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Abstract. In this paper, we interest with deriving the sufficient and necessary conditions for optimal
solution of special classes of Programming. These classes involve generalized E-[0,1] convex functions.
Characterization of efficient solutions for E-[0,1] convex multi-objective Programming are obtained. Finally,
sufficient and necessary conditions for a feasible solution to be an efficient or properly efficient solution are
derived.

1. Introduction

The study of multi-objective Programming was very active in recent years. The weak minimum (weakly
efficient, weak Pareto) solution is an important concept in mathematical models, economics, decision theory,
optimal control and game theory (see, for example, [4, 12]). In most works, an assumption of convexity
was made for the objective functions. The extension of convexity is an area of active current research in the
field of optimization theory. Various relaxations of convexity were possible, and were called generalized
convex functions. The definition of generalized convex functions has occupied the attention of a number
of mathematicians, for an overview of generalized convex functions we refer to [3, 8]. A significant
generalization of convexity is the concept of E-[0,1] convexity [10]. E-[0,1] convexity depends on the effect
of an operator E on the range of the function and the closed unit interval [0.1]. Inspired and motivated by
above reasons, the purpose of this paper is to formulate the problems which involve generalized E-[0,1]
convex functions. The paper is organized as follows. In section 2, we define generalized E-[0,1] convex
functions, which are called pseudo E-[0,1] convex functions, and obtain sufficient and necessary conditions
for optimal solution of E-[0,1] convex Programming. In section 3, we consider the Mond-Weir type dual
problem and generalized its results under the E-[0,1] convexity assumption. In section 4, we formulate
the multi-objective programming which involves E-[0,1] convex functions. An efficient solution for the
considered problem is characterized by weighting, and ε-constraint approaches. At the end of this paper,
we obtain sufficient and necessary conditions for a feasible solution to be an efficient or properly efficient
solution for problems involving generalized E-[0,1] convex functions. Let us survey, briefly, the definitions
and some results of E-[0,1] convexity.
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Definition 1.1. [10] A real valued function f : M ⊆ Rn
→ R is said to be E-[0,1] convex function on M, with respect

to E : R × [0, 1]→ R, if M is convex set and, for each x, y ∈M and λ1 , λ2 ∈ [0, 1], λ1 + λ2 = 1,

f (λ1x + λ2y) ≤ E( f (x), λ1) + E( f (y) , λ2).

If f (λ1x+λ2y) ≥ E( f (x), λ1)+E( f (y) , λ2),then f is called E-[0,1] concave function on M. If the inequality
signs in the previous two inequalities are strict, then f is called strictly E-[0,1] convex and strictly E-[0,1]
concave, respectively.

Every E-[0,1] convex function, with respect to E : R× [0, 1]→ R is convex function if E( f (x), λ) = λ f (x).
Let E : R × [0, 1] → R be a mapping such that E(t, λ) = (1 + λ) t, t ∈ R, λ ∈ [0, 1], then the function h(x) =∑k

i=1 ai fi(x) is E-[0,1] convex on M f or ai ≥ 0, i = 1, 2, ..., k if the functions fi : Rn
→ R are all E-[0,1] convex

on a convex set M ⊆ Rn. Let E : R × [0, 1]→ R be a mapping such that E(t, λ) = min{λ t, t }, t ∈ R, λ ∈ [0, 1]
then a numerical function f : M ⊂ Rn

→ R+ defined on convex set M ⊆ Rn is E-[0,1] convex if and only
if its epi(f) is convex. Let B be an open convex subset of Rn and let E : R × [0, 1] → R be a mapping
such that E(t, λ) = min{λ, t }, t ∈ R, λ ∈ [0, 1], then f is continuous on B if f is E-[0,1] convex on B. If
f : Rn

→ R is a differentiable E-[0,1] convex function at y ∈ M with respect to E : R × [0, 1] → R such that
E(t, λ) = min{λ t, t }, t ∈ R, λ ∈ [0, 1], then, for each x ∈ M we have (x − y)∇ f (y) ≤ f (x) − f (y). For more
details about E-[0,1] convex functions, see[10].

Definition 1.2. [11] A real valued function f : M ⊆ Rn
→ R is said to be quasi E-[0,1] convex function on M, with

respect to E : R × [0, 1]→ R, if M is convex set and, for each x, y ∈M and λ1 , λ2 ∈ [0, 1], λ1 + λ2 = 1,

f (λ1x + λ2y) ≤ max{E( f (x), λ1),E( f (y) , λ2)}.

If f (λ1x + λ2y) ≥ min{E( f (x), λ1),E( f (y) , λ2)}, then f is called quasi E-[0,1] concave function on M. If the
inequality signs in the previous two inequalities are strict, then f is called strictly quasi E-[0,1] convex and
strictly quasi E-[0,1] concave respectively.

Every quasi E-[0,1] convex function, with respect to E : R × [0, 1]→ R is convex function if E( f (x), λ) =
λ f (x). Let E : R × [0, 1] → R be a mapping such that E( f (x), λ) = f (λx) for each x ∈ M, λ ∈ [0, 1], then
f (
∑n

i=1 λixi) ≤ max
1≤i≤n

E( f (xi), λi) for each xi ∈ M, λi ≥ 0,
∑n

i=1 λi = 1, if f : Rn
→ R is E-[0,1] convex on a

convex set M ⊆ Rn. Let E : R × [0, 1] → R be a mapping such that E(t, λ) = min{λ , t }, t ∈ R, λ ∈ [0, 1],
then the level set LE−[0,1]

α is convex set for each α ∈ R if f : Rn
→ R is quasi E-[0,1] convex on a convex

set M ⊆ Rn. Let E : R × [0, 1] → R be a mapping such that E(t, λ) = max{λ , t }, t ∈ R, λ ∈ [0, 1] and let
α = min

x
min
λ

E( f (x), λ), then the level set LE−[0,1]
α is convex set If and only if f is quasi E-[0,1] convex . If

f : Rn
→ R is a differentiable quasi E-[0,1] convex function at y ∈ M with respect to E : R × [0, 1]→ R such

that E(t, λ) = min{λ , t }, t ∈ R, λ ∈ [0, 1], then, for each x ∈ M we have (x − y)∇ f (y) ≤ 0. For more details
about quasi E-[0,1] convex functions, see [11].

