Filomat 31:3 (2017), 663–669 DOI 10.2298/FIL1703663G

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

A Note on Integral Non-Commuting Graphs

Modjtaba Ghorbani^a, Zahra Gharavi-Alkhansari

^aDepartment of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785-136, I. R. Iran

Abstract. The non-commuting graph $\Gamma(G)$ of group *G* is a graph with the vertex set G - Z(G) and two distinct vertices *x* and *y* are adjacent whenever $xy \neq yx$. The aim of this paper is to study integral regular non-commuting graphs of valency at most 16.

1. Introduction

In graph theory, the techniques of graph spectral is used to estimate the algebraic properties of a graph from its structure with significant role in computer science, biology, chemistry, etc. The spectrum of a graph is based on the adjacency matrix of graph and it is strongly dependent on the form of this matrix. A number of possible disadvantage can be derived by using only the spectrum of a graph. For example, some information about expansion and randomness of a graph spectra in chemistry is the application in Hückel molecular orbital theory for the determination of energies of molecular orbitals of π -electrons.

On the other hand, by computing the smallest eigenvalue, we can get data about independence number and chromatic number. A graph with exactly two eigenvalues is the complete graph K_n or a regular graph has exactly three eigenvalues if and only if it is a strongly regular graph. Further, some groups can be uniquely specified by the spectrum of their Cayley graphs, see for example [2, 4–6, 17, 24].

The energy $\varepsilon(\Gamma)$ of the graph Γ was introduced by Gutman in 1978 as the sum of the absolute values of the eigenvalues of Γ , see [20–22]. The stability of a molecule can also be estimated by the number of zero eigenvalues of a graph, namely the nullity of a graph. Nowadays, computing the spectrum of a graph is an interesting field for mathematicians, see for example [13–15, 18, 19, 28].

The non-commuting graph $\Gamma(G)$ of group *G* was first considered by Paul Erdős to answer a question on the size of the cliques of a graph in 1975, see [27]. For background materials about non-commuting graphs, we encourage the reader to references [1, 3, 12, 25, 26, 29]. In this article, we prove that there is no *k*-regular non-commuting graphs where *k* is an odd number. We also prove that there is no $2^{s}q$ -regular non-commuting graph, where *q* is a prime number greater than 2. On the other hand, we characterized all *k*-regular integral non-commuting graphs where $1 \le k \le 16$. Here, in the next section, we give necessary definitions and some preliminary results and section three contains some new results on regular non-commuting graphs.

²⁰¹⁰ Mathematics Subject Classification. Primary 22E46; Secondary 53C35, 57S20

Keywords. Non-commuting graph, characteristic polynomial, integral graph

Received: 22 December 2014; Accepted: 27 September 2015

Communicated by Francesco Belardo

Email address: mghorbani@srttu.edu (Modjtaba Ghorbani)

2. Definitions and Preliminaries

Our notation is standard and mainly taken from standard books of graph and algebraic graph theory such as [7, 8, 11, 30]. All graphs considered in this paper are simple and connected. All considered groups are non-abelian groups. The vertex and edge sets of graph Γ are denoted by $V(\Gamma)$ and $E(\Gamma)$, respectively.

There are a number of constructions of graphs from groups or semigroups in the literature. Let *G* be a non-abelian group with center *Z*(*G*). The non-commuting graph $\Gamma(G)$ is a simple and undirected graph with the vertex set *G*/*Z*(*G*) and two vertices $x, y \in G/Z(G)$ are adjacent whenever $xy \neq yx$.

The characteristic polynomial $\chi_{\lambda}(\Gamma)$ of graph Γ is defined as

$$\chi_{\lambda}(\Gamma) = |\lambda I - A|,$$

where *A* denotes to the adjacency matrix of Γ . The eigenvalues of graph Γ are the roots of the characteristic polynomial and form the spectrum of this graph.

