A Note on Integral Non-Commuting Graphs

Modjtaba Ghorbani ${ }^{\text {a }}$, Zahra Gharavi-Alkhansari
${ }^{a}$ Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785-136, I. R. Iran

Abstract

The non-commuting graph $\Gamma(G)$ of group G is a graph with the vertex set $G-Z(G)$ and two distinct vertices x and y are adjacent whenever $x y \neq y x$. The aim of this paper is to study integral regular non-commuting graphs of valency at most 16 .

1. Introduction

In graph theory, the techniques of graph spectral is used to estimate the algebraic properties of a graph from its structure with significant role in computer science, biology, chemistry, etc. The spectrum of a graph is based on the adjacency matrix of graph and it is strongly dependent on the form of this matrix. A number of possible disadvantage can be derived by using only the spectrum of a graph. For example, some information about expansion and randomness of a graph can be derived from the second largest eigenvalue of a graph. One of the main applications of graph spectra in chemistry is the application in Hückel molecular orbital theory for the determination of energies of molecular orbitals of π-electrons.

On the other hand, by computing the smallest eigenvalue, we can get data about independence number and chromatic number. A graph with exactly two eigenvalues is the complete graph K_{n} or a regular graph has exactly three eigenvalues if and only if it is a strongly regular graph. Further, some groups can be uniquely specified by the spectrum of their Cayley graphs, see for example [2, 4-6, 17, 24].

The energy $\varepsilon(\Gamma)$ of the graph Γ was introduced by Gutman in 1978 as the sum of the absolute values of the eigenvalues of Γ, see [20-22]. The stability of a molecule can also be estimated by the number of zero eigenvalues of a graph, namely the nullity of a graph. Nowadays, computing the spectrum of a graph is an interesting field for mathematicians, see for example [13-15, 18, 19, 28].

The non-commuting graph $\Gamma(G)$ of group G was first considered by Paul Erdős to answer a question on the size of the cliques of a graph in 1975, see [27]. For background materials about non-commuting graphs, we encourage the reader to references $[1,3,12,25,26,29]$. In this article, we prove that there is no k-regular non-commuting graphs where k is an odd number. We also prove that there is no $2^{s} q$-regular non-commuting graph, where q is a prime number greater than 2 . On the other hand, we characterized all k-regular integral non-commuting graphs where $1 \leq k \leq 16$. Here, in the next section, we give necessary definitions and some preliminary results and section three contains some new results on regular non-commuting graphs.

[^0]
2. Definitions and Preliminaries

Our notation is standard and mainly taken from standard books of graph and algebraic graph theory such as $[7,8,11,30]$. All graphs considered in this paper are simple and connected. All considered groups are non-abelian groups. The vertex and edge sets of graph Γ are denoted by $V(\Gamma)$ and $E(\Gamma)$, respectively.

There are a number of constructions of graphs from groups or semigroups in the literature. Let G be a non-abelian group with center $Z(G)$. The non-commuting graph $\Gamma(G)$ is a simple and undirected graph with the vertex set $G / Z(G)$ and two vertices $x, y \in G / Z(G)$ are adjacent whenever $x y \neq y x$.

The characteristic polynomial $\chi_{\lambda}(\Gamma)$ of graph Γ is defined as

$$
\chi_{\lambda}(\Gamma)=|\lambda I-A|
$$

where A denotes to the adjacency matrix of Γ. The eigenvalues of graph Γ are the roots of the characteristic polynomial and form the spectrum of this graph.

3. Main Results

The aim of this section is to study the regular non-commuting graphs. First, we prove that there is no k-regular non-commuting graph where k is odd. The following theorem is implicitly contained in [1].
Proposition 3.1. Let G be a finite non-abelian group such that $\Gamma(G)$ is a regular graph. Then G is nilpotent of class at most 3 and $G=P \times A$, where A is an abelian group, P is a p-group (p is a prime) and furthermore $\Gamma(P)$ is a regular graph.