2. E-[0,1] Convex Programming

In this section, we define generalized E-[0,1] convex functions, which are called pseudo strongly E-
convex functions, and obtain sufficient and necessary conditions for optimal solution for problems involving
generalized E-[0,1] convex functions.

Definition 2.1. A real valued function f : M ⊆ Rn
→ R is said to be pseudo E-[0,1] convex function on a convex

set M ⊆ Rn if there exists a strictly positive function b : Rn
× Rn

→ R such that

E( f (x), λ1) < E( f (y) , λ2)⇒ f (λ1x + λ2y) ≤ E( f (y) , λ2) − λ1λ2b(x, y),

for all x, y ∈M and λ1 , λ2 ∈ [0, 1], λ1 + λ2 = 1.



T. Emam / Filomat 31:3 (2017), 529–541 531

Remark 2.2. Every pseudo E-[0,1] convex function with respect to E : R × [0, 1] → R is convex function if
E(t, λ) = min{ t, λ}, t ∈ R, λ ∈ [0, 1].

Proposition 2.3. Let E : R × [0, 1] → R be a map such that E(t, λ) = max{ t, λ}, t ∈ R, λ ∈ [0, 1]. A convex
function f : Rn

→ R on a convex set M ⊆ Rn, is pseudo E-[0,1] convex function on M.

Proof. Let E( f (x), λ1) < E( f (y) , λ2). Since f is a convex function on a convex set M ⊆ Rn, then for all
x, y ∈M and λ1 , λ2 ∈ [0, 1], λ1 + λ2 = 1, we have

f (λ1x + λ2y) ≤ λ1 f (x) + λ2 f (y) ≤ λ1E( f (x), λ1) + λ2E( f (y) , λ2).

That is

f (λ1x + λ2y) ≤ E( f (y) , λ2) + λ1[E( f (x) , λ1) − E( f (y) , λ2)]
≤ E( f (y) , λ2) + λ1λ2[E( f (x) , λ1) − E( f (y) , λ2)]
= E( f (y) , λ2) − λ1λ2[E( f (y) , λ2) − E( f (x) , λ1)]
= E( f (y) , λ2) − λ1λ2b(x, y),

since b(x, y) = E( f (y) , λ2) − E( f (x) , λ1) > 0. The required result.

Theorem 2.4. Let E : R × [0, 1] → R be a map such that E(t, λ) = min{ t, λ}, t ∈ R, λ ∈ [0, 1] and M ⊆ Rn be a
convex set. If f : Rn

→ R is a differentiable pseudo E-[0,1] convex function at y ∈ M, then (x − y)∇ f (y) < 0, for
each x ∈M.

Proof. Since f : Rn
→ R be a differentiable pseudo E-[0,1] convex function at y ∈M, then

E( f (x), λ1) < E( f (y) , λ2)

⇒ f (λ1x + λ2y) ≤ E( f (y) , λ2) − λ1λ2b(x, y) ≤ f (y) − λ1λ2b(x, y),

for each x ∈M and λ1 , λ2 ∈ [0, 1], λ1 + λ2 = 1. That is

E( f (x), λ1) < E( f (y) , λ2)

⇒ f (y + λ1(x − y)) ≤ f (y) − λ1λ2b(x, y)

⇒ f (y) + λ1(x − y)∇ f (y) + O(λ2
1) ≤ f (y) − λ1λ2b(x, y)

Dividing the above inequality by λ1 > 0 and letting λ1 → 0, we get

(x − y)∇ f (y) ≤ −b(x, y) < 0,

for each x ∈M.

Remark 2.5. Let E : R × [0, 1] → R be a map such that E(t, λ) = min{t, λ}, t ∈ R, λ ∈ [0, 1] and M ⊆ Rn be a
convex set. If f : Rn

→ R is a differentiable pseudo E-[0,1] convex function at y ∈ M, then (x − y)∇ f (y) ≥ 0 ⇒
E( f (x), λ1) ≥ E( f (y) , λ2), for each x ∈M and λ1 , λ2 ∈ [0, 1], λ1 + λ2 = 1.

Lemma 2.6. Let E : R × [0, 1]→ R be a mapping such that E(t, λ) = λmin{t, λ}, t ∈ R, λ ∈ [0, 1]. If 1i : Rn
→ R

is an E-[0,1] convex function on Rn, i = 1, 2, ...,m, then the set M = {x ∈ Rn : 1i(x) ≤ 0, i = 1, 2, ...,m} is convex set.

Proof. Since 1i(x), i = 1, 2, ...,m are E-[0,1] convex functions with respect to E(t, λ) = λmin{ t, λ}, then, for
each x, y ∈M and λ1 , λ2 ∈ [0, 1], λ1 + λ2 = 1,

1i(λ1x + λ2y) ≤ E(1i(x), λ1) + E(1i(y) , λ2)
= λ1 min{1i(x), λ1} + λ2 min{1i(y), λ2}

≤ λ11i(x) + λ21i(y) ≤ 0, i = 1, 2, ...,m,

hence λ1x + λ2y ∈M for all λ1 , λ2 ∈ [0, 1], λ1 + λ2 = 1. This means that M is convex set.
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Lemma 2.7. Let E : R× [0, 1]→ R be a mapping such that E(t, λ) = min{ t, λ}, t ∈ R, λ ∈ [0, 1]. If 1i : Rn
→ R is a

quasi E-[0,1] convex function on Rn, i = 1, 2, ...,m, then the set M = {x ∈ Rn : 1i(x) ≤ 0, i = 1, 2, ...,m} is convex set.