3. Main Results

The aim of this section is to study the regular non-commuting graphs. First, we prove that there is no *k*-regular non-commuting graph where *k* is odd. The following theorem is implicitly contained in [1].

Proposition 3.1. Let *G* be a finite non-abelian group such that $\Gamma(G)$ is a regular graph. Then *G* is nilpotent of class at most 3 and $G = P \times A$, where *A* is an abelian group, *P* is a *p*-group (*p* is a prime) and furthermore $\Gamma(P)$ is a regular graph.

Theorem 3.2. *Let G be a finite group, where* $\Gamma(G)$ *is k-regular, then k is even.*

Proof. Suppose that *k* is odd. Then, for any non-central element $x \in G$,

$$k = |G| - |C_G(x)| = |C_G(x)|(|G : C_G(x)| - 1)$$

from which we deduce that $|C_G(x)|$ is odd and that |G/Z(G)| is even. Since $|C_G(x)|$ is odd for all non-central elements $x \in G$, all non-central elements of *G* have odd order as does Z(G). This contradicts the fact that |G/Z(G)| is even.

Proposition 3.3. *If* $G = P \times A$ *, then for every* $x = (\alpha, \beta) \in G$ *where* $\alpha \in P$ *and* $\beta \in A$ *, we have*

 $d_{\Gamma(G)}(x) = d_{\Gamma(P)}(\alpha)|A|.$

Proof. It is easy to see that

$$d_{\Gamma(G)}(x) = |G| - |C_G(x)|$$

= $|P||A| - \frac{|P||A|}{|(\alpha^P, \beta^A)|}$
= $|P||A| - |C_P(\alpha)||C_A(\beta)|$
= $|P||A| - |C_P(\alpha)||A|$
= $(|P| - |C_P(\alpha))||A|$
= $d_{\Gamma(P)}(\alpha)|A|$.

Theorem 3.4. Let G be a non-abelian finite group and assume that $\Gamma(G)$ is 2^s – regular. Then G is a 2-group.

Proof. We have

$$2^{s} = |C_{G}(x)|(|G:C_{G}(x)| - 1).$$

Thus, every element of G/Z(G) is a 2-element. Hence *G* is a 2-group.

In continuing, we determine all $2^{s}q$ -regular non-commuting graphs where q is a prime number. To do this, let G be a finite group where $\Gamma(G)$ is 6-regular. By notations of Proposition 3. 3, the following cases hold:

- a = 1, hence $p^{n-i}(p^i 1) = 6$. Thus, p = 2 or p = 3. If p = 2, then i = 2 and n = 3. This implies that $G \cong D_8$ or $G \cong Q_8$, both of them are contradictions, since G is 4-regular. If p = 3, then i = 1, n = 2 and so G is abelian, a contradiction.
- a = 2, then p = 2 or p = 3. If p = 2, then n = i = 2, a contradiction or p = 3 and so $3^{n-i}(3^i 1) = 3$, a contradiction.
- a = 3, hence p = 2. This implies that i = 1, n = 2 and hence $G \cong \mathbb{Z}_4 \times \mathbb{Z}_3$ or $G \cong \mathbb{Z}_2 \times \mathbb{Z}_6$, both of them are contradictions, since *G* is abelian. If p = 3, then n = i = 1, a contradiction.
- a = 6, thus p = 2, i = 1 and n = 1. It follows that $G \cong \mathbb{Z}_p \times \mathbb{Z}_6$ is abelian, a contradiction.

Hence, one can conclude the following Lemma.

Lemma 3.5. Let *G* be a finite non-abelian group which is not a p-group and q be a prime number. Then, there is no $2^{s}q$ -regular NC graph where s = 1, 2, 3.