Theorem 3.2. Let G be a finite group, where $\Gamma(G)$ is k-regular, then k is even.
Proof. Suppose that k is odd. Then, for any non-central element $x \in G$,

$$
k=|G|-\left|C_{G}(x)\right|=\left|C_{G}(x)\right|\left(\left|G: C_{G}(x)\right|-1\right)
$$

from which we deduce that $\left|C_{G}(x)\right|$ is odd and that $|G / Z(G)|$ is even. Since $\left|C_{G}(x)\right|$ is odd for all non-central elements $x \in G$, all non-central elements of G have odd order as does $Z(G)$. This contradicts the fact that $|G / Z(G)|$ is even.

Proposition 3.3. If $G=P \times A$, then for every $x=(\alpha, \beta) \in G$ where $\alpha \in P$ and $\beta \in A$, we have

$$
d_{\Gamma(G)}(x)=d_{\Gamma(P)}(\alpha)|A| .
$$

Proof. It is easy to see that

$$
\begin{aligned}
d_{\Gamma(G)}(x) & =|G|-\left|C_{G}(x)\right| \\
& =|P \| A|-\frac{|P \| A|}{\left|\left(\alpha^{P}, \beta^{A}\right)\right|} \\
& =\left|P \left\|A \left|-\left|C_{P}(\alpha) \| C_{A}(\beta)\right|\right.\right.\right. \\
& =\left|P \left\|A \left|-\left|C_{P}(\alpha) \| A\right|\right.\right.\right. \\
& =\left(|P|-\mid C_{P}(\alpha)\right)| | A \mid \\
& =d_{\Gamma(P)}(\alpha)|A| .
\end{aligned}
$$

Theorem 3.4. Let G be a non-abelian finite group and assume that $\Gamma(G)$ is 2^{s} - regular. Then G is a 2-group.
Proof. We have

$$
2^{s}=\left|C_{G}(x)\right|\left(\left|G: C_{G}(x)\right|-1\right) .
$$

Thus, every element of $G / Z(G)$ is a 2-element. Hence G is a 2-group.
In continuing, we determine all $2^{s} q$-regular non-commuting graphs where q is a prime number. To do this, let G be a finite group where $\Gamma(G)$ is 6 -regular. By notations of Proposition 3. 3, the following cases hold:

- $a=1$, hence $p^{n-i}\left(p^{i}-1\right)=6$. Thus, $p=2$ or $p=3$. If $p=2$, then $i=2$ and $n=3$. This implies that $G \cong D_{8}$ or $G \cong Q_{8}$, both of them are contradictions, since G is 4-regular. If $p=3$, then $i=1, n=2$ and so G is abelian, a contradiction.
- $a=2$, then $p=2$ or $p=3$. If $p=2$, then $n=i=2$, a contradiction or $p=3$ and so $3^{n-i}\left(3^{i}-1\right)=3$, a contradiction.
- $a=3$, hence $p=2$. This implies that $i=1, n=2$ and hence $G \cong \mathbb{Z}_{4} \times \mathbb{Z}_{3}$ or $G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{6}$, both of them are contradictions, since G is abelian. If $p=3$, then $n=i=1$, a contradiction.
- $a=6$, thus $p=2, i=1$ and $n=1$. It follows that $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{6}$ is abelian, a contradiction.