Proof. Since 1i(x), i = 1, 2, ...,m are quasi E-[0,1] convex functions with respect to E(t, λ) = min{ t, λ}, then,
for each x, y ∈M and λ1 , λ2 ∈ [0, 1], λ1 + λ2 = 1,

1i(λ1x + λ2y) ≤ max[E(1i(x), λ1),E(1i(y) , λ2)]
≤ max[1i(x), 1i(y)]
≤ 0, i = 1, 2, ...,m,

hence λ1x + λ2y ∈M for all λ1 , λ2 ∈ [0, 1], λ1 + λ2 = 1. This means that M is convex set.
Now, we discuss the necessary and sufficient conditions for a feasible solution to be an optimal solution

for E-[0,1] convex Programming. Consider the following E-[0,1] convex programming

(P̄)
Min f (x),
subiect to
x ∈M = {x ∈ Rn : 1i(x) ≤ 0, i = 1, 2, ...,m}.

Where f : Rn
→ R and 1i : Rn

→ R, i = 1, 2, ...,m are E-[0,1] convex functions with respect to E : R×[0, 1]→ R.

Theorem 2.8. Let E : R × [0, 1]→ R be a mapping such that E(t, λ) = λmin{t, λ}, t ∈ R, λ ∈ [0, 1]. Suppose that
there exists a feasible solution x∗ for (P̄) and f , 1 are differentiable E-[0,1] convex functions with respect to the same E
at x∗. If there is u ∈ Rm and u ≥ 0 such that (x∗,u) satisfies the following conditions:

∇ f (x∗) + ∇uT1(x∗) = 0,
uT1(x∗) = 0, 1(x∗) ≤ 0, (1)

then x∗ is an optimal solution for problem (P̄).

Proof. For each x ∈M, we have

f (x) − f (x∗) ≥ (x − x∗)∇ f (x∗) = −(x − x∗)∇uT1(x∗)
≥ −uT(1(x) − 1(x∗)) = −uT1(x) ≥ 0,

where the above inequalities hold because f , 1 are E-[0,1] convex at x∗ with respect to the same E (see
Theorem (4.1) in [10]). Thus, x∗ is the minimizer of f (x) under the constraint 1(x) ≤ 0 which implies that x∗

is an optimal solution for problem (P̄).

Remark 2.9. [5] In Theorem (2.8) above, since u ≥ 0, 1(x∗) ≤ 0, and uT
∇1(x∗) = 0,we have that

ui1i(x∗) = 0, i = 1, 2, . . . ,m. (2)

If I(x∗) = {i : 1i(x∗) = 0} and J = {i : 1i(x∗) < 0}, then I
⋃

J = {1, 2, ...,m} and (2) gives that ui = 0 for i ∈ J. It is
obvious then, from the proof of Theorem (2.8), that E-[0,1] convexity of gI at x∗ is all that is needed instead of E-[0,1]
convexity of g at x∗ as was assumed in the theorem above.

Theorem 2.10. Let E : R × [0, 1] → R be a mapping such that E(t, λ) = min{t, λ}, t ∈ R, λ ∈ [0, 1]. Suppose that
there exists a feasible solution x∗ for (P̄), and scalars, ui ≥ 0, i ∈ I(x∗), such that (1) of Theorem (2.8) holds. If f
is pseudo E-[0,1] convex and 1I are quasi E-[0,1] convex at x∗ ∈ M. Then, E( f (x∗), λ2), λ2 ∈ [0, 1] is an optimal
solution in objective space of problem (P̄).

Proof. Since E(1I(x), λ1) ≤ E(1I(x∗), λ2) = 0,ui ≥ 0, λ1, λ2 ∈ [0, 1], λ1 + λ2 = 1, and 1I are quasi E-[0,1] convex
at x∗, we have

(x − x∗)
∑

i∈I(x∗)

ui[∇1i(x∗)]T
≤ 0,∀x ∈M, (3)
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by using the above inequality in (1) and pseudo E-[0,1] convexity of f at x∗, we obtain

(x − x∗)[∇ f (x∗)]T
≥ 0 ⇒ E( f (x), λ1) ≥ E( f (x∗), λ2) ⇒ f (x) ≥ E( f (x∗), λ2).

Hence, E( f (x∗), λ2) is an optimal solution in objective space of problem (P̄).
The next two theorems use the idea proposed by Mahajan and Vartak [6].

Theorem 2.11. Let E : R × [0, 1] → R be a mapping such that E(t, λ) = min{ t, λ}, t ∈ R, λ ∈ [0, 1]. Suppose
that there exists a feasible solution x∗ for (P̄) and scalars ui ≥ 0, i ∈ I(x∗) such that (1) of Theorem (2.8) holds. If
f is pseudo E-[0,1] convex, and uT

I 1I is quasi E-[0,1] convex at x∗ ∈ M, then E( f (x∗), λ2), λ2 ∈ [0, 1] is an optimal
solution in objective space of problem (P̄).