Proof. Let d(x) = 2q, where *q* is a prime number, then $p^{n-i}(p^i - 1)a = 2q$. Since *G* is not a *p*-group, $a \neq 1$ and three following cases hold:

Case 1. a = 2, hence $p^{n-i}(p^i - 1) = q$ and thus $p^{n-i} = q$ or $p^i - 1 = q$. If $p^{n-i} = q$, then n - i = 1 and $p^i - 1 = 1$. Hence, p = 2, i = 1 and n = 2, a contradiction, since *G* is not abelian. If $p^i - 1 = q$, then necessarily n = i, $p^n - 1 = q$ and so |G| = 2q + 2. Similar to the last discussion, $|Z(G)| \ge 2$ and so $|G/Z(G)| \le 2q$. Hence $\Gamma(G)$ is a 2q-regular graph on at most 2q vertices which is impossible.

Case 2. a = q, hence $p^{n-i}(p^i - 1)q = 2q$. This implies that $p^{n-i}(p^i - 1) = 2$ and so p = 2 or p = 3. If p = 2 then n - i = 1 and i = 1. Hence, n = 2 and G is abelian, a contradiction. If p = 3, then n = i = 1, a contradiction. **Case 3.** a = 2q, then $p^{n-i}(p^i - 1) = 1$. It follows that p = 2 and n = i = 1, a contradiction, since G is not abelian.

Let now d(x) = 4q, similar to the last discussion, the following cases hold: **Case 1.** a = 2, hence $p^{n-i}(p^i - 1) = 2q$. Thus p = q = 3 and n - i = i = 1, a contradiction or p = 2, n - i = 1

and $2^i - 1 = q$. Then $|G| = p^n a = 2^{i+2} = 4(q+1)$. It follows that $\Gamma(G)$ is a 4*q*-regular graph on at most $|G/Z(G)| \le 4(q+1) - 8 = 4q - 4$ vertices which is impossible.

Case 2. a = 4, thus $p^{n-i}(p^i - 1) = q$ implies that p = q = 2 and n - i = i = 1, a contradiction or $(p^i - 1) = q$ and n = i. In this case, $|G| = p^n a = 4(q + 1)$, since $|Z(P)| \ge p$, we have $|V(\Gamma(G))| = |G/Z(G)| \le 4q + 4 - 4p < 4q$, a contradiction.

Case 3. a = q, hence $p^{n-i}(p^i - 1) = 4$. Thus p = 5 and n = i = 1, a contradiction or p = 2, n - i = 2 and i = 1. In this case |P| = 8 and so we have a 4-regular graph with at most $|V(\Gamma)| = |P| - |Z(P)| \le 8 - 2 = 6$ vertices which is impossible (according to Proposition 3. 3).

Case 4. a = 2q, hence $p^{n-i}(p^i - 1) = 2$. Thus p = 2 or p = 3. If p = 2, then n - i = 1 and i = 1 which is impossible, since *G* is not abelian. If p = 3, then n = i = 1, a contradiction.

Case 5. a = 4q, therefore $p^{n-i}(p^i - 1) = 1$. This implies that p = 2 and n = i = 1, a contradiction.

Finally, suppose d(x) = 8q, then the following cases hold:

Case 1. a = 2, hence $p^{n-i}(p^i - 1) = 4q$. Thus p = q = 5 and n - i = i = 1, a contradiction or p = 2, n - i = 2 and $p^i = q + 1$. In this case |G| = 4(q + 1) and so $\Gamma(G)$ is an 8q-regular graph on $|G/Z(G)| \le 4q$ vertices, a contradiction.

Case 2. a = 4, thus $p^{n-i}(p^i - 1) = 2q$ and so p = q = 3, n - i = i = 1, a contradiction or p = 2 and $(2^i - 1) = q$. In this case, $|G| = p^n a = 2(q + 1)$. Since $|Z(P)| \ge 2$, one can see that $|V(\Gamma(G))| = |G/Z(G)| \le 4q + 4 - 4p < 4q$, a contradiction.