Hence, one can conclude the following Lemma.
Lemma 3.5. Let G be a finite non-abelian group which is not a $p-g r o u p$ and q be a prime number. Then, there is no $2^{s} q$-regular NC graph where $s=1,2,3$.
Proof. Let $d(x)=2 q$, where q is a prime number, then $p^{n-i}\left(p^{i}-1\right) a=2 q$. Since G is not a $p-$ group, $a \neq 1$ and three following cases hold:
Case 1. $a=2$, hence $p^{n-i}\left(p^{i}-1\right)=q$ and thus $p^{n-i}=q$ or $p^{i}-1=q$. If $p^{n-i}=q$, then $n-i=1$ and $p^{i}-1=1$. Hence, $p=2, i=1$ and $n=2$, a contradiction, since G is not abelian. If $p^{i}-1=q$, then necessarily $n=i$, $p^{n}-1=q$ and so $|G|=2 q+2$. Similar to the last discussion, $|Z(G)| \geq 2$ and so $|G / Z(G)| \leq 2 q$. Hence $\Gamma(G)$ is a $2 q$-regular graph on at most $2 q$ vertices which is impossible.
Case 2. $a=q$, hence $p^{n-i}\left(p^{i}-1\right) q=2 q$. This implies that $p^{n-i}\left(p^{i}-1\right)=2$ and so $p=2$ or $p=3$. If $p=2$ then $n-i=1$ and $i=1$. Hence, $n=2$ and G is abelian, a contradiction. If $p=3$, then $n=i=1$, a contradiction.
Case 3. $a=2 q$, then $p^{n-i}\left(p^{i}-1\right)=1$. It follows that $p=2$ and $n=i=1$, a contradiction, since G is not abelian.
Let now $d(x)=4 q$, similar to the last discussion, the following cases hold:
Case 1. $a=2$, hence $p^{n-i}\left(p^{i}-1\right)=2 q$. Thus $p=q=3$ and $n-i=i=1$, a contradiction or $p=2, n-i=1$ and $2^{i}-1=q$. Then $|G|=p^{n} a=2^{i+2}=4(q+1)$. It follows that $\Gamma(G)$ is a $4 q-$ regular graph on at most $|G / Z(G)| \leq 4(q+1)-8=4 q-4$ vertices which is impossible.
Case 2. $a=4$, thus $p^{n-i}\left(p^{i}-1\right)=q$ implies that $p=q=2$ and $n-i=i=1$, a contradiction or $\left(p^{i}-1\right)=q$ and $n=i$. In this case, $|G|=p^{n} a=4(q+1)$, since $|Z(P)| \geq p$, we have $|V(\Gamma(G))|=|G / Z(G)| \leq 4 q+4-4 p<4 q$, a contradiction.
Case 3. $a=q$, hence $p^{n-i}\left(p^{i}-1\right)=4$. Thus $p=5$ and $n=i=1$, a contradiction or $p=2, n-i=2$ and $i=1$. In this case $|P|=8$ and so we have a 4-regular graph with at most $|V(\Gamma)|=|P|-|Z(P)| \leq 8-2=6$ vertices which is impossible (according to Proposition 3. 3).
Case 4. $a=2 q$, hence $p^{n-i}\left(p^{i}-1\right)=2$. Thus $p=2$ or $p=3$. If $p=2$, then $n-i=1$ and $i=1$ which is impossible, since G is not abelian. If $p=3$, then $n=i=1$, a contradiction.
Case 5. $a=4 q$, therefore $p^{n-i}\left(p^{i}-1\right)=1$. This implies that $p=2$ and $n=i=1$, a contradiction.
Finally, suppose $d(x)=8 q$, then the following cases hold:
Case 1. $a=2$, hence $p^{n-i}\left(p^{i}-1\right)=4 q$. Thus $p=q=5$ and $n-i=i=1$, a contradiction or $p=2, n-i=2$ and $p^{i}=q+1$. In this case $|G|=4(q+1)$ and so $\Gamma(G)$ is an $8 q$-regular graph on $|G / Z(G)| \leq 4 q$ vertices, a contradiction.
Case 2. $a=4$, thus $p^{n-i}\left(p^{i}-1\right)=2 q$ and so $p=q=3, n-i=i=1$, a contradiction or $p=2$ and $\left(2^{i}-1\right)=q$. In this case, $|G|=p^{n} a=2(q+1)$. Since $|Z(P)| \geq 2$, one can see that $|V(\Gamma(G))|=|G / Z(G)| \leq 4 q+4-4 p<4 q$, a contradiction.
Case 3. $a=8$, thus $p^{n-i}\left(p^{i}-1\right)=q$ implies that $p=q=2$ and $n-i=i=1$, a contradiction or $\left(p^{i}-1\right)=q$ and $n=i$. In this case, $|G|=p^{n} a=8(q+1)$ and since $|Z(P)| \geq p$ hence $|V(\Gamma(G))|=|G / Z(G)| \leq 8 q+8-8 p<8 q$, a contradiction with Γ is $8 q$-regular.
Case 4. $a=q$, hence $p^{n-i}\left(p^{i}-1\right)=8$. Thus $p=2, n-i=3$ and $i=1$. It follows that $|G|=16 q$, since $|Z(G)| \geq 2 q$, by Proposition 3.3, $\Gamma(P)$ is an 8-regular graph with $|V(\Gamma(P))| \leq 14$, a contradiction.
Case 5. $a=2 q$, hence $p^{n-i}\left(p^{i}-1\right)=4$. This implies that $p=5$ and $n=i=1$, a contradiction or $p=2, n-i=2$ and $i=1$. It follows that $\Gamma(P)$ is an 4-regular graph with $|V(\Gamma(P))| \leq 6$ vertices, a contradiction.
Case 6. $a=4 q$, therefore $p^{n-i}\left(p^{i}-1\right)=2$. This implies that $p=3$ and $n=i=1$, a contradiction or $p=2$ and
$n-i=i=1$, a contradiction with G is not abelian.
Case 7. $a=8 q$, therefore $p^{n-i}\left(p^{i}-1\right)=1$. This implies that $p=2$ and $n=i=1$, a contradiction, since G is not abelian.