Proof. The proof of this theorem is similar to the proof of Theorem (2.10) except that the argument to get
the inequality (3) is as follows:

Since E(1I(x), λ1) ≤ E(1I(x∗), λ2), uI ≥ 0, λ1, λ2 ∈ [0, 1], λ1 + λ2 = 1, we obtain

uT
I E(1I(x), λ1) ≤ 0 = uT

I E(1I(x∗), λ2)

for all x ∈M. Quasi E-[0,1] convexity of uT
I 1I at x∗, yields

(x − x∗)∇(uT
I 1I(x∗)) ≤ 0, ∀ x ∈M.

We can proceed as in the above theorem to prove that E( f (x∗), λ2) is an optimal solution in objective space
of problem (P̄).

Theorem 2.12. Let E : R × [0, 1] → R be a mapping such that E(t, λ) = min{ t, λ}, t ∈ R, λ ∈ [0, 1]. Suppose that
there exists a feasible point x∗ for (P̄) and the numerical function f + uT

I 1I is pseudo E-[0,1] convex at x∗. If there
is scalars u ∈ Rm such that (x∗,u) satisfies the conditions (1) of Theorem (2.8), then E( f (x∗), λ2), λ2 ∈ [0, 1] is an
optimal solution in objective space of problem (P̄).

Proof. The proof of this theorem is similar to the proof of Theorem (2.11) except that the arguments are as
follows: (1) can be written as

∇ f (x∗) + ∇(uT
I 1I(x∗)) = 0.

This can be rewritten in the form

(x − x∗)∇(( f + uT
I 1I)(x∗)) ≤ 0,∀x ∈M,

which gives that

E(( f + uT
I 1I)(x∗), λ2) ≤ E(( f + uT

I 1I)(x), λ1),∀x ∈M,

because, f + uT
I 1I is pseudo E-[0,1] convex at x∗, i.e.,

E(( f + uT
I 1I)(x∗), λ2) ≤ f (x) + (uT

I 1I)(x), ∀x ∈M.

It follows, by using the definition of I, that

E( f (x∗), λ2) ≤ f (x),∀x ∈M.

Hence, E( f (x∗), λ2) is an optimal solution in objective space of problem (P̄).

Theorem 2.13. (necessary optimality criteria) Let E : R × [0, 1]→ R be a mapping such that E(t, λ) = λmin{t, λ},
t ∈ R, λ ∈ [0, 1]. Assume that x∗ is an optimal solution for problem (P̄) and there exist a feasible point x for (P̄) such
that 1i(x) < 0, i = 1, 2, ...,m. If 1i, i ∈ I(x∗) is E-[0,1] convex at x∗ ∈ M, then there exists scalars ui ≥ 0, i ∈ I(x∗)
such that (x∗,ui) satisfies

∇ f (x∗) +
∑

i∈I(x∗)

ui∇1i(x∗) = 0. (4)
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Proof. If we can show that

(x − x∗)∇1I(x∗) ≤ 0⇒ (x − x∗)∇ f (x∗) ≥ 0. (5)

The result will follow as in [1] by applying Farkas’ Lemma. Assume (5) does not hold, i.e, there exists x ∈ Rn

such that

(x − x∗)∇1I(x∗) ≤ 0⇒ (x − x∗)∇ f (x∗) < 0. (6)

Since by the assumed Slater-type condition,

1i(x̃) − 1i(x∗) < 0, i ∈ I(x∗),

and from E-[0,1] convexity of 1i at x∗,we get

(x̃ − x∗)T
∇1i(x∗) < 0, i ∈ I(x∗). (7)

Therefore from (6) and (7)

[(x − x∗) + ρ(x̃ − x∗)]T
∇1i(x∗) < 0, i ∈ I(x∗), ∀ρ > 0.

Hence for some positive β small enough

1i(x∗ + β[(x − x∗) + ρ(x̃ − x∗)]) < 1i(x∗) = 0, i ∈ I(x∗).

Similarly, for i < I(x∗), 1i(x∗) < 0 and for β > 0 small enough

1i(x∗ + β[(x − x∗) + ρ(x̃ − x∗)]) ≤ 0, i < I(x∗).

Thus, for β sufficiently small and all ρ > 0, x∗+β[(x−x∗)+ρ(x̃−x∗)]is feasible for problem (P̄). For sufficiently
small ρ > 0 (6) gives

f (x∗ + β[(x − x∗) + ρ(x̃ − x∗)]) < f (x∗), (8)

which contradicts the optimality of x∗ for (P̄). Hence, the system (6) has no solution. The result then follows
from an application of the Farkas Lemma, namely

∇ f (x∗) +
∑

i∈I(x∗)

ui∇1i(x∗) = 0, ui ≥ 0, i ∈ I(x∗).

3. Duality in E-[0,1] Convexity

We consider the Mond-Weir type dual and generalized its results under the E-[0,1] convexity assumptions.
Consider the following Mond-Weir type dual of problem (P̄).

(D̄)

max f (y),
subiect to
∇x f (y) + uT

∇x1(y) = 0,
uT
∇1(y) ≥ 0, u ≥ 0,

where f , 1 are differentiable functions defined on Rn. We now prove the following duality theorems relating
problem (P̄) and (D̄).

Theorem 3.1. (Weak Duality) Let E : R × [0, 1] → R be a map such that E(t, λ) = λmin{ t, λ}, t ∈ R, λ ∈ [0, 1]
and let that there exists a feasible solution x for (P̄) and (y,u) a feasible solution for (D̄). If f , 1 are E-[0,1] convex
functions at y, then y is an optimal solution for problem (P̄).
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Proof. Since f is E-[0,1] convex at y then

f (x) − f (y) ≥ (x − y)T
∇x f (y),

and by using (1) and E-[0,1] convexity of 1i ∀i at y, we have

f (x) − f (y) ≥ (x − y)T
∇x f (y) = −(x − y)TuT

∇1x(y)
≥ −uT(1(x) − 1(y)) = −uT1(x) ≥ 0,

Thus, f (x) ≥ f (y), for all x ∈M, which implies that y is the minimizer of f (x) under the constraint 1(x) ≤ 0.
Hence, y is an optimal solution for (P̄).

