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Abstract. In this paper, we look into a new concept of accretive mappings called αβ-H((., .), (., .))-mixed
accretive mappings in Banach spaces. We extend the concept of proximal-point mappings connected
with generalized m-accretive mappings to the αβ-H((., .), (., .))-mixed accretive mappings and discuss its
characteristics like single-valuable and Lipschitz continuity. Some illustration are given in support of
αβ-H((., .), (., .))-mixed accretive mappings. Since proximal point mapping is a powerful tool for solving
variational inclusion. Therefore, As an application of introduced mapping, we construct an iterative
algorithm to solve variational inclusions and show its convergence with acceptable assumptions.

1. Introduction

Variational inequality theory is providing mathematical models to some problems make an appearance in
optimization and control, economics, and engineering sciences. Many heuristic has been widely used these
applications of variational inequalities, e.g., we refer to see [18], [20]-[22],[24]. The proximal-point mapping
technique is an important powerful tool to study varitional inequalities and their generalization.

Firstly, Huang and Fang [6] investigated the generalized m-accretive mapping and defined its proximal-
point mapping in Banach spaces. Since then a number of mathematician presented various classes of
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generalized m-accretive mappings, see for examples [5, 17], [20, 21]. Sun et al. [22] presented a new
class of M-monotone mapping in Hilbert spaces. In the past few days, Zou and Huang [24], Kazmi et al.
[14, 15] investigated H(., .)-accretive mappings, Ahmad et. al investigated H(., .)-cocoercive mapping [2]
and Husain and Gupta [7] investigated H((., .), (., .))-mixed cocoercive mappings in Banach (Hilbert) spaces,
a natural extension of m-accretive (M-monotone) mapping and focussed on variational inclusions involving
these mappings. In recent past, the techniques through different classes of proximal-point mappings have
been developed to work on the existence of solutions and to analyze convergence and stability of iterative
algorithms for several classes of variational inclusions, see for example [2, 4], [7]-[18], [20, 21], [24].

Very recently, Luo and Huang [18] introduced and studied a class of B-monotone and Kazmi et al.
[14] introduced and studied a class of generalized H(., .)-accretive mappings in Banach spaces which
is generalization of H-monotone mappings [5]. They showed its proximal-point mapping properties
connected with B-monotone and generalized H(., .)-accretive mapping.

This work is motivated and inspired by the research works mentioned above. We look into a new notion
of αβ-H((., .), (., .))-mixed accretive mappings and give its proximal-point mapping. Further, we will discuss
its characteristics that is single-valued as well as Lipschitz continuity. As an application, we attempt to
solve generalized set-valued variational inclusions in real q-uniformly smooth Banach spaces. By using
the proximal-point mapping technique, we construct an iterative algorithm and prove its convergence
with acceptable assumptions. The results presented in this paper can be viewed as an extension and
generalization of some known results [2, 7], [14]-[16], [18, 24]. Some illustrations are given in support of
introduced results.

2. Preliminaries

Let us consider a real Banach space E with norm ‖.‖ and topological dual space E∗. We use inner product
〈., .〉 denote the dual pair between E and E∗ and 2E be the power set of E.

Definition 2.1. [23] A mapping Jq : E( E∗, where q > 1, is said to be generalized duality mapping, if it is given as

Jq(u) = { f ∗ ∈ E∗ : 〈u, f ∗〉 = ‖u‖q, ‖ f ∗‖ = ‖u‖q−1
}, ∀ u ∈ E.

If J2 is the usual normalized duality mapping on E, given as

Jq(u) = ‖u‖q−1 J2(u) ∀ u(, 0) ∈ E.

If E ≡ X, a real Hilbert space, then J2 becomes identity mapping on X.

Definition 2.2. [23] A Banach space E is called smooth if for every u ∈ E with ‖u‖ = 1, there exists a unique
f ∈ E∗ such that ‖ f ‖ = f (u) = 1.
The modulus of smoothness of E is a function ρE : [0,∞)→ [0,∞), defined by

ρE(t) = sup
{1

2
(‖u + v‖ + ‖u − v‖) − 1 : ‖u‖ ≤ 1, ‖v‖ ≤ t

}
.

Definition 2.3. [23] A Banach space E is called
(i) uniformly smooth if

lim
t→0

ρE(t)
t

= 0;

(ii) q-uniformly smooth, for q > 1, if there exists c > 0 such that

ρE(t) ≤ c tq, t ∈ [0,∞).

Note that Jq is single-valued if E is uniformly smooth.
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Lemma 2.4. [23] Let E be a real uniformly smooth Banach space. Then E is q-uniformly smooth if and only if there
exists cq > 0 such that, for all u, v ∈ E,

‖u + v‖q ≤ ‖u‖q + q〈v, Jq(u)〉 + cq‖v‖q.

In order to proceed our next step, we write basic important concepts and definitions, which will be used
in this work.