Case 3. a = 8, thus $p^{n-i}(p^i - 1) = q$ implies that p = q = 2 and n - i = i = 1, a contradiction or $(p^i - 1) = q$ and n = i. In this case, $|G| = p^n a = 8(q + 1)$ and since $|Z(P)| \ge p$ hence $|V(\Gamma(G))| = |G/Z(G)| \le 8q + 8 - 8p < 8q$, a contradiction with Γ is 8q-regular.

Case 4. a = q, hence $p^{n-i}(p^i - 1) = 8$. Thus p = 2, n - i = 3 and i = 1. It follows that |G| = 16q, since $|Z(G)| \ge 2q$, by Proposition 3.3, $\Gamma(P)$ is an 8-regular graph with $|V(\Gamma(P))| \le 14$, a contradiction.

Case 5. a = 2q, hence $p^{n-i}(p^i - 1) = 4$. This implies that p = 5 and n = i = 1, a contradiction or p = 2, n - i = 2 and i = 1. It follows that $\Gamma(P)$ is an 4-regular graph with $|V(\Gamma(P))| \le 6$ vertices, a contradiction.

Case 6. a = 4q, therefore $p^{n-i}(p^i - 1) = 2$. This implies that p = 3 and n = i = 1, a contradiction or p = 2 and

n - i = i = 1, a contradiction with *G* is not abelian.

Case 7. a = 8q, therefore $p^{n-i}(p^i - 1) = 1$. This implies that p = 2 and n = i = 1, a contradiction, since *G* is not abelian.

In general, we have the following theorem:

Theorem 3.6. Suppose that G is a non-abelian finite group and $\Gamma(G)$ is k-regular. Then $k \neq 2^{s}q$ where q is an odd prime.

Proof. Suppose that $k = 2^{s}q$. First assume that G/Z(G) is not a 2-group. Let $x \in G$ be such that Z(G)x has odd order greater than 1. We have

$$2^{s}q = |C_{G}(x)|(|G:C_{G}(x)| - 1)$$

and so, as $x \in C_G(x)$, $|C_G(x)| = 2^a q$ for some integer *a* and Z(G)x has order *q*. In particular, Z(G) is a 2-group. Let *Q* be a Sylow *q*-subgroup of *G* and $y \in Z(Q)$ with $y \neq 1$. Then Z(G)y has odd order greater than 1 as Z(G) is a 2-group. Thus $|C_G(y)| = 2^b q$ for some integer *b*. Since $Q \leq C_G(y)$ we see that *Q* has order *q*. Thus every element of odd order in *G* has order *q* and *G* has Sylow *q*-subgroups of order *q*. Especially, $|G| = 2^c q$ for some integer *c*. Now

$$2^{c}q = |G| = 2^{s}q + |C_{G}(x)| = 2^{s}q + 2^{b}q = 2^{b}q(2^{s-b} + 1)$$

from which we deduce $2^{s-b} + 1 = 2$ and $|G| = 2^{s+1}q$. Further $C_G(x)$ has index 2 in *G*. But then every conjugate of *x* is contained in $C_G(x)$. Hence $\langle x \rangle$ is normal in *G*. Let *y* be a 2-element which does not commute with *x*. Then $|C_G(y)| = 2^d$ whereas $|G| - |C_G(y)| = 2^sq = |G| - |C_G(x)|$, a contradiction. Next consider the case that G/Z(G) is a 2-group. In this case *q* divides |Z(G)|. Let *x* be a non-central element of *G*. Then $|C_G(x)| = 2^bq$ for some integer *b*. Now

$$2^{s}q = |C_{G}(x)|(|G:C_{G}(x)|-1) = 2^{b}q(2^{c}-1)$$

so, we deduce that $2^c - 1 = 1$ and $C_G(x) = G$ which is impossible. This proves the claim.