Theorem 3.2. (Strong Duality) Let E : R × [0, 1]→ R be a map such that E(t, λ) = λmin{ t, λ}, t ∈ R, λ ∈ [0, 1]
and let that x∗ be an optimal solutionfor (P̄) and let 1 satisfy the Kuhn-Tucker constraint qualification at x∗. Then,
there exists u∗ ∈ Rm such that (x∗,u∗) be a feasible solution for (D̄) and the (P̄)-objective at x∗ equal to the (D̄)-
objective at (x∗,u∗). If f , 1 are E-[0,1] convex functions at x∗ with respect to E : R × [0, 1] → R be a map such that
E(t, λ) = λmin{ t, λ}, t ∈ R, λ ∈ [0, 1], then (x∗,u∗) is an optimal solution for problem (D̄).

Proof. Since 1 satisfy the Kuhn-Tucker constraint qualification at x∗, then there exists u∗ ∈ Rm, such that the
following Kuhn-Tucker conditions are satisfied:

∇x f (x∗) + u∗t∇x1(x∗) = 0, (9)

u∗t1(x∗) = 0, (10)

1(x∗) ≤ 0, (11)

u∗ ≥ 0. (12)

Equations (9),(10), (11) yield that (x∗,u∗) is a feasible solution for (D̄). Also (10) yield that the (P̄)-objective
at x∗equal to the (D̄)-objective at (x∗,u∗). Now, if (x∗,u∗) is not optimal solution for problem (D̄), then there
exists a feasible solution for (D̄) (x̄, ū) such that f (x̄) > f (x∗). This contradicts Theorem (7). Hence (x∗,u∗) is
an optimal solution for problem (D̄).

4. E-[0,1] Convex Multi-Objective Programming

In this section, we formulate a multi-objective programming which it involves E-[0,1] convex functions.
An efficient solution for the considered problem is characterized by weighting, and ε-constraint approaches.
At the end of this section, we obtain sufficient and necessary conditions for a feasible solution to be
an efficient or properly efficient solution for this kind of problems. An E-[0,1] convex multi-objective
programming is formulated as follows:

(P)
Min f j(x),
subiect to
x ∈M = {x ∈ Rn : 1i(x) ≤ 0, i = 1, 2, ...,m},

where f j : Rn
→ R, j = 1, 2, ..., k, and 1i : Rn

→ R, i = 1, 2, ...,m are E-[0,1] convex functions with respect to
E : R × [0, 1]→ R.

Definition 4.1. [2] A feasible solution x∗ for (P) is said to be an efficient solution for (P) if and only if there is no
other feasible x for (P) such that, for some i ∈ {1, 2, ..., k},

fi(x) < fi(x∗), f j(x) ≤ f j(x∗), f or all j , i.

Definition 4.2. [2] An efficient solution x∗ ∈ M for (P) is a properly efficient solution for (P) if there exists a scalar
µ > 0 such that for each i, i = 1, 2, ..., k and each x ∈ M satisfying fi(x) < fi(x∗), there exists at least one j , i with
f j(x) > f j(x∗) and [ fi(x) − fi(x∗)]/[ f j(x∗) − f j(x)] ≤ µ.
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Lemma 4.3. Let E : R × [0, 1]→ R be a mapping such that E(t, λ) = λmin{t, λ}, t ∈ R, λ ∈ [0, 1]. If f : Rn
→ Rk

is an E-[0,1] convex function on a convex set M ⊆ Rn, then the set A =
⋃

x∈M
A(x) is convex set such that

A(x) = {z : z ∈ Rk, z > f (x) − f (x∗)}, x ∈M.

Proof. Let z1, z2
∈ A, then for all x1, x2

∈M and λ1, λ2 ∈ [0, 1], λ1 + λ2 = 1, we have

λ1z1 + λ2z2 > λ1[ f (x1) − f (x∗)] + λ2[ f (x2) − f (x∗)]
= λ1 f (x1) + λ2 f (x2) − f (x∗)
≥ λ1 min( f (x1), λ1) + λ2 min( f (x2) , λ2) − f (x∗)
= E( f (x1), λ1) + E( f (x2) , λ2) − f (x∗)
≥ f (λ1x1 + λ2x2) − f (x∗),

since f is E-[0,1] convex function on a convex set M. Then, λ1z1 + λ2z2
∈ A , and hence A is convex set.

4.1. Characterizing Efficient Solutions by Weighting Approach
To characterizing an efficient solution for problem (P) by weighting approach [2] let us scalar problem (P)
to become in the form.

(Pw) Min
k∑

j=1

w j f j(x), subiect to x ∈M,

where w j ≥ 0, j = 1, 2, ..., k,
∑k

j=1 w j = 1 and f j, j = 1, 2, ..., k are E-[0,1] convex functions with respect to
E : R × [0, 1]→ R such that E(t, λ) = λmin{ t, λ}, t ∈ R, λ ∈ [0, 1] on convex set M.

Theorem 4.4. If x̄ ∈ M is an efficient solution for problem (P), then there exist w j ≥ 0, j = 1, 2, ..., k,
∑k

j=1 w j = 1
such that x̄ is an optimal solution for problem (Pw).

Proof. Let x̄ ∈ M be an efficient solution for problem (P), then the system f j(x) − f j(x̄) < 0, j = 1, 2, ..., k
has no solution x ∈ M. Upon Lemma (4.3) and applying the generalized Gordan theorem [7], there exist
p j ≥ 0, j = 1, 2, ..., k such that p j[ f j(x) − f j(x̄)] ≥ 0, j = 1, 2, ..., k, and p j∑k

j=1 p j
f j(x) ≥ p j∑k

j=1 p j
f j(x̄).