Lemma 2.5. A mapping f : E→ E is said to be
(i) ξ-strongly accretive with ξ > 0, if

〈 f (x) − f (y), Jq(x − y)〉 ≥ ξ ‖x − y‖q, ∀x, y ∈ E;

(ii) µ-cocoercive with µ > 0, if

〈 f (x) − f (y), Jq(x − y)〉 ≥ µ ‖ f (x) − f (y)‖q, ∀x, y ∈ E;

(iii) γ-relaxed cocoercive with γ > 0, if

〈 f (x) − f (y), Jq(x − y)〉 ≥ −γ ‖ f (x) − f (y)‖q, ∀x, y ∈ E;

(iv) β-Lipschitz continuous with β > 0, if

‖ f (x) − f (y)‖ ≤ β ‖x − y‖, ∀x, y ∈ E;

(v) α-expansive with α > 0, if

‖ f (x) − f (y)‖ ≥ α ‖x − y‖, ∀x, y ∈ E;

if α = 1, then it is expansive.

Definition 2.6. [7] Let H : (E×E)× (E×E)→ E, and A,B,C,D : E→ E be the single-valued mappings. Then

(i) H((A, .), (C, .)) is said to be (µ1, γ1)-strongly mixed cocoercive regarding (A,C) with µ1, γ1 > 0, if

〈H((Ax,u), (Cx,u)) −H((Ay,u), (Cy,u)), Jq(x − y)〉 ≥ µ1 ‖Ax − Ay‖q + γ1 ‖x − y‖q, ∀x, y, u ∈ E;

(ii) H((.,B), (.,D)) is said to be (µ2, γ2)-relaxed mixed cocoercive regarding (B,D) with µ2, γ2 > 0, if

〈H((u,Bx), (u,Dx)) −H((u,By), (u,Dy)), Jq(x − y)〉 ≥ − µ2 ‖Bx − By‖q + γ2 ‖x − y‖q, ∀x, y, u ∈ E;

(iii) H((A,B), (C,D)) is said to be symmetric mixed cocoercive regarding (A,C) and (B,D) if H((A, .), (C, .)) is
(µ1, γ1)-strongly mixed cocoercive regarding (A,C) and H((.,B), (.,D)) is (µ2, γ2)-relaxed mixed cocoercive
regarding (B,D);

(iv) H((A,B), (C,D)) is said to be τ-mixed Lipschitz continuous regarding A,B,C and D with τ > 0, if

‖H((Ax,Bx), (Cx,Dx)) −H((Ay,By), (Cy,Dy))‖ ≤ τ ‖x − y‖, ∀x, y ∈ E.

Definition 2.7. [18] Let S : E( E and M : E × E( E be the set-valued mapping. Then

(i) S is said to be accretive if

〈u − v, Jq(x − y)〉 ≥ 0 ∀x, y ∈ E, u ∈ Sx, v ∈ Sy;

(ii) S is said to be strictly accretive if

〈u − v, Jq(x − y)〉 > 0 ∀x, y ∈ E, u ∈ Sx, v ∈ Sy;
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and equality holds if and only if x = y.

(iii) S is said to be µ′-strongly accretive with µ′ > 0, if

〈u − v, Jq(x − y)〉 ≥ µ′‖x − y‖q ∀x, y ∈ E, u ∈ Sx, v ∈ Sy;

(iv) S is said to be γ′-relaxed accretive with γ′ > 0, if

〈u − v, Jq(x − y)〉 ≥ − γ′‖x − y‖q ∀x, y ∈ E, u ∈ Sx, v ∈ Sy;

(v) M( f , .) is said to be α-strongly accretive regarding f with α > 0, if

〈u − v, Jq(x − y)〉 ≥ α‖x − y‖q ∀x, y, w ∈ E, u ∈M( f (x),w) v ∈M( f (y),w);

(vi) M(., 1) is said to be β-relaxed accretive regarding 1with β > 0, if

〈u − v, Jq(x − y)〉 ≥ − β‖x − y‖q ∀x, y, w ∈ E, u ∈M(w, 1(x)) v ∈M(w, 1(y));

(vii) M(., .) is said to be αβ-symmetric accretive regarding f and 1 if M( f , .) is α-strongly accretive regarding

f and M(., 1) is β-relaxed accretive regarding 1with α ≥ β and α = β if and only if x = y.

3. αβ-H((., .), (., .))-Mixed Accretive Mappings

Firstly we consider the following assumptions, then we will introduce αβ-H((., .), (., .))-mixed accretive
mappings and its proximal-point mapping. Later we will discuss the properties of its proximal point
mapping properties.

Let H : (E×E)×(E×E)→ E, f , 1 : E→ E and A,B,C,D : E→ E be single-valued mappings and M : E×E( E
be a set-valued mapping.
Assumption (a1): Let H is symmetric mixed cocoercive regarding (A,C) and (B,D).
Assumption (a2): Let A is α1-expansive and B is β1-Lipschitz continuous.

Definition 3.1. Let assumption (a1) holds, then M is said to be αβ-H((., .), (., .))-mixed accretive regarding
(A,C), (B,D) and ( f , 1) if

(i) M is αβ-symmetric accretive regarding f and 1;
(ii) (H((., .), (., .)) + ρM( f , 1))(E) = E, for all ρ > 0.

The following example illustrate the Definitions (2.6) and (3.1).

Example 3.2. Let q = 2 and E = R2 with usual inner product defined by

〈(x1, x2), (y1, y2)〉 = x1y1 + x2, y2.

Let A,B,C,D : R2
→ R2 be defined by

Ax =

(
4x1

4x2

)
, Bx =

(
−3x1

−3x2

)
, Cx =

(
2x1

2x2

)
, Dx =

(
x1

x2

)
, ∀ x = (x1, x2) ∈ R2.