In general, we have the following theorem:
Theorem 3.6. Suppose that G is a non-abelian finite group and $\Gamma(G)$ is k-regular. Then $k \neq 2^{s} q$ where q is an odd prime.

Proof. Suppose that $k=2^{s} q$. First assume that $G / Z(G)$ is not a 2-group. Let $x \in G$ be such that $Z(G) x$ has odd order greater than 1. We have

$$
2^{s} q=\left|C_{G}(x)\right|\left(\left|G: C_{G}(x)\right|-1\right)
$$

and so, as $x \in C_{G}(x),\left|C_{G}(x)\right|=2^{a} q$ for some integer a and $Z(G) x$ has order q. In particular, $Z(G)$ is a 2-group. Let Q be a Sylow q-subgroup of G and $y \in Z(Q)$ with $y \neq 1$. Then $Z(G) y$ has odd order greater than 1 as $Z(G)$ is a 2-group. Thus $\left|C_{G}(y)\right|=2^{b} q$ for some integer b. Since $Q \leq C_{G}(y)$ we see that Q has order q. Thus every element of odd order in G has order q and G has Sylow q-subgroups of order q. Especially, $|G|=2^{c} q$ for some integer c. Now

$$
2^{c} q=|G|=2^{s} q+\left|C_{G}(x)\right|=2^{s} q+2^{b} q=2^{b} q\left(2^{s-b}+1\right)
$$

from which we deduce $2^{s-b}+1=2$ and $|G|=2^{s+1} q$. Further $C_{G}(x)$ has index 2 in G. But then every conjugate of x is contained in $C_{G}(x)$. Hence $\langle x\rangle$ is normal in G. Let y be a 2-element which does not commute with x. Then $\left|C_{G}(y)\right|=2^{d}$ whereas $|G|-\left|C_{G}(y)\right|=2^{s} q=|G|-\left|C_{G}(x)\right|$, a contradiction. Next consider the case that $G / Z(G)$ is a 2 -group. In this case q divides $|Z(G)|$. Let x be a non-central element of G. Then $\left|C_{G}(x)\right|=2^{b} q$ for some integer b. Now

$$
2^{s} q=\left|C_{G}(x)\right|\left(\left|G: C_{G}(x)\right|-1\right)=2^{b} q\left(2^{c}-1\right)
$$

so, we deduce that $2^{c}-1=1$ and $C_{G}(x)=G$ which is impossible. This proves the claim.

3.1. Which non-commuting graphs are integral?

An integral graph is a graph with integral spectrum considered by Harary and Schwenk [23] for the first time. Cvetković et al. $[6,9,10]$ determined all cubic integral graphs. Following their method, we classify all groups whose non-commuting k-regular graphs are integral where $1 \leq k \leq 16$. The following two lemmas are crucial in what follows.