Denote w j =
p j∑k
j=1 p j

, then w j ≥ 0, j = 1, 2, ..., k,
∑k

j=1 w j = 1, and
∑k

j=1 w j f j(x̄) ≤
∑k

j=1 w j f j(x). Hence x̄ is

an optimal solution for problem(Pw).

Theorem 4.5. If x̄ ∈M is an optimal solution for (Pw̄) corresponding to w̄ j , then x̄ is an efficient solution for problem
(P) if either one of the following two conditions holds:
(i) w̄ j > 0, ∀ j = 1, 2, ..., k; or (ii) x̄ is the unique solution of (Pw̄).

Proof. To proof see V. Chankong, Y. Y. Haimes [2].

4.2. Characterizing Efficient Solutions by ε-Constraint Approach
An ε-constraint approach is one of the common approaches for characterizing efficient solutions of multi-

objective Programming [2]. In the following we shall characterizing an efficient solution for multi-objective
E-[0,1] convex programming (P) in term of an optimal solution of the following scalar problem.

Pq(ε,E)
Min fq(x),
subiect to x ∈M,
f j(x) ≤ E(ε j, λ j), j = 1, 2, ..., k, j , q.

Where f j, j = 1, 2, ..., k are E-[0,1] convex functions with respect to E : R × [0, 1] → R such that E(t, λ) =
min{ t , λ }, t ∈ R, λ ∈ [0, 1] on convex set M.
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Theorem 4.6. If x̄ ∈ M is an efficient solution for problem (P), then x̄ is an optimal solution for problem Pq(ε̄, Ē )
and ε̄ j = f j(x̄).

Proof. Let x̄ be not optimal solution for Pq(ε̄, Ē ) where ε̄ j = f j(x̄), j = 1, 2, ..., k. So there exists x ∈ M such
that

fq(x) < fq(x̄),

f j(x) ≤ Ē(ε̄ j, λ̄ j) ≤ ε̄ j = f j(x̄), j = 1, 2, ..., k, j , q,

since Ē(ε̄ j, λ̄ j) = min(ε̄ j, λ̄ j) and convexity of M. This implies that the system f j(x) − f j(x̄) < 0 , j = 1, 2, ..., k
has a solution x ∈ M. Thus, x̄ is inefficient solution for problem (P) which is a contradiction. Hence is x̄ an
optimal solution for problem Pq(ε̄, Ē ).

Theorem 4.7. Let x̄ ∈ M be an optimal solution, for all q of Pq(ε̄, Ē ), where ε̄ j = f j( x̄), j = 1, 2, ..., k. Then x̄ is an
efficient solution for problem (P).

Proof. Since x̄ ∈ M is an optimal solution for Pq(ε̄, Ē), where ε̄ j = f j(x̄), j = 1, 2, ..., k, then, for each x ∈ M,
we get

fq( x̄) < fq( x),

f j(x) ≤ Ē(ε̄ j, λ̄ j) ≤ ε̄ j = f j(x̄), j = 1, 2, ..., k, j , q,

where Ē(ε̄ j, λ̄ j) = min(ε̄ j, λ̄ j). This implies the system f j(x) − f j(x̄) < 0, j = 1, 2, ..., k has no solution x ∈ M,
i.e. x̄ is an efficient solution for problem (P).

4.3. Sufficient and Necessary Conditions for Efficiency
In this section, we discuss the sufficient and necessary conditions for a feasible solution x∗ to be efficient

or properly efficient for problem (P) in the form of the following theorems.

Theorem 4.8. Let E : R × [0, 1]→ R be a mapping such that E(t, λ) = λmin{ t, λ}, t ∈ R, λ ∈ [0, 1]. Suppose that
there exist a feasible solution x∗ for (P) and scalars γi > 0, i = 1, 2, ..., k, ui ≥ 0, i ∈ I(x∗) such that

k∑
i=1

γi∇ fi(x∗) +
∑

i∈I(x∗)

ui∇1i(x∗) = 0. (13)

If fi, i = 1, 2, ..., k, and 1i , i ∈ I(x∗) are differentiable E-[0,1] convex functions at x∗ ∈ M, then x∗ is a properly
efficient solution for problem (P).

Proof. Since fi, i = 1, 2, ..., k, and 1i, i ∈ I(x∗) are differentiable E-[0,1] convex functions at x∗ ∈M, so for any
x ∈M, we have

k∑
i=1

γi fi(x) −
k∑

i=1

γi fi(x∗) ≥ (x − x∗)
k∑

i=1

γi[∇ fi(x∗)]T

= −(x − x∗)
∑

i∈I(x∗)

ui[∇1i(x∗)]T

≥

k∑
i∈I(x∗)

ui1i(x∗) −
k∑

i∈I(x∗)

ui1i(x)

= −

∑
i∈I(x∗)

ui1i(x) ≥ 0.

Thus,
∑k

i=1 γi fi(x) ≥
∑k

i=1 γi fi(x∗), for all x ∈ M, which implies that x∗ is the minimizer of
∑k

i=1 γi fi(x) under
the constraint 1(x) ≤ 0.Hence, from Theorem (4.11) of [2], x∗ is a properly efficient solution for problem (P).
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Theorem 4.9. Let E : R × [0, 1]→ R be a mapping such that E(t, λ) = λmin{t, λ}, t ∈ R, λ ∈ [0, 1]. Suppose that
there exist a feasible solution x∗ for (P) and scalars γi ≥ 0, i = 1, 2, ..., k,

∑k
i=1 γi = 1, ui ≥ 0, i ∈ I(x∗), such that the

triplet (x∗, γi,ui) satisfies (13) of Theorem (4.8). If
∑k

i=1 γi fi is strictly E-[0,1] convex, and 1I is E-[0,1] convex at
x∗ ∈M, then x∗ is an efficient solution for problem (P).