3.1. Which non-commuting graphs are integral?

An integral graph is a graph with integral spectrum considered by Harary and Schwenk [23] for the first time. Cvetković et al. [6, 9, 10] determined all cubic integral graphs. Following their method, we classify all groups whose non-commuting *k*–regular graphs are integral where $1 \le k \le 16$. The following two lemmas are crucial in what follows.

Lemma 3.7. [1] Let Γ be a non-commuting graph with diameter *d*, then $d \leq 2$.

Lemma 3.8. [10] Let Γ be an integral k-regular graph on n vertices with diameter d. Then

$$n \le \frac{k(k-1)^d - 2}{k-2}.$$

According to Lemma 3. 7, the diameter of a non-commuting graph is at most 2, then from Lemma 3. 8, it follows that the number of vertices of Γ is less than or equal to $\frac{k(k-1)^2-2}{k-2}$. Clearly, there is no integral regular non-commuting graph of odd degree. So, we should study just the regular non-commuting graph with even valency.

Theorem 3.9. If $\Gamma(G)$ is k-regular integral non-commuting graph where $k \leq 16$, then k = 4 and $G \cong D_8$, Q_8 or k = 8 and $G \cong \mathbb{Z}_2 \times D_8$, $\mathbb{Z}_2 \times Q_8$, SU(2), M_{16} , $\mathbb{Z}_4 \ltimes \mathbb{Z}_4$, $\mathbb{Z}_4 \ltimes \mathbb{Z}_2 \times \mathbb{Z}_2$ or k = 16 and $G \cong SmallGroup(32, i)$ where

 $i \in \{2,4,5,12,17,22,23,24,25,26,37,38,46,47,48,49,50\}.$

Proof. According to Theorem 3. 2, *k* is even. Since *G* is non-abelian, $k \ge 3$ and so $k \in \{4, 6, 8, 10, 12, 14, 16\}$. According to Theorem 3.4, $k \notin \{6, 10, 12, 14\}$ and so $k \in \{4, 8, 16\}$. Let $\Gamma(G)$ be a 4-regular integral non-commuting graph. According to Lemma 3. 8,

$$n \le \frac{4 \times 3^2 - 2}{4 - 2} = 17.$$

But Γ is not a complete graph and then $6 \le n \le 17$. Since |Z(G)| divides |G|, we can suppose |G/Z(G)| = t and so

$$n = |G| - |Z(G)| = t|Z(G)| - |Z(G)| = (t - 1)|Z(G)|.$$

Let n = 6, since (t - 1)|Z(G)| = 6, |Z(G)| = 1, 2, 3 or 6. If |Z(G)| = 6, then |G/Z(G)| = 2 and so *G* is abelian, a contradiction. If |Z(G)| = 3, then |G| = 9 and so *G* is abelian, a contradiction. If |Z(G)| = 2, then |G| = 8and $G \cong D_8$ or Q_8 . By a direct computation, one can see that both $\Gamma(D_8)$ and $\Gamma(Q_8)$ are 4-regular graphs. If |Z(G)| = 1, then |G| = 7 and so *G* is abelian, a contradiction. Let now n = 7, then |Z(G)| = 1 or 7. If |Z(G)| = 7, then |G| = 14 and the only non-abelian group of order 14 is D_{14} . The non-commuting graph of D_{14} is not 4-regular. If |Z(G)| = 1, then |G| = 8, a contradiction, since the center of a 2–group is not trivial. In continuing, let n = 8. Since *G* is non-abelian, |Z(G)| = 2, 4 or 8. If |Z(G)| = 2, then |G| = 10 and so $G \cong D_{10}$. One can see that $\Gamma(D_{10})$ is not 4-regular. If |Z(G)| = 4, 8 then $\Gamma(G)$ is not 4-regular. In this case, by using a GAP program [16] (presented in the end of this paper), we can prove that just the non-commuting graphs $\Gamma(D_8)$ and $\Gamma(Q_8)$ are 4-regular graphs. Let now, $\Gamma(G)$ be an 8-regular integral non-commuting graph. According to Lemma 3. 8,