Suppose that H : (R2
×R2) × (R2

×R2)→ R2 is defined by

H((Ax,Bx), (Cx,Dx)) = Ax + Bx + Cx + Dx.
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In addition, let f , 1 : R2
→ R2 be defined by

f (x) =

(
5x1 −

2
3 x2

2
3 x1 + 5x2

)
, 1(x) =

( 7
4 x1 + 3

4 x2

−
3
4 x1 + 7

4 x2

)
, ∀ x = (x1, x2) ∈ R2.

and M : R2
×R2

→ R2 is defined by

M( f x, 1x) = f x − 1x, ∀ x = (x1, x2) ∈ R2.

Then, constants in Definition 2.6 and 3.1 having values (µ1, γ1) = ( 1
4 , 2), (µ2, γ2) = ( 1

3 , 1), τ = 4 α = 5 and
β = 7

4 . It shows that H is symmetric mixed cocoercive regarding (A,C) and (B,D), M is symmetric accretive
regarding f and 1, and H is mixed Lipschitz continuous regarding A,B,C and D. Further, it can be obtained
easily that [H((A,B), (C,D))+ρM( f , 1)](R2) = R2. Thus M is αβ-mixed accretive with respect to (A,B), (C,D)
and ( f , 1).

Remark 3.3. (i) If H((A,B), (C,D)) = H(A,B), then αβ-H((., .), (., .))-mixed accretive mapping reduces to
generalized H(., .)-accretive mapping considered in [16].

(ii) If H((A,B), (C,D)) = B, thenαβ-H((., .), (., .))-mixed accretive mapping reduces to generalized B-monotone
mapping considered in [18].

(iii) If H((A,B), (C,D)) = H(A,B), M(., .) = M and M is accretive, then αβ-H((., .), (., .))-mixed accretive
mapping reduces to H(., .)-accretive mapping considered in [24].

(iv) If E is Hilbert space, M( f , 1) = M and M is m-relaxed monotone, then αβ-H((., .), (., .))-mixed accretive
mapping reduces to H((., .), (., .))-mixed cocoercive mapping considered in [7].

Since αβ-H((., .), (., .))-mixed accretive mapping is a generalization of the maximal accretive mapping, it is
logical that they have similar properties. The next result guarantee this supposition.

Proposition 3.4. Let M be a αβ-H((., .), (., .))-mixed accretive mapping regarding (A,C), (B,D) and ( f , 1). If
assumptions (a1) and (a2) hold with α > β, µ1 > µ2, α1 > β1 and γ1, γ2 > 0. If the following inequality

〈u − v, Jq(x − y)〉 ≥ 0,

satisfied for all (v, y) ∈ Graph(M( f , 1)), implies (u, x) ∈ M( f , 1), where

Graph(M( f , 1)) = {(u, x) ∈ E × E : (u, x) ∈M( f (x), 1(x))}.

Proof. Assume on the contrary that there exists (u0, x0) < Graph(M( f , 1)) such that

〈u0 − v, Jq(x0 − y)〉 ≥ 0,∀ (y, v) ∈ Graph(M( f , 1)). (1)

By definition of αβ-H((., .), (., .))-mixed accretive, we know that (H((., .), (., .)) + ρ M( f , 1))(E) = E, holds for
all ρ > 0. So there exists (u1, x1) ∈ Graph(M( f , 1)) such that

H((Ax1,Bx1), (Cx1,Dx1)) + ρu1 = H((Ax0,Bx0), (Cx0,Dx0)) + ρu0 ∈ E. (2)

Now, ρ u0 − ρ u1 = H((Ax1,Bx1), (Cx1,Dx1)) −H((Ax0,Bx0), (Cx0,Dx0)) ∈ E.
〈ρ u0 − ρ u1, Jq(x0 − x1)〉 = −〈H((Ax0,Bx0), (Cx0,Dx0)) −H((Ax1,Bx1), (Cx1,Dx1)),

Jq(x0 − x1)〉.

Since M is αβ-symmetric accretive regarding f and 1, we obtain

(α − β) ‖x0 − x1‖
q
≤ ρ 〈u0 − u1, Jq(x0 − x1)〉
= −〈H((Ax0,Bx0), (Cx0,Dx0)) −H((Ax1,Bx1), (Cx1,Dx1)), Jq(x0 − x1)〉
= −〈H((Ax0,Bx0), (Cx0,Dx0)) −H((Ax1,Bx0), (Cx1,Dx0)), Jq(x0 − x1)〉
−〈H((Ax1,Bx0), (Cx1,Dx0)) −H((Ax1,Bx1), (Cx1,Dx1)), Jq(x0 − x1)〉.
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(3)

Since assumption (a1) holds, we have from (3)

(α − β) ‖x0 − x1‖
q
≤ −µ1‖Ax0 − Ax1‖

q
− γ1‖x0 − x1‖

q + µ2‖Bx0 − Bx1‖
q
− γ2‖x0 − x1‖

q.