Proof. Suppose that x∗ is not an efficient solution for (P),then, there exists a feasible x ∈M, and index r such
that

fr(x) < fr(x∗),
fi(x) ≤ fi(x∗), f or all i , r.

Since
∑k

i=1 γi fi is strictly E-[0,1] convex at x∗, then the previous two inequalities lead to

0 ≥
k∑

i=1

γi fi(x) −
k∑

i=1

γi fi(x∗) ⇒ 0 > (x − x∗)
k∑

i=1

γi[∇ fi(x∗)]T. (14)

Also, E-[0,1] convexity of 1i, i ∈ I(x∗) at x∗ implies

(x − x∗)∇1i(x∗) ≤ 1i(x) − 1i(x∗) ⇒ (x − x∗)∇1i(x∗) ≤ 0, i ∈ I(x∗),

and, for ui ≥ 0, i ∈ I(x∗), we get

(x − x∗)
∑

i∈I(x∗)

ui[∇1i(x∗)]T
≤ 0. (15)

Adding (14) and (15), contradicts (13). Hence, x∗ is an efficient solution for problem (P).

Remark 4.10. Similarly as in Theorem (4.8), it can be easily seen that x∗ becomes properly efficient solution for (P),
in the above theorem, if γi > 0, f or all i = 1, 2, ..., k.

Theorem 4.11. Let E : R × [0, 1] → R be a mapping such that E(t, λ) = min{t, λ}, t ∈ R, λ ∈ [0, 1]. Suppose
that there exists a feasible solution x∗ for (P) and scalars γi > 0, i = 1, 2, ..., k, ui ≥ 0, i ∈ I(x∗), such that (13)
of Theorem (4.8) holds. If

∑k
i=1 γi fi is pseudo E-[0,1] convex, and 1I are quasi E-[0,1] convex at x∗ ∈ M, then

E( f (x∗), λ2), λ2 ∈ [0, 1] is a properly nondominated solution in objective space of problem (P).

Proof. Since E(1I(x), λ1) ≤ E(1I(x∗), λ2) = 0, λ1, λ2 ∈ [0, 1], λ1 + λ2 = 1, and from quasi E-[0,1] convex of
1I at x∗, uI ≥ 0, we get

(x − x∗)
∑

i∈I(x∗)

ui[∇1i(x∗)]T
≤ 0,∀x ∈M,

by using the above inequality in (13), and from pseudo E-[0,1] convexity of
∑k

i=1 γi fi at x∗, we get

(x − x∗)
k∑

i=1

γi[∇ fi(x∗)]T
≥ 0 ⇒

k∑
i=1

γiE( fi(x), λ1) ≥
k∑

i=1

γiE( fi(x∗), λ2).

⇒

k∑
i=1

γi fi(x) ≥
k∑

i=1

γiE( fi(x∗), λ2)

Hence, E( f (x∗), λ2) is a properly nondominated solution in objective space of problem (P).

Theorem 4.12. Let E : R × [0, 1]→ R be a mapping such that E(t, λ) = min{t, λ}, t ∈ R, λ ∈ [0, 1]. Suppose that
there exists a feasible solution x∗ for (P) and scalars γi ≥ 0, i = 1, 2, ..., k,

∑k
i=1 γi = 1, ui ≥ 0, i ∈ I(x∗), such that (13)

of Theorem (4.8) holds. If
∑k

i=1 γi fi is strictly pseudo E-[0,1] convex and 1I is quasi E-[0,1] convex at x∗ ∈ M, then
E( f (x∗), λ2), λ2 ∈ [0, 1] is a nondominated solution in objective space of problem (P).
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Proof. Suppose that E( f (x∗), λ2) is dominated solution for (P),then, there exist a feasible x for (P), and index
r such that

fr(x) < E( fr(x∗), λ2), fi(x) ≤ E( fi(x∗), λ2), f or all i , r.

Since E(t, λ1) = min{ t, λ1}, t ∈ R, λ1 ∈ [0, 1], we have

E( fr(x), λ1) < E( fr(x∗), λ2), E( fi(x), λ1) ≤ E( fi(x∗), λ2), ∀ i , r.

Strictly pseudo E-[0,1] convexity of
∑k

i=1 γi fi at x∗ implies that

k∑
i=1

γiE( fi(x), λ1) ≤
k∑

i=1

γiE( fi(x∗), λ2) ⇒ (x − x∗)
k∑

i=1

γi[∇ fi(x∗)]T < 0.

Also, quasi E-[0,1] convexity of 1I at x∗ implies that

E(1I(x), λ1) ≤ E(1I(x∗), λ2) = 0⇒ (x − x∗)∇1I(x∗) ≤ 0.

The proof now follows along similar to in Theorem (4.9).

Remark 4.13. Similarly as in Theorem (4.11), it can be easily seen that E( f (x∗), λ2), λ2 ∈ [0, 1] becomes properly
nondominated solution for (P), in the above Theorem, if γi > 0, for all i = 1, 2, ..., k.

Theorem 4.14. Let E : R × [0, 1] → R be a mapping such that E(t, λ) = min{ t, λ}, t ∈ R, λ ∈ [0, 1]. Suppose
that there exists a feasible solution x∗ for (P) and scalars γi > 0, i = 1, 2, ..., k, ui ≥ 0, i ∈ I(x∗) such that (13)
of Theorem (4.8) holds. If

∑k
i=1 γi fi is pseudo E-[0,1] convex and uI 1I is quasi E-[0,1] convex at x∗ ∈ M, then

E( f (x∗), λ2), λ2 ∈ [0, 1] is a properly nondominated solution in objective space of problem (P).