Lemma 3.7. [1] Let Γ be a non-commuting graph with diameter d, then $d \leq 2$.
Lemma 3.8. [10] Let Γ be an integral k-regular graph on n vertices with diameter d. Then

$$
n \leq \frac{k(k-1)^{d}-2}{k-2}
$$

According to Lemma 3. 7, the diameter of a non-commuting graph is at most 2, then from Lemma 3. 8, it follows that the number of vertices of Γ is less than or equal to $\frac{k(k-1)^{2}-2}{k-2}$. Clearly, there is no integral regular non-commuting graph of odd degree. So, we should study just the regular non-commuting graph with even valency.

Theorem 3.9. If $\Gamma(G)$ is k-regular integral non-commuting graph where $k \leq 16$, then $k=4$ and $G \cong D_{8}, Q_{8}$ or $k=8$ and $G \cong \mathbb{Z}_{2} \times D_{8}, \mathbb{Z}_{2} \times Q_{8}, \operatorname{SU}(2), M_{16}, \mathbb{Z}_{4} \ltimes \mathbb{Z}_{4}, \mathbb{Z}_{4} \ltimes \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or $k=16$ and $G \cong \operatorname{SmallGroup}(32, i)$ where

$$
i \in\{2,4,5,12,17,22,23,24,25,26,37,38,46,47,48,49,50\} .
$$

Proof. According to Theorem 3. $2, k$ is even. Since G is non-abelian, $k \geq 3$ and so $k \in\{4,6,8,10,12,14,16\}$. According to Theorem 3.4, $k \notin\{6,10,12,14\}$ and so $k \in\{4,8,16\}$. Let $\Gamma(G)$ be a 4 -regular integral noncommuting graph. According to Lemma 3. 8,

$$
n \leq \frac{4 \times 3^{2}-2}{4-2}=17
$$

But Γ is not a complete graph and then $6 \leq n \leq 17$. Since $|Z(G)|$ divides $|G|$, we can suppose $|G / Z(G)|=t$ and so

$$
n=|G|-|Z(G)|=t|Z(G)|-|Z(G)|=(t-1)|Z(G)|
$$

Let $n=6$, since $(t-1)|Z(G)|=6,|Z(G)|=1,2,3$ or 6 . If $|Z(G)|=6$, then $|G / Z(G)|=2$ and so G is abelian, a contradiction. If $|Z(G)|=3$, then $|G|=9$ and so G is abelian, a contradiction. If $|Z(G)|=2$, then $|G|=8$ and $G \cong D_{8}$ or Q_{8}. By a direct computation, one can see that both $\Gamma\left(D_{8}\right)$ and $\Gamma\left(Q_{8}\right)$ are 4-regular graphs. If $|Z(G)|=1$, then $|G|=7$ and so G is abelian, a contradiction. Let now $n=7$, then $|Z(G)|=1$ or 7 . If $|Z(G)|=7$, then $|G|=14$ and the only non-abelian group of order 14 is D_{14}. The non-commuting graph of D_{14} is not 4-regular. If $|Z(G)|=1$, then $|G|=8$, a contradiction, since the center of a 2 -group is not trivial. In continuing, let $n=8$. Since G is non-abelian, $|Z(G)|=2,4$ or 8 . If $|Z(G)|=2$, then $|G|=10$ and so $G \cong D_{10}$. One can see that $\Gamma\left(D_{10}\right)$ is not 4-regular. If $|Z(G)|=4,8$ then $\Gamma(G)$ is not 4-regular. In this case, by using a GAP program [16] (presented in the end of this paper), we can prove that just the non-commuting graphs $\Gamma\left(D_{8}\right)$ and $\Gamma\left(Q_{8}\right)$ are 4-regular graphs. Let now, $\Gamma(G)$ be an 8-regular integral non-commuting graph. According to Lemma 3. 8,