$$7 \le n \le \frac{8 \times 7^2 - 2}{8 - 2} = 65.$$

If n = 7, then |Z(G)| = 1 or 7. If |Z(G)| = 1, then |G| = 8 and there is not a group of order 8 whose non-commuting graph is 8-regular. For |Z(G)| = 7, |G| = 14 and similar to the last discussion, the only non-abelian group of order 14 is D_{14} and the degrees of vertices of $\Gamma(D_{14})$ are 7 and 12, a contradiction. This implies that $n \ge 8$. If n = 8, then |G| = 9, 10, 12, 16. From the part one, we can conclude that $|G| \ne 9$, 10, 12. Suppose |G| = 16 and |Z(G)| = 8, then $\frac{G}{Z(G)}$ is cyclic and so *G* is abelian, a contradiction. If n = 10, then |G| = 11, 12, 15, 20 and similar to the last discussion their non-commuting graphs are not regular. Suppose n = 12, then |Z(G)| = 1, 2, 3, 4, 6, 12 and so |G| = 13, 14, 15, 16, 18, 24. By these conditions, one can prove that |G| = 16 and |Z(G)| = 4. There are six non-abelian groups whose non-commuting graphs are 8-regular. They are $\mathbb{Z}_2 \times D_8$, group of the Pauli matrices $\mathbb{Z}_2 \times \mathbb{Z}_8$, SU(2), modular or Isanowa group M_{16} of order 16 and Semidirect products $\mathbb{Z}_4 \ltimes \mathbb{Z}_4, \mathbb{Z}_4 \ltimes \mathbb{Z}_2 \times \mathbb{Z}_2$. By continuing our method and applying GAP program, we can deduce that the above groups are the only groups whose non-commuting graphs are 8-regular. Finally, suppose k = 16, then

$$n \le \frac{16 \times 15^2 - 2}{16 - 2} = 257.$$

Again, by applying GAP program, we can deduce that only for |G| = 32, there are some non-abelian groups whose non-commuting graphs are 16-regular. We name them as *SmallGroup*(32, *i*) where

 $i \in \{2, 4, 5, 12, 17, 22, 23, 24, 25, 26, 37, 38, 46, 47, 48, 49, 50\}.$

This completes the proof.

Acknowledgement. The authors are indebted to Professor Said Sidki for critical discussion on this paper.

A GAP program for computing the non-commuting graph of groups

```
f := function(G)
local x, y, M, MM, i, j, s, d;
 M := []; MM := []; s := 0; d := [];
  for x in Difference(Elements(G), Elements(Center(G))) do
    for y in Difference(Elements(G), Elements(Center(G))) do
     if x * y = y * x then
    Add(M, 0);
     else
     Add(M, 1);
     fi;
    od:
    Add(MM, M); M := [];
  od;
 Print(MM);
 Print(Size(Center(G)));
 for i in MM do
 for j in i do
  s := s + j;
 od;
 Add(d, s); s := 0;
od;
Print(d);
return;
end;
```