Proof. The proof is similar to the proof of Theorem (4.11).

Theorem 4.15. Let E : R × [0, 1]→ R be a mapping such that E(t, λ) = min{ t, λ}, t ∈ R, λ ∈ [0, 1]. Suppose that
there exists a feasible solution x∗ for (P) and scalars γi ≥ 0, i = 1, 2, ..., k,

∑k
i=1 γi = 1, ui ≥ 0, i ∈ I(x∗), such that

(13) of Theorem (4.8) holds. If I(x∗) , φ,
∑k

i=1 γi fi is quasi E-[0,1] convex and uI 1I is strictly pseudo E-[0,1] convex
at x∗ ∈M, then E( f (x∗), λ2), λ2 ∈ [0, 1] is a nondominated solution in objective space of problem (P).

Proof. The proof is similar to the proof of Theorem (4.12).

Remark 4.16. Similarly as in Theorem (4.11), it can be easily seen that E( f (x∗), λ2), λ2 ∈ [0, 1] becomes properly
nondominated solution for (P), in the above Theorem, if γi > 0, for all i = 1, 2, ..., k.

Theorem 4.17. (Necessary Efficiency Criteria) Let E : R×[0, 1]→ R be a mapping such that E(t, λ) = λmin{ t, λ}, t ∈
R, λ ∈ [0, 1] and x∗ be a properly efficient solution for problem (P). Assume that there exists a feasible point x for
(P) such that 1i(x) < 0, i = 1, 2, ...,m, and each 1i, i ∈ I(x∗) is E-[0,1] convex at x∗ ∈ M. Then, there exists scalars
γi > 0, i = 1, 2, ..., k and ui ≥ 0, i ∈ I(x∗), such that the triplet (x∗, γi,ui) satisfies

k∑
i=1

γi∇ fi(x∗) +
∑

i∈I(x∗)

ui∇1i(x∗) = 0. (16)

Proof. Let the following system

(x − x∗)T
∇ fq(x∗) < 0,

(x − x∗)T
∇ fi(x∗) ≤ 0, f or all i , q

(x − x∗)T
∇1i(x∗) ≤ 0, i ∈ I(x∗),

. (17)
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has a solution for every q = 1, 2, ..., k. Since by the assumed Slater-type condition,

1i(x̃) − 1i(x∗) < 0, i ∈ I(x∗),

and from E-[0,1] convexity of 1i at x∗, we get

(x̃ − x∗)T
∇1i(x∗) < 0, i ∈ I(x∗). (18)

Therefore from (17) and (18)

[(x − x∗) + ρ(x̃ − x∗)]T
∇1i(x∗) < 0, ∀i ∈ I(x∗), ρ > 0.

Hence for some positive β small enough

1i(x∗ + β[(x − x∗) + ρ(x̃ − x∗)]) < 1i(x∗) = 0, i ∈ I(x∗).

Similarly, for i < I(x∗), 1i(x∗) < 0 and for β > 0 small enough

1i(x∗ + β[(x − x∗) + ρ(x̃ − x∗)]) ≤ 0, i < I(x∗).

Thus, for β sufficiently small and all ρ > 0, x∗+β[(x−x∗)+ρ(x̃−x∗)] is feasible for problem (P). For sufficiently
small ρ > 0 (17) gives

fq(x∗ + β[(x − x∗) + ρ(x̃ − x∗)]) < fq(x∗). (19)

Now for all j , q such that

f j(x∗ + β[(x − x∗) + ρ(x̃ − x∗)]) > f j(x∗), (20)

consider the ratio

N(β, ρ)
D(β, ρ)

=
[ fq(x∗) − fq(x∗ + β[(x − x∗) + ρ(x̃ − x∗)])]/β
[ f j(x∗ + β[(x − x∗) + ρ(x̃ − x∗)]) − f j(x∗)]/β

. (21)

From(17), N(β, ρ)→ −(x − x∗)T
∇ fq(x∗) > 0. Similarly, D(β, ρ)→ (x − x∗)T

∇ f j(x∗) ≤ 0; but, by (20) D(β, ρ) > 0,
so D(β, ρ)→ 0. Thus, the ratio in (21) becomes unbounded, contradicting the proper efficiency of x∗ for (P).
Hence, for each q = 1, 2, ..., k, the system (17) has no solution. The result then follows from an application
of the Farkas Lemma, namely

k∑
i=1

γi∇ fi(x∗) +
∑

i∈I(x∗)

ui∇1i(x∗) = 0,u ≥ 0.

Theorem 4.18. Assume that x∗ is an efficient solution for problem (P) at which the Kuhn-Tucker constraint qual-
ification is satisfied. Then, there exist scalars γi ≥ 0, i = 1, 2, ..., k,

∑k
i=1 γi = 1, u j ≥ 0, j = 1, 2, ...,m, such

that

k∑
i=1

γi∇ fi(x∗) +

m∑
j=1

u j∇1 j(x∗) = 0,
m∑

j=1

u j1 j(x∗) = 0.

Proof. Since every efficient solution is a weak minimum, then by applying Theorem (2.2) of Weir and Mond
[9] for x∗, we get that there exists γ ∈ Rk, u ∈ Rm such that

γT
∇ f (x∗) + uT

∇1(x∗) = 0, uT1(x∗) = 0,

u ≥ 0, γ ≥ 0, γTe = 0,

where e = (1, 1, ..., 1) ∈ Rk.
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