$$
7 \leq n \leq \frac{8 \times 7^{2}-2}{8-2}=65
$$

If $n=7$, then $|Z(G)|=1$ or 7 . If $|Z(G)|=1$, then $|G|=8$ and there is not a group of order 8 whose non-commuting graph is 8-regular. For $|Z(G)|=7,|G|=14$ and similar to the last discussion, the only non-abelian group of order 14 is D_{14} and the degrees of vertices of $\Gamma\left(D_{14}\right)$ are 7 and 12 , a contradiction. This implies that $n \geq 8$. If $n=8$, then $|G|=9,10,12,16$. From the part one, we can conclude that $|G| \neq 9,10,12$. Suppose $|G|=16$ and $|Z(G)|=8$, then $\frac{G}{Z(G)}$ is cyclic and so G is abelian, a contradiction. If $n=10$, then $|G|=11,12,15,20$ and similar to the last discussion their non-commuting graphs are not regular. Suppose $n=12$, then $|Z(G)|=1,2,3,4,6,12$ and so $|G|=13,14,15,16,18,24$. By these conditions, one can prove that $|G|=16$ and $|Z(G)|=4$. There are six non-abelian groups whose non-commuting graphs are 8-regular. They are $\mathbb{Z}_{2} \times D_{8}$, group of the Pauli matrices $\mathbb{Z}_{2} \times Q_{8}, S U(2)$, modular or Isanowa group M_{16} of order 16 and Semidirect products $\mathbb{Z}_{4} \ltimes \mathbb{Z}_{4}, \mathbb{Z}_{4} \ltimes \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. By continuing our method and applying GAP program, we can deduce that the above groups are the only groups whose non-commuting graphs are 8-regular. Finally, suppose $k=16$, then

$$
n \leq \frac{16 \times 15^{2}-2}{16-2}=257
$$

Again, by applying GAP program, we can deduce that only for $|G|=32$, there are some non-abelian groups whose non-commuting graphs are 16 -regular. We name them as $\operatorname{SmallGroup}(32, i)$ where

$$
i \in\{2,4,5,12,17,22,23,24,25,26,37,38,46,47,48,49,50\}
$$

This completes the proof.
Acknowledgement. The authors are indebted to Professor Said Sidki for critical discussion on this paper.

A GAP program for computing the non-commuting graph of groups

```
    \(f:=\) function \((G)\)
local \(x, y, M, M M, i, j, s, d\);
    \(M:=[] ; M M:=[] ; s:=0 ; d:=[] ;\)
    for \(x\) in Difference(Elements(G), Elements(Center(G))) do
        for \(y\) in Difference(Elements(G), Elements(Center(G))) do
        if \(x * y=y * x\) then
        \(\operatorname{Add}(\mathrm{M}, 0)\);
        else
        \(\operatorname{Add}(M, 1)\);
        fi;
        od;
        \(\operatorname{Add}(M M, M) ; M:=[] ;\)
    od;
    \(\operatorname{Print}(M M)\);
    Print(Size(Center(G)));
    for \(i\) in \(M M\) do
    for \(j\) in \(i\) do
        \(s:=s+j\);
    od;
    \(\operatorname{Add}(d, s) ; s:=0 ;\)
    od;
Print(d);
\(\operatorname{Print}(" * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *) ; ~ ;\)
    return;
end;
```