(4)

Since assumption (a2) holds, we have from (4)

(α − β) ‖x0 − x1‖
q
≤ −µ1α

q
1‖x0 − x1‖

q
− γ1‖x0 − x1‖

q + µ2β
q
1‖x0 − x1‖

q
− γ2‖x0 − x1‖

q

= −[(µ1α
2
1 − µqβ

q
1) + (γ1 + γ2)] ‖x0 − x1‖

2

0 ≤ (α − β) ‖x0 − x1‖
q
≤ −[(µ1α

q
1 − µ2β

q
1) + (γ1 + γ2)] ‖x0 − x1‖

q

0 ≤ −(` + κ) ‖x0 − x1‖
q
≤ 0,

where ` = (µ1α
q
1 − µ2β

q
1) + (γ1 + γ2) and κ = (α − β),

which gives x0 = x1 since α > β, µ1 > µ2, α1 > β2, and γ1, γ2 > 0. By (1), we have u0 = u1, a contradiction.
This complete the proof. �

Theorem 3.5. Let M be a αβ-H((., .), (., .))-mixed accretive mapping regarding (A,C), (B,D) and ( f , 1). If assump-
tions (a1) and (a2) hold with α > β, µ1 > µ2, α1 > β1 and γ1, γ2 > 0, then (H((A,B), (C,D)) + ρM( f , 1))−1

is single-valued.

Proof. For any given x ∈ E, let u, v ∈ (H((A,B), (C,D)) + ρM( f , 1))−1(x). It follows that{
−H((Au,Bu), (Cu,Du)) + x ∈ ρM( f , 1)u,
−H((Av,Bv), (Cv,Dv)) + x ∈ ρM( f , 1)v.

Since M is αβ-symmetric accretive with respect to f and 1, we have

(α − β)‖u − v‖q ≤
1
ρ
〈−H((Au,Bu), (Cu,Du)) + x − (−H((Av,Bv), (Cv,Dv)) + x), Jq(u − v)〉

(α − β)‖u − v‖q ≤ 〈−H((Au,Bu), (Cu,Du)) + x − (−H((Av,Bv), (Cv,Dv)) + x), Jq(u − v)〉
= −〈H((Au,Bu), (Cu,Du)) −H((Av,Bv), (Cv,Dv)), Jq(u − v)〉
= −〈H((Au,Bu), (Cu,Du)) −H((Av,Bu), (Cv,Du)), Jq(u − v)〉
− 〈H((Av,Bu), (Cv,Du)) −H((Av,Bv), (Cv,Dv)), Jq(u − v)〉.

(5)

Since assumption (a1) holds, we have from (5)

ρ(α − β)‖u − v‖q ≤ −µ1‖Au − Av‖q − γ1‖u − v‖q + µ2‖Bu − Bv‖q − γ2‖u − v‖q. (6)

Since assumption (a2) holds, we have from (6)

ρ(α − β)‖u − v‖q ≤ −µ1α
q
1‖u − v‖q − γ1‖u − v‖q + µ2β

q
1‖u − v‖q − γ2‖u − v‖q

= −[(µ1α
q
1 − µ2β

q
1) + (γ1 + γ2)] ‖u − v‖q

0 ≤ (α − β) ‖u − v‖q ≤ −(µ1α
q
1 − µ2β

q
1) + (γ1 + γ2) ‖u − v‖q

0 ≤ −(` + ρκ) ‖u − v‖q ≤ 0,
where ` = (µ1α

q
1 − µ2β

q
1) + (γ1 + γ2) and κ = (α − β).

Since α > β, µ1 > µ2, α1 > β2 and γ1, γ2 > 0, it follows that ‖u − v‖ ≤ 0. This implies that u = v and so
(H((A,B), (C,D)) + ρM( f , 1))−1 is single-valued. �
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Definition 3.6. Let M be a αβ- H((., .), (., .))-mixed accretive mapping regarding (A,C), (B,D) and ( f , 1). If
assumptions (a1) and (a2) hold with α > β, µ1 > µ2, α1 > β1 and γ1, γ2 > 0, then the proximal-point mapping
RH((.,.),(.,.))
ρ, M(.,.) : E→ E is defined by

RH((.,.),(.,.))
ρ, M(.,.) (u) = (H((A,B), (C,D)) + ρM( f , 1))−1(u), ∀ u ∈ E. (7)

Now we prove that the proximal-point mapping defined by (7) is Lipschitz continuous.

Theorem 3.7. Let M : E × E( E be a αβ- H((., .), (., .))-mixed accretive mapping with respect to (A,C), (B,D) and
( f , 1). If assumptions (a1) and (a2) hold with α > β, µ1 > µ2, α1 > β1 and γ1, γ2 > 0, then the proximal-point
mapping RH((.,.),(.,.))

ρ, M(.,.) : E→ E is 1
`+ρκ -Lipschitz continuous, that is,

‖RH((.,.),(.,.))
ρ, M(.,.) (u) − RH((.,.),(.,.))

ρ, M(.,.) (v)‖ ≤
1

` + ρκ
‖u − v‖, ∀ u, v ∈ E.

Proof. For given points u, v ∈ E, It proceed from Definition 3.6 that

RH((.,.),(.,.))
ρ, M(.,.) (u) = (H((A,B), (C,D)) + ρM( f , 1))−1(u),

RH((.,.),(.,.))
ρ, M(.,.) (v) = (H((A,B), (C,D)) + ρM( f , 1))−1(v).

Let w1 = RH((.,.)(.,.))
ρ, M(.,.) (u) and w2 = RH((.,.)(.,.))

ρ, M(.,.) (v).

