 j . . . j) = 2. Finally, by Theorem 6.1,
|C| = n2k+n

n+1 , and so

ω( f ′) = ω( f ) + (n − 1)(ω( f ) − 1) + 2|C|(n − 1) + (n − 1)2(ω( f ) − 1) =
2n2k+2 + n − 1

n + 1
,

as required.

By Remark 1.5 we deduce the following corollary.
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Corollary 6.3. For any graph G of order n and any integer t ≥ 1,

γR (S(G, t)) ≥ γR (S(Kn, t)).

As the above corollary shows, a lower bound (or a closed formula) on the Roman domination number
of S(Kn, t) imposes a lower bound on γR (S(G, t)) for every graph G. Therefore, this issue definitely deserves
further research.
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Codes and Cryptography 69 (2) (2013) 181–188.
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