References

[1] A. Abdollahi, S. Akbari, H. R. Maimani, Non-commuting graph of a group, J. Algebra 298 (2006) 468-492.
[2] A. Abdollahi, M. Jazaeri, Groups all of whose undirected Cayley graphs are integral, European Journal of Combinatorics 38 (2014) 102-109.
[3] A. Abdollahi, H. Shahverdi, Characterization of the alternating group by its non-commuting graph, J. Algebra 357 (2012) $203-207$.
[4] A. Abdollahi, E. Vatandoost, Which Cayley graphs are integral?, Electronic J. Comb. 16(1)R122 (2009) 1-17.
[5] O. Ahmadi, N. Alon, L. F. Blake, I. E. Shparlinski, Graphs with integral spectrum, Linear Alg. Appl. 430 (2009) 547-552.
[6] K. Balinska, D. Cvetković, Z. Rodosavljević, S. Simić, D. A. Stevanović, Survey on integral graphs, Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat. 13 (2003) 42-65.
[7] J. A. Bondy, J. S. Murty, Graph theory with aplication, Elsevier, 1977.
[8] N. L. Biggs, Algebraic Graph Theory, Cambridge University Press, 1974.
[9] F. C. Bussemaker, D. Cvetković, There are exactly 13 connected, cubic, integral graphs, Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 544-576 (1976) 43-48.
[10] D. Cvetković, Cubic integral graphs, Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 498-541 (1975) 107-113.
[11] D. Cvetković, P. Rowlinson, S. Simić, An introduction to the theory of graph spectra, London Mathematical Society, London, 2010.
[12] M. R. Darafsheh, Groups with the same non-commuting graph, Discrete Appl. Math. 157 (2009) 833-837.
[13] M. DeVos, L. Goddyn, B. Mohar, R. Šámal, Cayley sum graphs and eigenvalues of $(3,6)$-fullerenes, J. Combin. Theor. Series B 99 (2009) 358-369.
[14] P. W. Fowler, P. E. John, H. Sachs, (3,6)-cages, hexagonal toroidal cages, and their spectra, Discrete mathematical chemistry, New Brunswick, NJ, 1998, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 51 Amer. Math. Soc. Providence, RI (2000) 139-174.
[15] P. W. Fowler, P. Hansen, D. Stevanović, A note on the smallest eigenvalue of fullerenes, MATCH Commun. Math. Comput. Chem. 48 (2003) 37-48.
[16] GAP, Groups, Algorithms and Programming, Lehrstuhl De fur Mathematik, RWTH, Aachen, 1992.
[17] M. Ghorbani, On the eigenvalues of normal edge-transitive Cayley graphs, Bull. Iranian Math. Soc. 41 (2015) 101-107.
[18] M. Ghorbani, N. Azimi, Characterization of split graphs with at most four distinct eigenvalues, Disc. Appl. Math. 184 (2015) 231-236.
[19] M. Ghorbani, E. Bani-Asadi, Remarks on characteristic coefficients of fullerene graphs, Appl. Math. Comput. 230 (2014) $428-435$.
[20] M. Ghorbani, M. Faghani, A. R. Ashrafi, S. Heidari-Rad, A. Graovać, An upper bound for energy of matrices associated to an infinite class of fullerenes, MATCH Commun. Math. Comput. Chem. 71 (2014) 341-354.
[21] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungsz Graz 103 (1978) 1-22.
[22] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.
[23] F. Harary, A.J. Schwenk, Which graphs have integral spectra?, in: R. Bari, F. Harary (Eds.), Graphs and Combinatorics, Lecture Notes in Mathematics, 406, Springer, Berlin (1974) 45-51.
[24] W. Klotz, T. Sander, Integral Cayley graphs over abelian groups, Electronic J. Combinatorics 17 R81 (2010) 1-13.
[25] A. R. Moghaddamfar, W. J. Shi, W. Zhou, A. R. Zokayi, On the non-commuting graph associated with a finite group, Siberian Math. J. 46 (2005) 325-332.
[26] G. L. Morgan, C. W. Parker, The diameter of the commuting graph of a finite group with trivial centre, J. Algebra 393 (2013) 41-59.
[27] B. H. Neumann, A problem of Paul Erdős on groups, J. Austral. Math. Soc. Ser. A 21 (1976) 467-472.
[28] W. C. Shiu, W. Li, W. H. Chan, On the spectra of the fullerenes that contain a nontrivial cyclic-5-cutset, Australian J. Combin. 47 (2010) 41-51.
[29] A. Talebi, On the non-commuting graph of group $D_{2 n}$, International J. Algebra 2 (2009) 957-961.
[30] D. B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, 1996.

[^0]: 2010 Mathematics Subject Classification. Primary 22E46; Secondary 53C35, 57S20
 Keywords. Non-commuting graph, characteristic polynomial, integral graph
 Received: 22 December 2014; Accepted: 27 September 2015
 Communicated by Francesco Belardo
 Email address: mghorbani@srttu. edu (Modjtaba Ghorbani)