 1
ρ

(
u −H

((
A
(
w1

)
,B

(
w1

))
,
(
C
(
w1

)
, D

(
w1

))))
∈ M

(
f
(
w1

)
, 1

(
w1

))
1
ρ

(
v −H

((
A
(
w2

)
,B

(
w2

))
,
(
C
(
w2

)
, D

(
w2

))))
∈ M

(
f
(
w2

)
, 1

(
w2

))
.

Since M is αβ-symmetric accretive with respect to f and 1, we have
〈

1
ρ (u −H((A(w1),B(w1)), (C(w1), D(w1))) − (v −H((A(w2),B(w2)), (C(w2), D(w2))))), Jq(w1 − w2)〉

≥ (α − β) ‖w1 − w2‖
q,

〈
1
ρ (u − v −H((A(w1),B(w1)), (C(w1), D(w1)))) + H((A(w2),B(w2)), (C(w2), D(w2))), Jq(w1 − w2)〉

≥ (α − β) ‖w1 − w2‖
q,

which implies

〈u − v, Jq(w1 − w2)〉 ≥ 〈H((A(w1),B(w1)), (C(w1),D(w1))) −H((A(w2),B(w2)), (C(w2), D(w2))), Jq(w1 − w2)〉
+ ρ(α − β) ‖w1 − w2‖

q.

Now, we have

‖u − v‖ ‖w1 − w2‖
q−1

≥ 〈u − v, w1 − w2〉

≥ 〈H((A(w1),B(w1)), (C(w1),D(w1))) −H((A(w2),B(w2)), (C(w2),D(w2))), Jq(w1 − w2)〉 + ρ(α − β) ‖w1 − w2‖
q

= 〈H((A(w1),B(w1)), (C(w1),D(w1))) −H((A(w2),B(w1)), (C(w2),D(w1))), Jq(w1 − w2)〉
+ 〈H((A(w2),B(w1)), (C(w2),D(w1))) −H((A(w2),B(w2)), (C(w2),D(w2))), Jq(w1 − w2)〉 + ρ(α − β) ‖w1 − w2‖

q.

Since assumption (a1) holds, we have

‖u − v‖ ‖w1 − w1‖
q−1
≥ µ1‖A(w1) − A(w2)‖q + γ1‖w1 − w2‖

q
− µ2‖B(w1) − B(w2)‖q + γ2‖w1 − w2‖

q

+ρ(α − β) ‖w1 − w2‖
q.
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Since assumption (a2) holds, we have

‖u − v‖ ‖w1 − w2‖
q−1
≥ [(µ1α

q
1 − µ2β

q
1) + (γ1 + γ2)] ‖w1 − w2‖

q + ρ(α − β) ‖w1 − w2‖
q

≥ (` + ρκ) ‖w1 − w2‖
q,

where ` = (µ1α
q
1 − µ2β

q
1) + (γ1 + γ2) and κ = (α − β).

Hence,

‖u − v‖ ‖w1 − w2‖
q−1
≥ (` + ρκ) ‖w1 − w2‖

q,

that is

‖RH((.,.),(.,.))
ρ, M(.,.) (u) − RH((.,.),(.,.))

ρ, M(.,.) (v)‖ ≤
1

` + ρκ
‖u − v‖, ∀ u, v ∈ E.

This completes the proof. �

4. An Application of αβ-H((., .), (., .))-Mixed Accretive Mappings.

Here we shall show that the αβ-H((., .), (., .))-mixed accretive mapping under acceptable assumptions
can be used as a powerful tool to solve variational inclusion problem in Banach space.

Let S,T : E( CB(E) be the set-valued mappings, and let f , 1 : E→ E, A,B,C,D : E→ E, F : E × E→ E and
H : (E × E) × (E × E) → E be single-valued mappings. Suppose that set-valued mapping M : E × E ( E
be a αβ- H((., .), (., .))-mixed accretive mapping regarding (A,C), (B,D) and ( f , 1). We consider the following
generalized set-valued variational inclusion: for given λ ∈ E, find u ∈ E, v ∈ S(u) and w ∈ T(u) such that

λ ∈ F(v,w) + M( f (u), 1(u)). (8)

If S,T : E → E be single-valued mappings and M(., .) = ρN(.), where ρ > 0 is a constant, then the problem
(8) reduces to the following problem: find u ∈ E such that

λ ∈ F(S(u),T(u)) + ρN(u). (9)

If M is an (A, η)-accretive mapping, then the problem (9) was introduced and studied by Lan et al. [17].

If ρ = 1, λ = 0 and F(S(u),T(u)) = T(u) for all u ∈ E, where T : E → E is a single-valued mapping, then the
problem (9) reduces to the following problem: find u ∈ E such that

0 ∈ T(u) + N(u). (10)

If N is an H(., .)-accretive mapping, then the problem (10) was studied by Zou and Huang [24]; and N is a
generalized m-accretive mapping, then the problem (10) was studied by Bi et al. [4].

If E is a Hilbert space and N is an H-monotone mappings, then the problem (10) was introduced and stud-
ied by Fang and Huang [5] and includes many variational inequalities (inclusions) and complementarity
problems as special cases. For example, see [20, 21].