References

- [1] A. Abdollahi, S. Akbari, H. R. Maimani, Non-commuting graph of a group, J. Algebra 298 (2006) 468-492.
- [2] A. Abdollahi, M. Jazaeri, Groups all of whose undirected Cayley graphs are integral, European Journal of Combinatorics 38 (2014) 102–109.
- [3] A. Abdollahi, H. Shahverdi, Characterization of the alternating group by its non-commuting graph, J. Algebra 357 (2012) 203–207.
- [4] A. Abdollahi, E. Vatandoost, Which Cayley graphs are integral?, Electronic J. Comb. 16(1)R122 (2009) 1–17.
- [5] O. Ahmadi, N. Alon, L. F. Blake, I. E. Shparlinski, Graphs with integral spectrum, Linear Alg. Appl. 430 (2009) 547-552.
- [6] K. Balinska, D. Cvetković, Z. Rodosavljević, S. Simić, D. A. Stevanović, Survey on integral graphs, Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat. 13 (2003) 42–65.
- [7] J. A. Bondy, J. S. Murty, Graph theory with aplication, Elsevier, 1977.
- [8] N. L. Biggs, Algebraic Graph Theory, Cambridge University Press, 1974.
- [9] F. C. Bussemaker, D. Cvetković, There are exactly 13 connected, cubic, integral graphs, Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 544–576 (1976) 43–48.
- [10] D. Cvetković, Cubic integral graphs, Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 498–541 (1975) 107–113.
- [11] D. Cvetković, P. Rowlinson, S. Simić, An introduction to the theory of graph spectra, London Mathematical Society, London, 2010.
- [12] M. R. Darafsheh, Groups with the same non-commuting graph, Discrete Appl. Math. 157 (2009) 833–837.
- [13] M. DeVos, L. Goddyn, B. Mohar, R. Šámal, Cayley sum graphs and eigenvalues of (3,6)-fullerenes, J. Combin. Theor. Series B 99 (2009) 358–369.
- [14] P. W. Fowler, P. E. John, H. Sachs, (3,6)-cages, hexagonal toroidal cages, and their spectra, Discrete mathematical chemistry, New Brunswick, NJ, 1998, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 51 Amer. Math. Soc. Providence, RI (2000) 139–174.
- [15] P. W. Fowler, P. Hansen, D. Stevanović, A note on the smallest eigenvalue of fullerenes, MATCH Commun. Math. Comput. Chem. 48 (2003) 37–48.
- [16] GAP, Groups, Algorithms and Programming, Lehrstuhl De fur Mathematik, RWTH, Aachen, 1992.
- [17] M. Ghorbani, On the eigenvalues of normal edge-transitive Cayley graphs, Bull. Iranian Math. Soc. 41 (2015) 101–107.
- [18] M. Ghorbani, N. Azimi, Characterization of split graphs with at most four distinct eigenvalues, Disc. Appl. Math. 184 (2015) 231–236.

- [19] M. Ghorbani, E. Bani-Asadi, Remarks on characteristic coefficients of fullerene graphs, Appl. Math. Comput. 230 (2014) 428-435. [20] M. Ghorbani, M. Faghani, A. R. Ashrafi, S. Heidari-Rad, A. Graovać, An upper bound for energy of matrices associated to an
- infinite class of fullerenes, MATCH Commun. Math. Comput. Chem. 71 (2014) 341-354. [21] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungsz Graz 103 (1978) 1-22.
- [22] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.
- [23] F. Harary, A.J. Schwenk, Which graphs have integral spectra?, in: R. Bari, F. Harary (Eds.), Graphs and Combinatorics, Lecture Notes in Mathematics, 406, Springer, Berlin (1974) 45-51.
- [24] W. Klotz, T. Sander, Integral Cayley graphs over abelian groups, Electronic J. Combinatorics 17 R81 (2010) 1–13.
 [25] A. R. Moghaddamfar, W. J. Shi, W. Zhou, A. R. Zokayi, On the non-commuting graph associated with a finite group, Siberian Math. J. 46 (2005) 325-332.
- [26] G. L. Morgan, C. W. Parker, The diameter of the commuting graph of a finite group with trivial centre, J. Algebra 393 (2013) 41-59.
- [27] B. H. Neumann, A problem of Paul Erdős on groups, J. Austral. Math. Soc. Ser. A 21 (1976) 467–472.
- [28] W. C. Shiu, W. Li, W. H. Chan, On the spectra of the fullerenes that contain a nontrivial cyclic-5-cutset, Australian J. Combin. 47 (2010) 41-51.
- [29] A. Talebi, On the non-commuting graph of group D_{2n} , International J. Algebra 2 (2009) 957–961.
- [30] D. B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, 1996.