Lemma 4.1. Let u ∈ E, v ∈ S(u) and w ∈ T(u) is a solution of problem (8) if and only if u ∈ E, v ∈ S(u) and w ∈ T(u)
satisfies the following relation:

u = RH((.,.),(.,.))
ρ,M(.,.) [H((Au,Bu), (Cu,Du)) − ρF(v,w) + ρλ], ρ > 0. (11)
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Proof. Observe that for ρ > 0,

λ ∈ F(w, v) + M( f (u), 1(u))
⇔ [H((Au,Bu), (Cu,Du)) − ρF(v,w) + ρλ] ∈ H((Au,Bu), (Cu,Du)) + ρM( f (u), 1(u))
⇔ [H((Au,Bu), (Cu,Du)) − ρF(v,w) + ρλ] ∈ (H((A,B), (C,D)) + ρM( f , 1))u
⇔ u = (H((A,B), (C,D)) + ρM( f , 1))−1[H((Au,Bu), (Cu,Du)) − ρF(v,w) + ρλ]

⇔ u = R(H(.,.),(.,.))
ρ M(.,.) [H((Au,Bu), (Cu,Du)) − ρF(v,w) + ρλ]. �

Remark 4.2. We can rewrite the equality (11) as:

z = H((Au,Bu), (Cu,Du)) − ρF(v,w) + ρλ, u = RH((.,.),(.,.))
ρ, M(.,.) (z).

By using the result of Nadler [19], this fixed point formulation allow us to construct the iterative algorithm
as given below:

Algorithm 4.3. For any given z0 ∈ E, we can choose u0 ∈ E such that sequences {un}, {vn} and {wn} satisfy

un = RH((.,.),(.,.))
ρ, M(.,.) (zn),

vn ∈ S(un), ‖vn − vn+1 ‖ ≤
(
1 + 1

n+1

)
D(S(un),S(un+1)),

wn ∈ T(un), ‖wn − wn+1‖ ≤
(
1 + 1

n+1

)
D(T(un),T(un+1)),

zn+1 = H((Aun,Bun), (Cun,Dun)) − ρF(vn,wn) + ρλ + en,
∞∑
j=1
‖e j − e j−1‖ $− j < ∞, ∀ $ ∈ (0, 1), limn→∞en = 0,

where ρ > 0 is a constant, λ ∈ E is any given element and en ⊂ E is an error to take into account a possible
inexact computation of the proximal-point mapping point for all n ≥ 0, and D(., .) is the Hausdorff metric
on CB(E).

Next, we need the following definitions which will be used to state and prove the main result.

Definition 4.4. A set-valued mapping G : E ( CB(E) is said to be D-Lipschitz continuous with constant
l > 0, if

D(Gx,Gy) ≤ l ‖x − y‖, ∀x, y ∈ E.

Definition 4.5. Let S,T : E ( E be the set-valued mappings, A,B,C,D : E → E, F : E × E → E and
H : (E × E) × (E × E)→ E be single-valued mappings. Then

(i) F is said to be σ-strongly accretive regarding S and H((A,B), (C,D)) in the first component with constant
σ > 0, if

〈F(v1, .) − F(v2, .), Jq(H((Au,Bu), (Cu,Du)) −H((Av,Bv), (Cv,Dv)))〉
≥ σ ‖H((Au,Bu), (Cu,Du)) −H((Av,Bv), (Cv,Dv))‖q,
∀ u, v ∈ E and v1 ∈ S(u), v2 ∈ S(v);

(ii) F is said to be δ-strongly accretive regarding T and H((A,B), (C,D)) in the second component with δ > 0, if

〈F(.,w1) − F(.,w2), Jq(H((Au,Bu), (Cu,Du)) −H((Av,Bv), (Cv,Dv)))〉
≥ δ ‖H((Au,Bu), (Cu,Du)) −H((Av,Bv), (Cv,Dv))‖q,
∀ u, v ∈ E and w1 ∈ T(u), w2 ∈ T(v);
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(iii) F is said to be ε1-Lipschitz continuous in the first component with ε1 > 0, if

‖F(u, v′) − F(v, v′)‖ ≤ ε1 ‖u − v‖, ∀u, v, v′ ∈ E;

(iv) F is said to be ε2-Lipschitz continuous in the second component with ε2 > 0, if

‖F(v′,u) − F(v′, v)‖ ≤ ε2 ‖u − v‖, ∀u, v, v′ ∈ E.

Next, we find the convergence of iterative algorithm for generalized set-valued variational inclusion (8).

Theorem 4.6. Let us consider the problem (8) and assume that

(i) S and T are l1 and l2 D-Lipschitz continuous, respectively;

(ii) H((A,B), (C,D)) is τ-mixed Lipschitz continuous regarding A,B,C and D;

(iii) F is is σ-strongly accretive regarding S and H((A,B), (C,D)) in the first component and δ-strongly accretive
regarding T and H((A,B), (C,D)) in the second component;

(iv) F is is ε1, ε2-Lipschitz continuous in the first and second component, respectively;

(v) 0 < q
√
τq + cqρq(ε1l1 + ε2l2)q − ρq(σ + δ)τq < ` + ρκ; (12)

where ` = (µ1α
q
1 − µ2β

q
1) + (γ1 + γ2) and κ = α − β, and α > β, µ1 > µ2, α1 > β1 and γ1, γ2, ρ > 0 .

Then problem (8) has a solution (u, v,w), where u ∈ E, v ∈ S(u) and w ∈ T(u), and the iterative sequences {un}, {vn}

and {wn}, generated by Algorithms 4.3 converges strongly to u, v and w, respectively.

Proof. Using the Lipschitz continuity of S and T, it follows from Algorithms 4.3 such that

‖vn+1 − vn‖ ≤

(
1 +

1
n + 1

)
D(S(un+1),S(un)) ≤

(
1 +

1
n + 1

)
l1 ‖un+1 − un‖, (13)

‖wn+1 − wn‖ ≤

(
1 +

1
n + 1

)
D(T(un+1),T(un)) ≤

(
1 +

1
n + 1

)
l2 ‖un+1 − un‖, (14)

for n = 0, 1, 2, ....
From (11) and Theorem 3.7, we have

‖un+1 − un‖ ≤ ‖R
H((.,.),(.,.))
ρ, M(.,.) (zn+1) − RH((.,.),(.,.))

ρ, M(.,.) (zn)‖ =
1

` + ρκ
‖zn+1 − zn‖. (15)

Now, we estimate ‖zn+1 − zn‖ by using Algorithms 4.3, we have

‖zn+1 − zn‖ = ‖[H((Aun,Bun), (Cun,un)) − ρF(vn,wn) + ρλ + en]
− [H((Aun−1,Bun−1), (Cun−1,un−1)) − ρF(vn−1,wn−1) + ρλ + en−1]‖

≤ ‖H((Aun,Bun), (Cun,un)) −H((Aun−1,Bun−1), (Cun−1,un−1))

+ (ρF(vn,wn) − ρF(vn−1,wn−1)‖ + ‖en − en−1‖. (16)

By Lemma 2.4, we have

‖H((Aun,Bun), (Cun,Dun)) −H((Aun−1,Bun−1), (Cun−1,Dun−1)) − ρ(F(vn,wn) − F(vn−1,wn−1)‖q

≤ ‖H((Aun,Bun), (Cun,Dun)) −H((Aun−1,Bun−1), (Cun−1,Dun−1))‖q + cqρ
q
‖F(vn,wn) − F(vn−1,wn−1)‖q

− ρq〈F(vn,wn) − F(vn−1,wn−1), Jq(H((Aun,Bun), (Cun,Dun)) −H((Aun−1,Bun−1), (Cun−1,Dun−1)))〉.

(17)

From (ii), we get

‖H((Aun,Bun), (Cun,Dun)) −H((Aun−1,Bun−1), (Cun−1,Dun−1))‖ ≤ τ ‖un − un−1‖. (18)
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By Algorithm 4.3, and conditions (i) and (iv), we get

‖F(vn,wn) − F(vn−1,wn−1)‖ ≤ ‖F(vn,wn) − F(vn−1,wn)‖ + ‖F(vn−1,wn) − F(vn−1,wn−1)‖
≤ ε1‖vn − vn−1‖ + ε2‖wn − wn−1‖

≤ ε1

(
1 +

1
n

)
D(S(un),S(un−1)) + ε2

(
1 +

1
n

)
D(T(un),T(un−1))

≤

(
ε1l1

(
1 +

1
n

)
+ ε2l2

(
1 +

1
n

))
‖un − un−1‖. (19)

Using conditions (iii), we get

〈F(vn,wn) − F(vn−1,wn−1), Jq(H((Aun,Bun), (Cun,Dun)) −H((Aun−1,Bun−1), (Cun−1,Dun−1)))〉
≤ 〈F(vn,wn) − F(vn−1,wn), Jq(H((Aun,Bun), (Cun,Dun)) −H((Aun−1,Bun−1), (Cun−1,Dun−1)))〉

+ 〈F(vn−1,wn) − F(vn−1,wn−1), Jq(H((Aun,Bun), (Cun,Dun)) −H((Aun−1,Bun−1), (Cun−1,Dun−1)))〉
≤ (σ + δ) ‖H((Aun,Bun), (Cun,Dun)) −H((Aun−1,Bun−1), (Cun−1,Dun−1))‖q

≤ (σ + δ)τq
‖un − un−1‖

q. (20)

From (17)-(19), we have

‖H((Aun,Bun), (Cun,Dun)) −H((Aun−1,Bun−1), (Cun−1,Dun−1)) − ρ(F(vn,wn) − F(vn−1,wn−1)‖

≤
q

√
τq + cqρq

(
εl1

(
1 +

1
n

)
+ ε2l2

(
1 +

1
n

))q

− ρq(σ + δ)τq ‖un − un−1‖. (21)

Combining (15), (16) and (21), we have

‖un+1 − un‖ ≤ ‖R
H((.,.),(.,.))
ρ, M(.,.) (zn+1) − RH((.,.),(.,.))

ρ, M(.,.) (zn)‖ ≤ ϕn ‖un − un−1‖ +
1

` + ρκ
‖en − en−1‖, (22)

where

ϕn =
1

` + ρκ
q

√
τq + cqρq

(
ε1l1

(
1 +

1
n

)
+ ε2l2

(
1 +

1
n

))q

− ρq(σ + δ)τq. (23)

Let

ϕ =
1

` + ρκ
q
√
τq + cqρq(ε1l1 + ε2l2)q − ρq(σ + δ)τq. (24)

Since ϕn → ϕ as n→ ∞. By (12), we know that 0 < ϕ < 1 and hence there exist n0 > 0 and ϕ0 ∈ (0, 1) such
that ϕn ≤ ϕ0 for all n ≥ n0. Therefore, by (22), we have

‖un+1 − un‖ ≤ ϕ0 ‖un − un−1‖ +
1

` + ρκ
‖en − en−1‖ ∀ n ≥ n0. (25)

(25) implies that

‖un+1 − un‖ ≤ ϕn−n0
0 ‖un0+1 − un0‖ +

1
` + ρκ

n−n0∑
j=1

ϕ j−1
0 tn−(n−1), (26)

where tn = ‖en − en−1‖ for all n ≥ n0. Hence, for any m ≥ n > n0, we have

‖um − un‖ ≤

m−1∑
p=n

‖up+1 − up‖ ≤

m−1∑
p=n

ϕp−n0

0 ‖un0+1 − un0‖ +
1

` + ρκ

m−1∑
p=n

ϕp
0

p−n0∑
j=1

 tp−( j−1)

ϕp−( j−1)
0

 . (27)
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Since
∞∑
j=1
‖e j − e j−1‖ $− j < ∞, ∀ $ ∈ (0, 1) and 0 < ϕ0 < 1, it follows that ‖um − un‖ → 0 as n → ∞, and so

{un} is a Cauchy sequence in E. From (13) and (14), it follows that {vn} and {wn} are also Cauchy sequences
in E. Thus, there exist u, v and w such that un → u, vn → v and wn → w as n → ∞. In the sequel, we will
prove that v ∈ S(u). In fact, since vn ∈ S(un), we have

d(v, S(u)) ≤ ‖v − vn‖ + d(vn, S(u))
≤ ‖v − vn‖ + D(S(un), S(u))
≤ ‖v − vn‖ + ρ ‖un − u‖ → 0, as n→∞,

which implies that d(v, S(u)) = 0. Since S(u) ∈ CB(E), it follows that v ∈ S(u). Similarly, it is easy to see that
w ∈ T(u).

By the continuity of RH((.,.),(.,.))
ρ, M(.,.) , A, B, C, D, S, T and F and Algorithms 4.3, we know that u, v and w satisfy

u = RH((.,.),(.,.))
ρ,M(.,.) [H((Au,Bu), (Cu,Du)) − ρF(u, z) + ρλ].

By Lemma 4.1, (u, v,w) is a solution of the problem (8). This completes the proof �

The following example shows that assumptions (i) to (v) of Theorem 4.6 are satisfied for variational
inclusion problem (8).

Example 4.7. Let q = 2 and E = R2 with usual inner product.

(i) Let S,T : R2 ( R2 are identity mappings, then R,S are n-Lipschitz continuous for n = 1, 2.

Let A,B,C,D : R2
→ R2 be defined by

Ax =

( 1
10 x1

1
10 x2

)
, Bx =

(
−

1
5 x1

−
1
5 x2

)
, Cx =

(
2x1

2x2

)
, Dx =

(
x1

x2

)
, ∀ x = (x1, x2) ∈ R2.

Suppose that H : (R2
×R2) × (R2

×R2)→ R2 is defined by

H((Ax,By), (Cx,Dy)) = Ax + Bx + Cx + Dx, ∀ x ∈ R2.

Then, it is easy to cheek that

H((., .), (., .)) is (10, 2)-strongly mixed cocoercive regarding (A,C) and (5, 1)-relaxed mixed cocoercive regard-
ing (B,D), and A is 1

n -expansive for n = 10, 11 and B is 1
n -Lipschitz continuous for n = 4, 5.

(ii) H((A,B), (C,D)) is 29
n -mixed Lipschitz continuous regarding A,B,C and D for n = 9, 10.

Let f , 1 : R2
→ R2 be defined by

f (x) =

( 1
2 x1 −

4
3 x2

4
3 x1 + 1

2 x2

)
, 1(x) =

( 1
4 x1 −

3
4 x2

3
4 x1 + 1

4 x2

)
, ∀ x = (x1, x2),∈ R2.

Suppose that M : (R2
×R2)→ R2 is defined by

M( f x, 1x) = f x − 1x, ∀ x = (x1, x2),∈ R2.

Then, it is easy to check that M( f , 1) is 1
n -strongly accretive regarding f for n = 2, 3 and 1

n -relaxed accretive
regarding 1 for n = 3, 4. Moreover, for ρ = 1, M is αβ-H((., .), (., .))-mixed accretive regarding (A,C), (B,D)
and ( f , 1).
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Let F : R2
×R2

→ R2 are defined by

F(x, y) =
x
4

+
y
5
, ∀ x, y,∈ R2.

Then, it is easy to check that

(iii) F is is 29
n -strongly accretive regarding S and H((A,B), (C,D)) in the first component for n = 30, 40 and

29
n -strongly accretive with respect to T and H((A,B), (C,D)) in the second component for n = 40, 50;

(iv) F is is 1
n -Lipschitz continuous in the first component for n = 3, 4 and 1

n -Lipschitz continuous in the
second component for n = 4, 5.

Therefore, for the constants

l1 = l2 = 1, µ1 = 10, γ1 = 2, µ2 = 5, γ2 = 1, α1 = 0.1, β1 = 0.2,
α = 0.5, β = 0.25, σ = 0.725, δ = 0.580, ε1 = 0.25, ε2 = 0.2, τ = 2.9,
q = 2, ` = 2.9, κ = 0.25.

obtained in (i) to (v) above, all the conditions of the Theorem 4.7 is satisfied for the generalized mixed
variational inclusion problem (8) for ρ = 0.35 and cq = 1.
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